集成物流能流和(?)流分析的造纸过程建模与在线仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
造纸过程复杂,能耗较高。建模和仿真是优化过程能效达到节能目标的重要技术手段。针对目前在造纸过程建模、仿真和用能分析中未能有效集成物流、能流和不能在线仿真和实时分析的不足,本文应用热力学第一定律和第二定律的基本原理,基于序贯模块法,用面向对象、面向模式、数据库和可视化编程技术,以造纸过程各种基本单元、过程和设备为对象,针对复杂的、多物料、多过程的造纸过程的传热传质特点和造纸过程的结构、功能特性,以纤维、空气、水分和水蒸汽间的传热传质为主线,以集成物流、能流和为主要研究内容,取得了如下主要研究成果。
     1、在造纸过程建模中集成物流、能流和流衡算与分析,提出了集成物流、能流和流分析的造纸过程通用建模方法。开发了混合、分离、纸页、蒸汽混合、空气混合、湿热空气、热回收、空气加热、除渣器、浆池、浆泵、旋翼筛、流浆箱、浓缩机、白水池、烘缸组、汽水分离器、换热器、送(抽)风机、变送器、阀门、PID、延迟等23个功能模块。重点研究了纸页动态模拟的数学模型,它综合考虑了纸页接触干燥和对流干燥水分蒸发速率与蒸汽消耗、通风能耗、蒸汽与空气的状态变量和主要的设备变量等因素。所有模型具有能量和量分析功能并与传统的物流分析集成。在此基础上,基于序贯模块法,给出了应用功能模块构建干燥部模块流程图的方法。
     2、开发并优化了基于IAPWS-IF97标准(2007.8Rev)的水和水蒸汽物性库,具有全面、精确、快速、提高了边界一致性和自动测试等优点。同时建立了干空气等造纸过程相关的物性数据库。
     3、在Windows平台下,开发了一套全新的集成物流、能流和流分析的造纸过程在线仿真软件WinPAMS。它重新设计了软件体系结构,运用数据库技术,集成了物流、能流和降低了仿真流程的复杂性,提高了运算速度,用更友好的人机交互实现了造纸过程的静态、动态在线仿真和实时分析。将离线、封闭、零散的建模与仿真变成在线、开放和集成的建模与仿真。应用案例表明,开发的模型结构合理,仿真的结果与实际测量的结果基本一致。通过改变进不同烘缸段新鲜蒸汽的流量或压力等手段,可节省新鲜蒸汽用量,降低吨纸汽耗。
     4、研究了基于模块模拟器、LP/NLP和能量系统“三环节”模型三种形式的造纸过程优化。分别给出了实际的优化案例,达到了各自的优化目标。以适应造纸工业对于优化操作的要求,尤其是实时、在线优化越来越高的要求。
     本文的研究成果将为实现整个制浆造纸过程集成物流、能流和流分析的建模与仿真提供方法、技术和实现的基础,为更有效挖掘造纸过程的节能空间打下基础和提供优化方法。
     本文的主要特色和创新之处是:1)建立并开发了集成物流、能流和流衡算、显示、存储、分析和优化的造纸过程若干单元模型和功能模块;2)开发并优化了水和水蒸汽物性库,建立了造纸过程相关的物性数据库;3)设计并开发了一套全新的、体系结构柔性的、能够在线仿真和实时分析的造纸过程仿真软件WinPAMS。
Papermaking process is complicated and of high energy consumption. To save energy byoptimizing process energy efficiency, modeling and simulation are the important technicalmethods. Considering that the present modeling, simulation and energy-using analysis ofpapermaking process are lacking in the integrated analyses of the material, energy and exergyflows, furthermore, cannot realize online simulation and real-time analysis. Thus in thisresearch, according the heat and mass transfer characteristics and the structure and functionfeatures of the complicated, multi-material, and multi-process papermaking process, first,based on the first and the second laws of thermodynamics and the sequential modularapproach, then by applied object-oriented, pattern-oriented, database and visualizedprogramming technologies, using the basic units, process and equipments of papermakingprocess as the study object, the heat and mass transfer among fibers, air, water and steam asthe principal line, the modeling and online simulation of papermaking process integratedanalysis of material, energy and exergy flows as main research contents, the following mainresearch achievements are gained.
     1. A general modeling method of papermaking process integrated analysis of material,energy and exergy flows is proposed. By integrated balance accounting and analysis ofmaterial, energy and exergy flows in the modeling of papermaking process, twenty threefunction modules have been developed, which are Mix, Split, Paper, SMix, AMix, WAir,RHAir, HAir, Rejector, Tank, Pump, Screen, HBox, Condense, Pool, Dryer, SWSplit,GWSplit, Fan, Transm, Valve, PID, Delay. The dynamic mathematic models of paper moduleare studied in emphasis. The vaporization speed of paper surface contact drying andconvection drying, the steam consumption, the ventilation consumption, the state variable ofsteam and air, and the main equipment variable would be considered comprehensively. All ofthe models possess the analysis function of energy and exergy, and integrate with the traditional material flow analysis. On that basis and the sequential modular approach, thedryer section modular flow constructed by those23function models is presented.
     2. The property libraries of water and steam, which is based on the IAPWS-IF97Standard (2007.8Rev), have been developed and optimized. The libraries are comprehensive,precise, and quick to be consulted with boundary consistency and automatic test function.Related to the papermaking process, the property database of dry air, flue gas, furnace coolingand lime-ash have been developed as well.
     3. A new online simulation software of papermaking process integrated analysis ofmaterial, energy and exergy flows, called WinPAMS, has been developed under the platformof Microsoft Windows. The software architecture has been re-designed. The static and thedynamic online simulation and real-time analysis have been realized with more friendlyhuman-machine interface, by methods such as applying database technology, integratingbalance accounting, display, storage and analysis of material, energy and exergy flows,reducing the complexity of the simulation flow, improving the operating speed, etc. Thetraditional offline, close, separate modeling and simulation of papermaking process have beentransformed into online, open and integration. Case study shows that the developed modelsare reasonable and the simulation results are nearly consistent with the actual measuringresults. The amount of fresh steam can be saved by means of altering the inlet flow orpressure of fresh steam of different dryer sections, thus the steam consumption per ton papercan be reduced.
     4. The papermaking process optimizations of the simulator built on modules, the LP/NLPand the energy system “three-link” model have been studied respectively. Actual cases withthe goals of optimization achieved have been presented. To meet the requirement of optimizedoperation in the papermaking industry, especially the higher and higher requirement of realtime, online optimization.
     The research achievement of this paper can provide the methodology, the technology andthe realization foundation for the modeling and simulation of the whole pulp andpapermaking process integrated analysis of material, energy and exergy flows. It can provide basis and optimization methods for better energy conservation in papermaking process.
     The main features and innovation points of this paper are:
     1. Twenty three unit models and function modules of papermaking process have beenconstructed and developed, which integrate balance accounting, display, storage, analysis andoptimization of material, energy and exergy flows.
     2. The property libraries of water and steam have been developed and optimized. Theproperty database of dry air, flue gas, furnace cooling and lime-ash have been developed aswell.
     3. Brand-new simulation software of papermaking process, named WinPAMS, has beendesigned and developed, whose software architecture is flexible, with online simulation andreal-time analysis.
引文
[1]国家发展与改革委员会.造纸产业发展政策(2007)[EB/OL]. http://www.sdpc.gov.cn
    [2]中国造纸学会.2011中国造纸年鉴[M].北京:中国轻工业出版社,2011
    [3]国家发展与改革委员会,工业和信息化部,国家林业局.造纸工业发展“十二五”规划[J].中华纸业,2012,33(1):8-20
    [4]刘焕彬.低碳经济视角下的造纸工业节能减排[J].中华纸业,2009,30(12):10-12
    [5] Worrell E., Price L., Neelis M., et al. World Best Practice Energy Intensity Values forSelected Industrial Sectors[R]. California: Ernest Orlando Lawrence Berkeley NationalLaboratory,2008
    [6] Yaroslav C., Aleksander K., Lester S. Laboratory development of a high capacitygas-fired paper dryer[R]. Des Plaines, IL: Gas Technology Institute-Energy UtilizationCenter,2004
    [7]卢谦和.造纸原理与工程(第二版)[M].北京:中国轻工业出版社,2007
    [8] Blanco A., Dahlquist E., Kappen J., et al. Modelling and simulation in pulp and paperindustry. Current state and future perspectives[J]. Cellulose Chemistry and Technology,2006,40(3-4):249-258
    [9] Dahlquist E. Use of modeling and simulation in pulp and paper industry[M/OL].M lardalen University Press,2008, http://www.coste36.org/publications.htm
    [10]Alonso A., Negro C., Blanco A. Users’ Requirements for Simulation Software(2005)
    [EB/OL]. http://www.coste36.org/publications.htm
    [11]Kappen D.I.J. Short summary report: E36"Modelling and Simulation in the Pulp andPaper Industry"(2008)[EB/OL]. http://www.coste36.org/publications.htm
    [12]Khademi M.H., Rahimpour M.R., Jahanmiri A. Simulation and optimization of asix-effect evaporator in a desalination process[J]. Chemical Engineering andProcessing:Process Intensification,2009,48:339-347
    [13]Bortolin G., Borg S., Gutman P.O. Modeling of the wet end part of a paper mill withDymola [J].Mathematics and Computers in Simulation,2004,65(1-2):31-38
    [14]Bermond C. Establishing the scientific base for energy efficiency in emerging pressingand drying technologies[J]. Applied Thermal Engineering,1997,17(8-10):901-910
    [15]Khanbaghi M., Allison B., Olson J. Modeling and control of an industrial pressurescreen[J]. Control Engineering Practice,2003,11(5):517-529
    [16]Shen W., Chen X., Corriou J.P. Application of model predictive control to the BSM1benchmark of wastewater treatment process [J]. Computers and Chemical Engineering,2008,32(12):2849-2856
    [17]沈文浩,刘焕彬.造纸机湿端定量前馈一串级调节系统的建模与模拟分析[J].中国造纸学报(增刊),1999,14:102-108
    [18]汤伟,施颂椒.抄纸过程的建模、检测及控制[J].中国造纸,2000,11(6):53-59
    [19]Schumacher K., Sathaye J. India's pulp and paper industry: productivity and energyefficiency[M]. Earent Orlando Lawrence Berkeley National Laboratory,1999
    [20]Martin N., Anglani N., Einstein D., et al. Opportunities to improve energy efficiency andreduce greenhouse gas emissions in the U.S. pulp and paper industry[M]. Ernest OrlandoLawrence Berkeley National Laboratory,2000
    [21]Dincer I., Cengel Y.A. Energy, Entropy and Exergy Concepts and Their Roles inThermal Engineering[J]. entropy,2001,3(3):116-149
    [22]Slater A., Self A., Webb W., et al. Plant efficiency and energy management. The perfectmatch[J]. Paper Technology,1992,34(4):20-23
    [23]Manninen J., Puumalainen T., Talja R., et al. Energy aspects in paper mills utilising futuretechnology[J]. Applied Thermal Engineering.2002,22(8):929-937
    [24]Bujak J. Energy savings and heat efficiency in the paper industry: A case study of acorrugated board machine[J]. Energy,2008,33(11):1597-1608
    [25]Khanam S., Mohanty B. Energy reduction schemes for multiple effect evaporatorsystems[J]. Applied Energy,2010,87(4):1102–1111
    [26]Vieira M.G.A., Estrella L., Rocha S.C.S. Energy efficiency and drying kinetics ofrecycled paper pulp. Drying Technology,2007,25(10):1639-1648
    [27]仵浩,华贲.[J].化工学报,2007,58(11):2697-2704
    [28]Koper G.J.M., Kjelstrup S., van de Ven T., et al. Entropy production for cylinder dryingof linerboard and newsprint[J]. International Journal of Heat and Mass Transfer,2007,50(7-8):1344-1355
    [29]Gong M. Exergy analysis of a pulp and paper mill[J]. International Journal of EnergyResearch,2005,29(1):79-93
    [30]De Beer J., Worrell E., Blok K. Long-term energy-efficiency improvements in the paperand board industry[J]. Energy,1998,23(1):21-42
    [31]Zhou Y.M., Li J.G., Tao J.S., et al. Design of modeling and online simulation for energysystems in papermaking mill[C]. International Conference on Renewable Energies andPower Quality, ICREPQ’10, http://www.icrepq.com/
    [32]Zhou Y.M., Li J.G., Liu H.B. The Abstract Device Model And The General MathematicalModel For The Energy And Exergy Analyse In Papermaking Mill[J]. Advanced MaterialsResearch,2012,499:160-164
    [33]周艳明,刘焕彬,李继庚.集成物流、能流和[J].华南理工大学学报:自然科学版,2012,40(5):76-83
    [34]刘杰.制浆造纸过程计算机动态模拟软件的面向对象建模与实现[D].广州:华南理工大学硕士学位论文,1999
    [35]王中厚.制浆造纸工业计算手册(上册)[M].北京:中国轻工业出版社,1994.
    [36]冯品如.过程控制系统[M].北京:中国轻工业出版社,1995.5:195-204
    [37]Karlsson M., Oyg M. Papermaking science and technology series. Papermaking Part2,Drying[M]. Finish Paper Engineers' Association and TAPPI,2000
    [38]Karlsson M.&Stenstr m S. Static and dynamic modelling of cardboard drying part1:theoretical model[J]. Drying Technology,2005,23(1-2):143-163
    [39]Karlsson M.&Stenstr m S. Static and Dynamic Modeling of Cardboard Drying Part2:Simulations and Experimental Results[J]. Drying Technology,2005,23(1-2):165-186
    [40]Nilsson L. Heat and mass transfer in multicylinder drying: Part I. Analysis of machinedata[J]. Chemical Engineering and Processing,2004,43(12):1547-1553
    [41]Nilsson L. Heat and mass transfer in multicylinder drying: Part II. Analysis of internaland external transport resistances[J]. Chemical Engineering and Processing,2004,43(12):1555-1560
    [42]Yeo Y.K., Hwang K.S., Yi S.C., et al. Modeling of the drying process in paper plants[J].Korean Journal Chemical Engineering,2004,21(4):761-766
    [43]Etemoglu A.B., Can M., Avci A., et al. Theoretical study of combined heat and masstransfer process during paper drying [J]. Heat Mass Transfer,2005,41(5):419-427
    [44]Aguilar Ribeiro H., Costa C.A.V. Modelling and simulation of the nonlinear behaviour ofpaper: A cellular materials approach [J]. Chemical Engineering Science,2007,62(23):6696-6708
    [45]Sl tteke O. Modeling and control of the paper machine drying section[D]. Lund: LundUniversity,2006
    [46]Ekvall J., H gglund T. Improved web break strategy using a new approach for steampressure control in paper machines [J]. Control Engineering Practice,2008,16(10):1151-1160
    [47]Laudone G.M., Matthews G.P., Gane P.A.C. Modelling the shrinkage in pigmentedcoatings during drying: A stick.slip mechanism [J]. Journal of Colloid and InterfaceScience,2006,304(1):180-190
    [48]Maijala J., Keitamo J.P., Gron J., et al. Modelling and simulation of the electric field andparticle trajectories in simultaneous two-sided dry surface treatment of paper [J]. Surfaceand Coatings Technology,2005,195(1):41-53
    [49]周强,韩九强.基于遗传算法的烘缸干燥曲线的参数优化[J].中国造纸学报.2007,22(1):80-83
    [50]沈胜强,卢涛,李素芬.纸页干燥过程计算模型[J].中国造纸,2003,22(4):22-25
    [51]沈胜强,卢涛,李素芬.纸页干燥过程的数值模拟与参数分析[J].中国造纸学报.2003,18(1):119-122
    [52]Lu T., Shen S.Q. Numerical and experimental investigation of paper drying: Heat andmass transfer with phase change in porous media [J]. Applied Thermal Engineering,2007,27(8-9):1248-1258
    [53]Kong L., Liu H. A static energy model of conventional paper drying for multicylinderpaper machines[J]. Drying Technology,2012,30(3):276-296
    [54]林治作.纸页干燥过程建模研究[D].广州:华南理工大学硕士学位论文,2012
    [55]林治作,李继庚,周艳明,等.双干网多烘缸纸机纸页干燥过程建模研究[J].造纸科学与技术,2012,31(3):78-82
    [56]方奕文.造纸机干燥部计算机模拟软件的开发与应用[D].广州:华南理工大学硕士学位论文,1993
    [57]刘金星.造纸过程仿真与过程参数辨识方法的研究[D].广州:华南理工大学博士学位论文,2008
    [58]姚新跃,张辉.纸机密闭气罩内外压差的量化模型[J].南京林业大学学报:自然科学版,2010,34(2):95-100
    [59]Roonprasang K. Thermal analysis of multi-cylinder drying section with variantgeomretry[D]. Tagungsband: TU Dresen,2008
    [60]Sivill L., Ahtila P., Taimisto M. Thermodynamic simulation of dryer section heat recoveryin paper machines [J]. Applied Thermal Engineering,2005.25(8-9):1273-1292
    [61]Sivill L., Ahtila P. Energy efficiency improvement of dryer section heat recovery systemsin paper machines-A case study [J]. Applied Thermal Engineering,2009,29(17-18):3663-3668
    [62]Atkins M.J., Morrison A.S., Walmsley M.R.W., et al. WinGEMS modeling and pinchanalysis of a paper machine for utility reduction [J]. Appita Journal,2010,63(4):281-287
    [63]Kiranoudis C.T., Krokida M.K., Maroulis Z.B. Thermocompressor design for efficientenergy recovery of paper production plant dryers[J]. Drying Technology,1999,17(6):1065-1080
    [64]Lindell K. Strategies for Reduced Energy Use and Cost in Pulp and Paper Mills byEnergy Integration of the Paper Drying Process [D]. Lund: Sweden Lund University,Department of Chemical Engineering,2007
    [65]Lindell K., Stenstr m S. Assessment of different paper drying processes to reduce thetotal energy costs from a mill perspective[C]//Proceedings of the14th InternationalDrying Symposium (IDS2004). S o Paulo, Brazil2004
    [66]Kong L., Liu H., L J.i, et al. Waste heat integration of coating paper machine dryingprocess[J]. Drying Technology,2011,29(4):442-450
    [67]周艳明,李继庚,刘焕彬,等.水和水蒸汽热力性质IAPWS-IF97计算模型分析及算法设计[J].热能动力工程,2010,25(2):166-171,242
    [68]周艳明,李继庚,刘焕彬.优化水和水蒸汽热力性质IAPWS-IF97计算模型的新方法[J].造纸科学与技术,2009,28(6):20-23
    [69]Zhou Y.M., Li J.G., Tao J.S., et al. A New Method for Optimizing the Computing Processof IAPWS-IF97//C.Q.Ma, Yu L.A., Zhang D.B. and Zhou Z.B. Global Optimization:Theory, Methods&Applications I [C]. HongKong: Global-Link Publisher,2009,984-992
    [70]International Formulation Committee of the6th International Conference on theProperties of Steam. The1967IFC Formulation for Industrial Use[M]. Verein DeutscherIngenieure, Düsseldorf,1967
    [71]李维特. IFC公式的迭代与收敛性质及其在动力工程上的应用[J].华北电力学院学报,1994,21(3):40-45
    [72]田瑞峰,张志俭,孙浩伟.低参数单缸多级汽轮机热力计算程序开发[J].汽轮机技术,2004,46(5):336-338
    [73]Wagner W. and Pru A. The IAPWS Formulation1995for the ThermodynamicProperties of Ordinary Water Substance for General and Scientific Use[J]. J. Phys. Chem.Ref,2002,31:387-535
    [74]IAPWS Release on the IAPWS Formulation1995for the Thermodynamic Properties ofOrdinary Water Substance for General and Scientific Use[EB/OL]. Available athttp://www.iapws.org
    [75]Wagner W., Cooper J.R., Dittmann A., et al. The IAPWS Industrial Formulation1997forthe Thermodynamic Properties of Water and Steam[J]. J. Eng. Gas Turbines and Power,2000,122:150-182
    [76]IAPWS Release on the IAPWS Industrial Formulation1997for the ThermodynamicProperties of Water and Steam(2007.8)[EB/OL]. Available at http://www.iapws.org
    [77]李春曦.工业用水和水蒸气热力性质计算公式—IAPWS-IF97[J].锅炉技术,2002,33(6):15-19
    [78]贾俊颖,王培红,程懋华.水和水蒸气性质通用计算软件的算法研究[J].热能动力工程,2000,15(6):666-669
    [79]王培红,贾俊颖,程懋华.水和水蒸汽热力性质IAPWS_IF97公式的通用计算模型[J].动力工程,2001,21(6):1564-1567
    [80]汪国山,朱晓星,谭锐,等.水和水蒸汽热力性质国际工业标准IAPWS_IF97和计算程序编制[J].汽轮机技术,2005,47(3):161-164,167
    [81]蒋寻寒,曹祖庆.一组性能优良的水和水蒸汽高精度特性公式[J].动力工程.2003,23(6):2777-2780,2809
    [82]祁海涛,周宇阳,胡念苏,等.汽水性质IAPWS-IF97公式简化模型[J].汽轮机技术,2003,45(2):73-75
    [83]孙龙,周克毅,胥建群,等. Ms_excel在锅炉热力计算中的应用[J].锅炉技术,2001,32(8):11-14
    [84]舒倩,胡念苏,陈波.基于数据库的可视化水蒸汽电子图表[J].汽轮机技术,2004,46(5):353-355
    [85]李庆扬,王能超,易大义.数值分析[M].武汉:华中工学院出版社,1982
    [86]邓毅.造纸企业能量系统三环节结构模型的建立和用能分析研究[D].广州:华南理工大学硕士学位论文,2003
    [87]解新安.过程系统建模、优化及应用研究[D].广州:华南理工大学博士后研究工作报告,2004
    [88]解新安,刘焕彬,邓毅,等.造纸企业能量系统“三环节”模型的建立及应用探讨(I)—造纸企业“三环节”能量结构模型的建立[J].造纸科学与技术,2004,23(1):25-30
    [89]解新安,刘焕彬,邓毅,等.造纸企业能量系统“三环节”模型的建立及应用探讨(II)—造纸企业能量系统用能分析与评价[J].造纸科学与技术,2004,23(2):32-37
    [90]解新安,刘焕彬,邓毅,等.造纸企业能量系统“三环节”模型的建立及应用探讨(III)—造纸企业能量系统改进措施研究[J].造纸科学与技术,2004,23(6):6-10
    [91]Turon X., Labidi J., Paris J. Simulation and optimization of a high grade coated papermill [J]. Journal of Cleaner Production,2005,13(15):1424-1433
    [92]Xu L., Parker A.I. Simulating the forming process with the Moving Belt Drainage Former[J]. Appita Journal,2000,53(4):282-286
    [93]Reuter J. Comparison of different press concepts using numerical simulation [J]. ATIP.Association technique de l'industrie papetière,2007,61(1):6-13
    [94]Lindell K., Stenstr m S. A modular process modeling tool for the analysis of energy useand cost in the pulp and paper industry[J]. Drying Technology,2006,24(11):1335-1345
    [95]Cardoso M., De Oliveira K.D., Costa G.A.A., et al. Chemical process simulation forminimizing energy consumption in pulp mills[J]. Applied Energy,2009,86(1):45-51
    [96]徐明,曹春星. OCC制浆造纸过程水封闭循环的模拟研究[J].中国造纸,2007,26(11):5-9
    [97]唐辉,李迪,万金泉,等.基于人工神经网络的造纸废水处理动态仿真[J].中国环境科学,2006,26(1):48-51
    [98]胡慕伊,陈铁山,戴连奎,等. MATLAB(SIMULINK)在造纸浆水平衡计算中的仿真应用[J].林产化工通讯,2005,39(3):21-23
    [99]陈朝霞,胡慕伊.纸机定量水分DMC控制的仿真分析[J].南京林业大学学报:自然科学版,2006,30(6):69-72
    [100]胡慕伊,王水良,胡明,等.制浆过程计算机静态仿真[J].林产化学与工业,2000,20(4):11-14
    [101]卜磊,熊智新,胡慕伊.纸张多变量控制系统的分析与设计[J].中国造纸学报,2011,26(4):46-48
    [102]张永康,孙优贤,王文海.制浆造纸生产线计算机模拟系统[J].中国造纸学报,1997,12:103-108
    [103]张永康,孙优贤,王文海.制浆造纸工业计算机控制的现状和发展方向[J].北方造纸,1997,3:24-29
    [104]张永康,王文海,孙优贤.虚拟过程控制系统及其在制浆造纸过程中的应用[J].中国造纸学报,1997, S1:115-120
    [105]王文海,孙优贤.造纸企业的综合自动化与实现[J].控制工程,2004,11(1):5-8,13
    [106] Lampinen J., Taipale O. Optimization and simulation of quality properties in papermachine with neural networks[C]. IEEE International Conference on Neural Networks-Conference Proceedings,1994,6:3812-3815
    [107] Vengimalla R., Chase G.G., Ramarao B.V. Modeling of filler retention incompressible fibrous media [J]. Separation and Purification Technology,1999,15(2):153-161
    [108] Cho B.U., Garnier G., Perrier M. Dynamic simulation of retention and formationprocesses of a pilot paper machine [J]. Palpu Chongi Gisul/Journal of Korea TechnicalAssociation of the Pulp and Paper Industry,2007,39(1):8-15
    [109] Barratte C., Roux J.C., Voillot C., et al. Simulation of initial fibre retention by aforming fabric [J]. Appita Journal,2001,54(4):364-368
    [110] Attwood B.W., Jopson R.N. Dynamic drainage simulation [J]. Paper Technology,1998,39(4):53-57
    [111] Qi D. Simulations of fluidization of cylindrical multiparticles in a three-dimensionalspace [J]. International Journal of Multiphase Flow,2001,27(1):107-118
    [112] Green S.I., Wang Z., Waung T., et al. Simulation of the flow through woven fabrics[J]. Computers&Fluids,2008,37(9):1148-1156
    [113] Huang Z., Olson J.A., Kerekes R.J., et al. Numerical simulation of the flow aroundrows of cylinders [J]. Computers&Fluids,2006,35(5):485-491
    [114] www.pacsim.com
    [115] Mesto Automation. User's Guide for WinGEMS [Z].2007
    [116] Alonso A., Blanco A., Negro C. Current use of software in COST Action E36-Report from surveys done at COST Action E36(2004)[EB/OL].http://www.coste36.org/publications.htm
    [117] Alonso A., Negro C. Main specifications of different software packages(2006)
    [EB/OL]. http://www.coste36.org/publications.htm
    [118] Niemenmaa A., Lappalainen J., Laukkanen I., et al. A multi-purpose tool for dynamicsimulation of paper mills[J]. Simulation Practice and Theory,1998,6(3):297-304
    [119]金才兵.造纸过程计算机模拟与优化的研究[D].广州:华南理工大学硕士学位论文,1994
    [120]曾强.制浆造纸过程计算机模拟软件的开发与用户界面设计[D].广州:华南理工大学硕士学位论文,1996
    [121]曹旭光.制浆造纸过程计算机模拟软件PAMS的设计与实现[D].广州:华南理工大学硕士学位论文,1998
    [122]郑毅强,郭荷清,刘焕彬,等.计算机模拟造纸过程的关键技术[J].华南理工大学学报:自然科学版,1998,26(12):88-94
    [123]刘焕彬.制浆造纸过程数学建模与计算机模拟(研究生讲义)[M].2005
    [124]刘金星,刘焕彬,高英莲.制浆造纸工业过程仿真平台的研究[J].中国造纸学报,2011,26(1):55-59
    [125]周艳明,王强,周源邵. DDR:一种自适应的面向模式的软件体系结构[J].计算机工程与应用,2005,41(16):65-68
    [126]彭秉璞编著.化工系统分析与模拟[M].北京:化学工业出版社,1990
    [127]严蔚敏编著.数据结构[M].北京:清华大学出版社,1995
    [128]谭浩强编著. C程序设计[M].清华大学出版社,1995
    [129]汤小丹,梁红兵,哲凤屏,等.计算机操作系统(第三版)[M].西安:西安电子科技大学出版社,2007
    [130]李继庚,刘焕彬,吴波,等.造纸企业全厂能量系统优化信息平台的设计与开发[J].造纸科学与技术,2009,28(6):14-19
    [131]赵宁,李继庚,吴波,等.造纸企业能量系统优化信息平台数据交互机制设计与开发[J].中华纸业,2010,31(24):12-15
    [132][美]托马斯.埃德加等著.化工过程优化[M].原著第二版.张卫东等译.北京:化学工业出版社,2006
    [133] Sundberg J., Wene C.O. Integrated modelling of material flows and energy systems(mimes)[J]. International Journal of Energy Research,1994,18(3):359-381
    [134] Dabros M., Perrier M., Forbes F., et al. Model-based direct search optimization of thebroke recirculation system in a newsprint mill [J]. Journal of Cleaner Production,2005,13(15):1416-1423
    [135] Deshanais J., Bastien C., Tsuzuno H. Comprehensive approach to optimize dryerplant-from drying energy saving to sheet stabilization[J]. Japan Tappi Journal,2010,64(9):13-18
    [136]李玉刚,刘焕彬,李继庚,等.基于联立模块法的造纸机干燥部操作参数优化[J].华南理工大学学报:自然科学版,2011,39(3):8-12
    [137] Li Y., Liu H., Li J., et al. Process parameters optimization for energy saving in papermachine dryer section[J]. Drying Technology,2011,29(8):910–917
    [138]李玉刚.多烘缸造纸机干燥部能量系统分析建模与优化研究[D].广州:华南理工大学博士学位论文,2011
    [139] S derman J., Pettersson F. Influence of variations in cost factors in structuraloptimisation of heat recovery systems with moist air streams[J]. Applied ThermalEngineering,2003,23(14):1807-1818
    [140] Pettersson F., S derman J. Design of robust heat recovery systems in papermachines[J]. Chemical Engineering and Processing: Process Intensification,2007,46(10):910-917
    [141] Sarimveis H.K., Angelou A.S., Retsina T.R., et al. Optimal energy management inpulp and paper mills[J]. Energy Conversion and Management,2003,44(10):1707-1718
    [142]陈胜,李继庚,周艳明,等.造纸企业热电联产汽轮机组负荷分配优化调度系统的设计与开发[J].中华纸业,2012,33(10):21-24
    [143]陈胜.造纸厂热电联产汽轮机组负荷分配优化调度信息系统开发[D].广州:华南理工大学硕士学位论文,2012
    [144] Giannelos N.F., Georgiadis M.C. A model for scheduling cutting operations inpaper-converting processes[J]. Industrial and Engineering Chemistry Research,2001,40(24):5752-5757
    [145]潘明,吴志辉,赵宁,等.纸卷分切与库存管理的集成优化[J].中华纸业,2010,31(8):50-54
    [146]赵宁,李继庚,张占波,等.纸卷分切与库存综合优化系统软件结构的设计与开发[J].造纸科学与技术,2010,29(6):150-152
    [147]赵宁.纸卷排产及分切综合优化系统的开发[D].广州:华南理工大学硕士学位论文,2011
    [148] Zvolinschi A., Johannessen E., Kjelstrup S. The second-law optimal operation of apaper drying machine[J]. Chemical Engineering Science,2006,61(11):3653-3662
    [149]董继先,欧阳玉霞,王孟效.造纸机干燥部的研究与发展[J].陕西科技大学学报,2005,23(3):105-110
    [150]华贲编著.工艺过程用能分析及综合[M].北京:烃加工出版社,1989
    [151]华贲.过程系统的能量综合和优化[J].化工进展,1994,3:6-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700