干燥和烘焙预处理制备高品质生物质原料的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质资源总量巨大,但品质较低。生物质原料中过多的水分往往会延迟热解反应、增加供热成本和破坏热解液化产物的稳定性。此外,生物质还具有亲水性强、氧含量高、能量密度低、不易储存且产地分散等缺点,造成其在运输、储存以及作为能源利用的成本偏高,进而限制了生物质利用技术的进一步发展。基于此背景,本文开展了通过干燥和烘焙预处理制备高品质生物质热解原料的研究,系统分析了生物质干燥过程的传热传质机理,提出了测定有效水分扩散系数的简便方法,揭示了烘焙三种产物理化特性的变化规律,明确了干燥和烘焙预处理对生物质热解转化的影响。
     (1)生物质等温和非等温干燥的传热传质机理研究
     生物质干燥是一个复杂的传热传质过程。在等温条件下,生物质干燥过程可分为升速干燥段、第一降速干燥段和第二降速干燥段,水分与物料结合力的不同是导致出现不同干燥阶段的主要原因。提高干燥温度和减小颗粒粒径有助于提高干燥速率,降低最终含水量。干燥动力学分析表明,Midilli模型对秸秆等温干燥的模拟效果最好,而非等温Page模型能很好地模拟木屑、稻壳和棉花秆的非等温干燥过程。传热传质有紧密的内在联系,干燥热流由水分蒸发热流、未蒸发水分热容热流、干秸秆热容热流三部分叠加而成,其中水分蒸发热流是主要部分。干燥吸热主要用于水分的扩散和蒸发。干燥需热量模拟值与实验值吻合较好,表明了干燥动力学分析以及热流模拟的可靠性。
     (2)生物质有效水分扩散系数测定方法的研究
     提出了基于热重分析的等温两步法和非等温一步法,以准确快速测定生物质颗粒的水分扩散系数(Deff)。在等温两步法中,利用Fick扩散定律可以得到Deff,再通过ln(Defff)和1/(T+273.15)的关系可以计算干燥活化能。本方法对样品需求量少、实验简单、计算简便,基本上克服了等温条件难以实现的困难。为了尽可能减少热滞后现象以得到更准确的计算结果,本文对上述等温两步法进行了一些改进,排除了由表面汽化所控制的短暂的升速干燥段,以内部扩散占主导的降速干燥段计算Deff。花生壳的干燥结果表明,改进的等温两步法的计算结果更加可靠。由于升速干燥段比较短暂,对整个干燥过程的影响较小,改进前后的等温两步法的计算结果比较接近。在非等温一步法中,由于TGA能够精确进行温度控制,生物质的热滞后显现基本得以消除。在升温速率2-8℃/min时,非等温的结算结果包含于等温两步法的计算结果(30和100℃)内。非等温一步法用料需求低、试验次数少,降低了热滞后效应,计算结果稳定可靠,是一种较好的测定生物质干燥参数的方法。
     (3)烘焙预处理改性提质生物质原料的研究
     烘焙是一种在常压、隔绝氧气的情况下,反应温度介于200~300℃之间的慢速热解过程。本文对生物质烘焙的实验方法进行了改进,明确了烘焙时间,确保了生物质样品的理化特性变化以及挥发分析出都在设定的烘焙温度下进行。稻壳经过烘焙预处理后,纤维结构遭到破坏,体积逐渐缩小,研磨性能得到改善,疏水性明显增强,在260℃中温烘焙可获得平均孔径最小、比表面积最大的较好孔结构的固体产物。
     随着烘焙温度的提高,挥发分含量逐渐减少,而灰分和固定碳含量大幅上升。硫元素和氮元素在烘焙中基本保持不变,氢元素含量少许下降,碳元素含量逐渐升高,氧元素含量大量减少。能量得率与固体得率具有相似的变化趋势,都随着烘焙温度的升高和烘焙时间的增加而降低。半纤维素在烘焙中大量分解,纤维素含量变化不大,而木质素的含量大幅上升。TG-FTIR分析表明,半纤维素的大量分解是稻壳理化特性变化的主要原因。随着一些含氧官能团的断裂和脱出,固体产物的有机官能团逐渐简化;液体产物含有大量的水分和少量的乙酸;烘焙气体产物有CO2和CO组成。
     (4)干燥和烘焙预处理对生物质热解影响的研究
     生物质热解过程可以分为干燥、主脱挥发分和缓慢脱挥发分三个阶段。DTG曲线中有三个不同的峰,第一个是失水峰,第二个是半纤维素热解形成的肩状侧峰,第三个是由纤维素热解形成的热解主峰。干燥预处理提高了秸秆整体热解速率和挥发分产率,同时也提高了生物油的热值,降低了生物油中的水分含量。Py-GC/MS分析表明,水分对稻壳热解产物的种类和生成途径没有多少影响。水分的存在,相对减少了生物质原料中有机组分的含量,使得热解产物中的化学品含量相对减少。
     稻壳经中高温烘焙(260℃和290℃)后,半纤维素大量分解,热解失重肩峰消失。随着烘焙温度的升高,生物油中水分明显减少、热值逐渐增加,酸性也有不同程度的降低。这有助于生物油的储存和高值化利用。烘焙过程促进了不可冷凝气和焦炭的生成,在中低温(小于260℃)烘焙时,液体(生物油和烘焙液)仍然是主要产物,而在高温(290℃)烘焙时,不可冷凝气是主要产物。Py-GC/MS表明,烘焙对快速热解产物种类没有影响,但提高了木质素热解产物中酚类物质的含量。
The total quantity of biomass resources is huge, but the quality is low. Too much moisture in raw materials always leads to delay pyrolysis reaction, increase the heating cost and destruct the stability of pyrolysis liquid products. In addition, the biomass has many adverse characteristics, such as strong hydrophilicity, high oxygen contents, low energy density, not easy to store and wide dispersion. These drawbacks cause higher costs in the transport and storage, which limits the further development of biomass utilization technology. Based on this background, the research was carried out to obtain high quality biomass pyrolysis feedstock by dry ing and torrefaction methods. In this work, the heat and mass transfer mechanism of biomass drying was first systematically researched, and then two convenient methods were proposed for determination of effective moisture diffusivity, finally torrefaction mechanism of biomass and the effect of drying and torrefaction on biomass pyrolysis were in-depth studied.
     (1) The heat and mass transfer mechanism of biomass isothermal and non-isothermal drying
     The drying of biomass is a complicated heat and mass transfer process. Under isothermal condition, the whole process can be divided into three stages:rising rate period, first falling rate period and second falling rate period, which is closely related to the bonding force between water and biomass. Midillokucuk model shows the best fit to experimental dying data of rice straw under isothermal condition, while the Page model is the best model for describing the non-isothermal conditions of sawdust, cotton stalk and rice straw. There is an internal relation between heat and mass transfer, and the total heat flow can be decomposed into three components:heat flow from the water evaporation, heat flow from the heat capacity of unevaporated water and heat flow from the heat capacity of dry base biomass. The main part of the heat requirement of drying is corresponds to water evaporation. The simulative results agree well with the experimental ones, showing the reliability of the drying kinetics and the thermal simulation.
     (2) The measuring method of the effective moisture diffusion coefficient in biomass
     The isothermal two-step method and the non-isothermal one-step method were proposed for measuring the moisture diffusion coefficient. In the isothermal two-step method, Deff can be obtained with the Fick diffusion law, and the drying activation energy can be calculated by the relation of the ln(Deff) and1/(T+273.15). This method overcomes the difficulty of the isothermal condition which is difficult to achieve. In order to reduce the influence of the thermal hysteresis phenomenon and get a more accurate calculation result, this paper has made some improvements to the isothermal two-step method. The rising rate period which is controlled by the surface vaporization is excluded and the falling rate period which is dominated by the internal diffusion was used to calculate the Deff.The results show that the improved isothermal two-step method is more reliable. The calculation results of the isothermal two-step method is relatively close between the before improvement and the after improvement. In the non-isothermal one-step method, the phenomenon of the biomass thermal hysteresis is eliminated. When the heating rate is2~8℃/min, the result of the non-isothermal one-step method was included in the isothermal two-step method (30and100℃). The non-isothermal one-step method has some advantages, such as, fewer material requirements, less experiments, reducing the thermal hysteresis, and the calculation result reliable. It is a better measuring method of the biomass drying parameters.
     (3) Torrefaction research for preparation high-quality biomass feedstock
     Torrefaction is a slow pyrolysis process that occurs at atmospheric pressure and in the200~300℃temperature range in the absence of oxygen. The experimental method of torrefaction on biomass was improved in this study. Residence time could be determined more easily, so that the biomass material was torrefied under pre-determined temperature. The textural structure of rice husk was destroyed and the bulk was gently shrunk after the torrefaction pretreatment. Besides, the grinding performance was improved and the hydrophobicity was largely enhanced. The solid product with favourable pore structure, namely minimum average pore size and maximum specific surface area, was attained at260℃.
     The volatiles gradually decreased while the ash and fixed carbon substantially increased with the temperature increase. The sulfur and nitrogen contents remained unchanged, the hydrogen content slightly decreased, the carbon content gently increased, and the oxygen heavily decreased in the process of torrefaction. Both the energy and solid mass yleld decreased with the increase of operating temperature and residence time. The hemicellulose was mostly decomposed, the cellulose remained unchanged, and the lignin increased greatly after torrefaction. The results of TG-FTIR indicated that the change of physicochemical property of rice husk was mainly owed to the decomposition of the hemicellulose. The organic functional groups of solid product were simplified as a result of the breakage and removal of some oxygen-containing functional group. The liquid product contained plentiful water and a little ethanol and the gaseous product was composed of CO2and CO.
     (4) Effect of drying and torrefaction on biomass feedstock pyrolysis
     Biomass pyrolysis has three stages:moisture evaporation, main devolatilization, and continuous slight devolatilization. Moisture loss peak, the shoulder side peak formed by the hemicellulose pyrolysis, and the sharp main peak formed by cellulose pyrolysis are the three different peaks in the DTG curve. The drying pretreatment improves the overall rate of straw pyrolysis and volatile matter yield, but also improve the calorific value of the bio-oil, reducing the moisture content in the bio-oil. The Py-GC/MS analysis showed that the moisture content in rice husk had little effect on thermal decomposition products. The relative reduction of pyrolysis products result from the relative reduction of the organic content of dried biomass.
     The weight loss peak of hemicellulose is disappear when the torrefaction temperature is high (260and290℃). As the torrefaction temperature increases, the moisture in the bio-oil and the acidity are significantly reduced while the calorific value is gradually increased. This helps bio-oil storage and high-value use. The baking process for the generation of non-condensible gas and coke, baking, liquid (bio-oil and baking liquid) is still the main product in the low temperature (less than260℃), while in the high temperature (290℃) baking, non-condensible The gas is the main product. The Py-GC/MS show that baking has no effect on the types of fast pyrolysis products, but improving the content of phenolic compounds in the lignin pyrolysis products.
引文
[1]BP世界能源统计年鉴(2012年6月).bp.com/statisticalreview.
    [2]国家统计局.2010中国统计年鉴.北京:中国统计出版社,2011.
    [3]中行人民共和国能源局《生物质能发展“十二五”规划》(2012年).
    [4]朱锡锋.生物质热解原理与技术.合肥:中国科学技术大学出版社,2006.
    [5]Bridgwater, A. V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy,2012,38(SI):68-94.
    [6]Kunkes, E.; Simonetti, D.; West, R.; Serrano-Ruiz, J.; Gartner, C.; Dumesic, J. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science,2008,322(5900):417-421.
    [7]Vispute, T. P.; Zhang, H.; Sanna, A.; Xiao, R.; Huber, G. W. Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils. Science,2010, 330(6008):1222-1227.
    [8]Bungay, R. R. Biomass refining. Science,1982,218:643-646.
    [9]Ragauskas, A. J. The path forward for biofuels and biomaterials. Science,2006,311: 484-489.
    [10]Borello, D.; Corsini, A.; Rispoli, F.; Tortora, E. A Co-Powered Biomass and Concentrated Solar Power Rankine Cycle Concept for Small Size Combined Heat and Power Generation. Energies,2013,6(3):1478-1496.
    [11]Khatiwada, D.; Seabra, J.; Silveira, S.; Walter, A. Power generation from sugarcane biomass-A complementary option to hydroelectricity in Nepal and Brazil. Energy,2012,48(1): 241-254.
    [12]Lee, U.; Balu, E.; Chung, J. N. An experimental evaluation of an integrated biomass gasification and power generation system for distributed power applications. Applied Energy, 2013,101:699-708.
    [13]Zhao, X.; Wang, J.; Liu, X.; Feng, T.; Liu, P. Focus on situation and policies for biomass power generation in China. Renewable & Sustainable Energy Reviews,2012,16(6): 3722-3729.
    [14]Zhou, Z.; Yin, X.; Xu, J.; Ma, L. The development situation of biomass gasification power generation in China. Energy Policy,2012,51:52-57.
    [15]Bussemaker, M. J.; Zhang, D. Effect of Ultrasound on Lignocellulosic Biomass as a Pretreatment for Biorefinery and Biofuel Applications. Industrial & Engineering Chemistry Research,2013,52(10):3563-3580.
    [16]Jung, Y. H.; Cho, H. J.; Lee, J.-S.; Noh, E. W.; Park, O. K.; Kim, K. H. Evaluation of a transgenic poplar as a potential biomass crop for biofuel production. Bioresource Technology, 2013,129:639-41.
    [17]Matas Guumlell, B.; Sandquist, J.; Soslashrum, L. Gasification of Biomass to Second Generation Biofuels:A Review. Journal of Energy Resources Technology,2013,135(1): 014001 (9 pp.)-014001 (9 pp.).
    [18]Hakl, J.; Fuksa, P.; Habart, J.; Santrucek, J. The biogas production from lucerne biomass in relation to term of harvest. Plant Soil and Environment,2012,58(6):289-294.
    [19]Bolan, N. S.; Thangarajan, R.; Seshadri, B.; Jena, U.; Das, K. C.; Wang, H.; Naidu, R. Landfills as a biorefinery to produce biomass and capture biogas. Bioresource Technology, 2013,135:578-87.
    [20]Liu, L.; Gou, X.; Lu, J.; Gao, Y.; He, C. Experimental Investigations on the Layer Co-combustion of Coal/Biomass Briquette Blends. Proceedings of the CSEE,2012,32(8): 124-32.
    [21]Roy, M. M.; Corscadden, K. W. An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove. Applied Energy,2012,99:206-212.
    [22]Delmas, M. A.; Montes-Sancho, M. J. US state policies for renewable energy:Context and effectiveness. Energy Policy,2011,39(5):2273-2288.
    [23]Jensen, J. R.; Halvorsen, K. E.; Shonnard, D. R. Ethanol from lignocellulosics, U.S. federal energy and agricultural policy, and the diffusion of innovation. Biomass & Bioenergy,2011, 35(4):1440-1453.
    [24]Fouquet, D. Policy instruments for renewable energy-From a European perspective. Renewable Energy,2013,49:15-18.
    [25]Maltby, T. European Union energy policy integration:A case of European Commission policy entrepreneurship and increasing supranationalism. Energy Policy,2013,55:435-444.
    [26]国家统计局.2011中国统计年鉴.北京:中国统计出版社,2012.
    [27]中华人民共和国国务院.《中国21世纪议程——中国21世纪人口、环境与发展白皮书》.1994.
    [28]中华人民共和国全国人民代表大会. 《中华人民共和国可再生能源法》.http://www.gov.cn/ziliao/flfg/2005-06/21/content_8275.htm,2006.
    [29]中华人民共和国国家发展和改革委员会.《可再生能源中长期发展规划》.http://www.sdpc.gov.cn/zcfb/zcfbtz/2007tongzhi/t20070904_157352.htm,2007.
    [30]中华人民共和国农业部.《农业生物质能产业发展规划(2007-2015年)》.http://www.moa.gov.cn/sjzz/jihuasi/sheji/201006/t20100606_1533134.htm,2007.
    [31]中国科学院能源领域战略研究组.中国至2050年能源科技发展路线图.科学出版社,2009.
    [32]Zhang, K.; Chang, J.; Guan, Y.; Chen, H.; Yang, Y.; Jiang, J. Lignocellulosic biomass gasification technology in China. Renewable Energy,2013,49:175-184.
    [33]Zhao, X.; Liu, P. Substitution among energy sources:An empirical analysis on biomass energy for fossil fuel of China. Renewable & Sustainable Energy Reviews,2013,18: 194-202.
    [34]中华人民共和国科技部.《生物质能源科技发展“十二五”重点专项规划》.http://www.biotech.org.cn/information/97927,2012.
    [35]中华人民共和国能源局.《可再生能源发展“十二五”规划》.http://www.nea.gov.cn/2012-08/08/c_131767651.htm,2012.
    [36]Schweers, W.; Bai, Z.; Campbell, E.; Hennenberg, K.; Fritsche, U.; Mang, H.-P.; Lucas, M.; Li, Z.; Scanlon, A.; Chen, H.; Zhihao, Q.; Cai, D.; Jin, Y.; Zhang, J.; Tu, L.; Gemmer, M.; Jiang, T.; Zhang, N. Identification of potential areas for biomass production in China: Discussion of a recent approach and future challenges. Biomass & Bioenergy,2011,35(5): 2268-2279.
    [37]张齐生;马中青;周建斌.生物质气化技术的再认识.南京林业大学学报(自然科学版),2013,37(1):1-10.
    [38]陆强.生物质选择性热解液化的研究.中国科学技术大学博士学位论文,2010.
    [39]张栋.生物质热解油雾化燃烧及气化的实验研究和数值模拟.中国科学技术大学博士学位论文,2012.
    [40]Bertero, M.; de la Puente, G.; Sedran, U. Fuels from bio-oils:Bio-oil production from different residual sources, characterization and thermal conditioning. Fuel,2012,95(1): 263-271.
    [41]Li, W.; Pan, C.; Sheng, L.; Liu, Z.; Chen, P.; Lou, H.; Zheng, X. Upgrading of high-boiling fraction of bio-oil in supercritical methanol. Bioresource Technology,2011,102(19): 9223-9228.
    [42]李大伟.热解稻壳炭基多孔材料的制备、表征及应用基础.中国科学技术大学博士学位论文,2011.
    [43]杨续来.生物油的烯烃改性精制及应用基础研究中国科学技术大学博士学位论文,2010.
    [44]Demirbas, A. Effect of initial moisture content on the yields of oily products from pyrolysis of biomass. J. Anal. Appl. Pyrolysis,2004,71(2):803-815.
    [45]Cai, J. M.; Chen, S. Y. Determination of drying kinetics for biomass by thermogravimetric analysis under nonisothermal condition. Drying Technol,2008,26(12):1464-1468.
    [46]Cai, J. M.; Liu, R. H. Research on water evaporation in the process of biomass pyrolysis. Energy Fuels,2007,21(6):3695-3697.
    [47]赵辉.生物质高温气流床气化制取合成气的机理试验研究.浙江大学博士论文,2007.
    [48]Sims, R. E. H.; Mabee, W.; Saddler, J. N.; Taylor, M. An overview of second generation biofuel technologies. Bioresour. Technol.,2010,101(6):1570-1580.
    [49]朱波.农业秸秆烘焙与高质化应用耦合研究.华中科技大学硕士学位论文,2011.
    [50]Haykiri-Acma, H.; Yaman, S.; Kucukbayrak, S. Burning characteristics of chemically isolated biomass ingredients. Energy Convers Manage,2011,52 (1).
    [51]Chen, D. Y.; Li, K.; Zhu, X. F. Determination of effective moisture diffusivity and activation energy for drying of powdered peanut shell under isothermal conditions. BioResources,2012, 7(3):3670-3678.
    [52]Chen, D. Y.; Zhang, D.; Zhu, X. F. Heat/mass transfer characteristics and nonisothermal drying kinetics at the first stage of biomass pyrolysis. J. Therm. Anal. Calorim.,2012,109(2): 847-854.
    [53]Chen, D. Y.; Zheng, Y.; Zhu, X. F. Determination of effective moisture diffusivity and drying kinetics for poplar sawdust by thermogravimetric analysis under isothermal condition. Bioresour. Technol.,2012,107:451-455.
    [54]Di Scala, K.; Crapiste, G. Drying kinetics and quality changes during drying of red pepper. LWT Food Sci. Technol.,2008,41(5):789-795.
    [55]Di Scala, K.; Vega-Galvez, A.; Uribe, E.; Oyanadel, R.; Miranda, M.; Vergara, J.; Quispe, I.; Lemus-Mondaca, R. Changes of quality characteristics of pepino fruit (Solanum muricatum Ait) during convective drying. Int. J. Food Sci. Technol.,2011,46(4):746-753.
    [56]Doymaz, I.; Ismail, O. Drying characteristics of sweet cherry. Food Bioprod. Process.,2011, 89(1):31-38.
    [57]Doymaz, I.; Kocayigit, F. Drying and Rehydration Behaviors of Convection Drying of Green Peas. Drying Technol.,2011,29(11):1273-1282.
    [58]陈登宇;张栋;朱锡锋.干燥前后稻壳的热解及其动力学特性.太阳能学报,2010,31(10):1230-1235.
    [59]陈登宇;朱锡锋.生物质热反应机理与活化能确定方法Ⅰ.干燥段研究.燃料化学学报,2011,39(8):580-584.
    [60]陈登宇;朱锡锋.生物质热反应机理与活化能确定方法Ⅱ.热解段研究.燃料化学学报,2011,39(9):670-674.
    [61]Park, J.; Meng, J.; Lim, K. H.; Rojas, O. J.; Park, S. Transformation of lignocellulosic biomass during torrefaction. Journal of Analytical and Applied Pyrolysis,2013,100: 199-206.
    [62]Bates, R. B.; Ghoniem, A. F. Biomass torrefaction:Modeling of volatile and solid product evolution kinetics. Bioresource Technology,2012,124:460-469.
    [63]Bates, R. B.; Ghoniem, A. F. Biomass torrefaction:Modeling of reaction thermochemistry. Bioresource Technology,2013,134:331-40.
    [64]Boateng, A. A.; Mullen, C. A. Fast pyrolysis of biomass thermally pretreated by torrefaction. Journal of Analytical and Applied Pyrolysis,2013,100:95-102.
    [65]Ren, S.; Lei, H.; Wang, L.; Bu, Q.; Chen, S.; Wu, J.; Julson, J.; Ruan, R. The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating. Bioresource Technology,2013,135:659-64.
    [66]潘永康;王喜忠;刘相东.现代干燥技术(第二版).北京:化学工业出版社,2007.
    [67]Akpinar, E. K.; Bicer, Y.; Yildiz, C. Thin Layer Drying of Red Pepper. J.Food Eng.,2003, 59(1):99-104.
    [68]Alibas, I. Microwave, Vacuum, and Air Drying Characteristics of Collard Leaves. Drying Technology,2009,27(11):1266-1273.
    [69]Askari, G R.; Emam-Djomeh, Z.; Mousavi, S. M. An Investigation of the Effects of Drying Methods and Conditions on Drying Characteristics and Quality Attributes of Agricultural Products during Hot Air and Hot Air/Microwave-Assisted Dehydration. Drying Technology, 2009,27(7-8):831-841.
    [70]Chen, D. Y.; Zhang, Y.; Zhu, X. F. Drying kinetics of rice straw under isothermal and nonisothermal conditions:A comparative study by thermogravimetric analysis. Energy Fuels, 2012,26(7):4189-4194.
    [71]Chong, C. H.; Law, C. L.; Cloke, M.; Abdullah, L. C.; Daud, W. R. W. Drying Kinetics, Texture, Color, and Determination of Effective Diffusivities During Sun Drying of Chempedak. Drying Technology,2008,26(10):1286-1293.
    [72]陈登宇;张栋;朱锡锋.秸秆等温干燥热质传输机理研究(Ⅰ)TG/DSC实验分析.太阳能学报,2011,32(9):1356-1360.
    [73]陈登宇;张栋;朱锡锋.秸秆等温干燥热质传输机理研究(Ⅱ)动力学数值模拟.太阳能学报,2011,32(10):1517-1522.
    [74]Resio, A. N. C.; Aguerre, R. J.; Suarez, C. Drying characteristics of amaranth grain. Journal of Food Engineering,2004,65(2):197-203.
    [75]Doymaz, I.; Tugrul, N.; Pala, M. Drying characteristics of dill and parsley leaves. Journal of Food Engineering,2006,77(3):559-565.
    [76]王喜明;贺勤.桉树木材干燥过程曲线的研究.北京林业大学学报,2005,27(增刊):13-17.
    [77]Orikasa, T.; Wu, L.; Shiina, T.; Tagawa, A. Drying characteristics of kiwifruit during hot air drying. Journal of Food Engineering,2008,85(2):303-308.
    [78]冯谦;王冠;王芳.桑枝屑的干燥方法与干燥机理研究.农业工程学报,2008,24(7):264-268.
    [79]Shi, J. L.; Pan, Z. L.; McHugh, T. H.; Wood, D.; Hirschberg, E.; Olson, D. Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. LWT Food Sci. Technol.,2008,41(10):1962-1972.
    [80]周汝雁;张全国;黄浩.棉花秸秆干燥特性的高温综合热分析.华中农业大学学报,2006,25(5):571-574.
    [81]Ozbek, B.; Dadali, G. Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. Journal of Food Engineering,2007,83(4):541-549.
    [82]Luangmalawata, P.; Prachayawarakorn, S.; Nathakaranakule, A.; Soponronnarit, S. Effect of temperature on drying characteristics and quality of cooked rice. Lwt-Food Science and Technology,2008,41(4):716-723.
    [83]Wang, J.; Chao, Y. Drying characteristics of irradiated apple slices. Journal of Food Engineering,2002,52(1):83-88.
    [84]雷廷宙.秸秆干燥过程的实验研究与理论分析.大连理工大学博士学位论文,2000.
    [85]胡建军;沈胜强;师新广;雷廷宙;崔俊贞;黄浩.棉花秸秆等温干燥特性试验研究及回归分析.太阳能学报,2008,29(1):100-104.
    [86]Erbay, Z.; Icier, F. A review of thin layer drying of foods:theory modeling, and experimental results. Crit. Rev. Food Sci. Nutr.,2010,50(5):441-464.
    [87]Fagernas, L.; Brammer, J.; Wilen, C.; Lauer, M.; Verhoeff, F. Drying of biomass for second generation synfuel production. Biomass Bioenergy.,2010,34(9):1267-1277.
    [88]Gorjian, S.; Hashjin, T.; Khoshtaghaza, M.; Nikbakht, A. Drying Kinetics and Quality of Barberry in a Thin Layer Dryer. J. Agr. Sci. Tech.,2011,13(3):303-314.
    [89]Kashaninejad, M.; Mortazavi, A.; Safekordi, A.; Tabil, L. Thin-layer drying characteristics and modeling of pistachio nuts.J. Food Eng,2007,78(1):98-108.
    [90]Madhava, M.; Rao, P. S.; Goswami, T. K. Drying kinetics of paddy using thermogravimetric analysis. Drying Technol.,2001,19(6):1201-1210.
    [91]Luikov, A. V. SYSTEMS OF DIFFERENTIAL EQUATIONS OF HEAT AND MASS-TRANSFER IN CAPILLARY-POROUS BODIES (REVIEW). International Journal of Heat and Mass Transfer,1975,18(1):1-14.
    [92]Whitaker, S. TOWARD A DIFFUSION-THEORY OF DRYING. Industrial & Engineering Chemistry Fundamentals,1977,16(4):408-414.
    [93]Giri, S. K.; Prasad, S. Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. Journal of Food Engineering,2007,78(2):512-521.
    [94]Akal, D.; Kahveci, K.; Cihan, A. Mathematical modelling of drying of rough rice in stacks. Food Science and Technology International,2007,13(6):437-445.
    [95]Sacilik, K.; Elicin, A. K. The thin layer drying characteristics of organic apple slices. Journal of Food Engineering,2006,73(3):281-289.
    [96]Arias, B.; Pevida, C.; Fermoso, J.; Plaza, M. G.; Rubiera, F.; Pis, J. J. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Processing Technology, 2008,89(2):169-175.
    [97]Chen, W.-H.; Cheng, W.-Y; Lu, K.-M.; Huang, Y.-P. An evaluation on improvement of pulverized biomass property for solid fuel through torrefaction. Applied Energy,2011,88(11): 3636-3644.
    [98]Chen, W.-H.; Kuo, P.-C. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy,2010,35(6): 2580-2586.
    [99]Chew, J. J.; Doshi, V. Recent advances in biomass pretreatment-Torrefaction fundamentals and technology. Renewable and Sustainable Energy Reviews,2011,15(8):4212-4222.
    [100]Lee, J.-W.; Kim, Y.-H.; Lee, S.-M.; Lee, H.-W. Optimizing the torrefaction of mixed softwood by response surface methodology for biomass upgrading to high energy density. Bioresource Technology,2012,116:471-476.
    [101]Chen, Q.; Zhou, J.; Liu, B.; Mei, Q.; Luo, Z. Influence of torrefaction pretreatment on biomass gasification technology. Chinese Science Bulletin,2011,56(14):1449-1456.
    [102]Chen, W.-H.; Hsu, H.-C.; Lu, K.-M.; Lee, W.-J.; Lin, T.-C. Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass. Energy,2011, 36(5):3012-3021.
    [103]Chen, W.-H.; Kuo, P.-C. Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy, 2011,36(2):803-811.
    [104]Dhungana, A.; Dutta, A.; Basu, P. Torrefaction of non-lignocellulose biomass waste. The Canadian Journal of Chemical Engineering,2012,90(1):186-195.
    [105]Medic, D.; Darr, M.; Shah, A.; Potter, B.; Zimmerman, J. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel,2012,91(1):147-154.
    [106]郝宏蒙;杨海平;刘汝杰;陈应泉;李攀;陈汉平.烘培对典型农业秸秆吸水性能的影响.中国电机工程学报,2013,33(8):90-94.
    [107]Couhert, C.; Salvador, S.; Commandre, J. M. Impact of torrefaction on syngas production from wood. Fuel,2009,88(11):2286-2290.
    [108]Bridgeman, T. G.; Jones, J. M.; Shield, I.; Williams, P. T. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel,2008, 87(6):844-856.
    [109]Prins, M. J.; Ptasinski, K. J.; Janssen, F. Torrefaction of wood-Part 2. Analysis of products. Journal of Analytical and Applied Pyrolysis,2006,77(1):35-40.
    [110]Felflia, F. F.; Luengob, C. A.; Suarezc, J. A.; Beatonc, P. A. Wood briquette torrefaction. Energy for Sustainable Development,2005,9(3):19-22.
    [111]王贵军.用于混合气化的生物质烘焙预处理的实验研究.上海交通大学硕士学位论文,2010.
    [112]陈应泉;杨海平;朱波郝;宏蒙;王贤华;陈汉平.农业秸秆烘焙特性及对其产物能源特性的影响.农业机械学报,2012,43(4):75-82.
    [113]陈青;周劲松;刘炳俊;梅勤峰;骆仲泱.烘焙预处理对生物质气化工艺的影响.科学通报,2010,55(36):3437-3443.
    [114]Prins, M. J.; Ptasinski, K. J.; Janssen, F. J. J. G. More efficient biomass gasification via torrefaction. Energy,2006,31(15):3458-3470.
    [115]Zheng, A.; Zhao, Z.; Chang, S.; Huang, Z.; He, F.; Li, H. Effect of Torrefaction Temperature on Product Distribution from Two-Staged Pyrolysis of Biomass. Energy & Fuels,2012,26(5): 2968-2974.
    [116]van der Stelt, M. J. C.; Gerhauser, H.; Kiel, J. H. A.; Ptasinski, K. J. Biomass upgrading by torrefaction for the production of biofuels:A review. Biomass & Bioenergy,2011,35(9): 3748-3762.
    [1]Bridgwater, A. V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy,2012,38(SI):68-94.
    [2]Crank, J., The Mathematics of Diffusion, second ed. Oxford:Clarendon Press:1975. p.44-68; pp 81-83.
    [3]Zhu, Z.; Kaliske, M. Numerical simulation of coupled heat and mass transfer in wood dried at high temperature. Heat and Mass Transfer,2010,47(3):351-358.
    [4]Srikiatden, J.; Roberts, J. Measuring moisture diffusivity of potato and carrot (core and cortex) during convective hot air and isothermal drying. J. Food Eng.,2006,74(1):143-152.
    [5]Doymaz,1. Thin-layer drying characteristics of sweet potato slices and mathematical modelling. Heat Mass Transfer,2010,47(3):277-285.
    [6]Li, Z.; Kobayashi, N. Determination of moisture diffusivity by thermo-gravimetric analysis under non-isothermal condition. Drying Technol.,2005,23(6):1331-1342.
    [7]Doymaz, I.; Tugrul, N.; Pala, M. Drying characteristics of dill and parsley leaves. J. Food Eng.,2006,77(3):559-565.
    [8]Doymaz, I. Air-drying characteristics of tomatoes. J. Food Eng.,2007,78(4):1291-1297.
    [9]Bantle, M.; Kolsaker, K.; Eikevik, T. M. Modification of the Weibull Distribution for Modeling Atmospheric Freeze-Drying of Food. Dry Technol,2011,29(10):1161-1169.
    [10]Shi, J. L.; Pan, Z. L.; McHugh, T. H.; Wood, D.; Hirschberg, E.; Olson, D. Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. LWT Food Sci. Technol.,2008,41(10):1962-1972.
    [11]Alvarez, P.; Shene, C. Experimental Study of the Heat and Mass Transfer During Drying in a Fluidized Bed Dryer. Drying Technol.,1996,14(3-4):701-718.
    [12]Cai, J. M.; Chen, S. Y. Determination of drying kinetics for biomass by thermogravimetric analysis under nonisothermal condition. Drying Technol.,2008,26(12):1464-1468.
    [13]Cai, J. M.; Liu, R. H. Research on water evaporation in the process of biomass pyrolysis. Energy Fuels,2007,21(6):3695-3697.
    [14]Chen, D. Y.; Li, K.; Zhu, X. F. Determination of effective moisture diffusivity and activation energy for drying of powdered peanut shell under isothermal conditions. BioResources,2012, 7(3):3670-3678.
    [15]Chen, D. Y.; Zhang, Y.; Zhu, X. F. Drying kinetics of rice straw under isothermal and nonisothermal conditions:A comparative study by thermogravimetric analysis. Energy Fuels, 2012,26(7):4189-4194.
    [16]Chen, D. Y.; Zheng, Y; Zhu, X. F. Determination of effective moisture diffusivity and drying kinetics for poplar sawdust by thermogravimetric analysis under isothermal condition. Bioresour. Technol.,2012,107:451-455.
    [17]Chen, D.; Li, M.; Zhu, X. TG-DSC method applied to drying characteristics and heat requirement of cotton stalk during drying. Heat and Mass Transfer,2012,48(12):2087-2094.
    [18]He, F.; Yi, W.; Bai, X. Investigation on caloric requirement of biomass pyrolysis using TG-DSC analyzer. Energy Convers Manage,2006,47(15-16):2461-2469.
    [19]Artiaga, R.; Naya, S.; Garcia, A.; Barbadillo, F.; Garcia, L. Subtracting the water effect from DSC curves by using simultaneous TGA data. Thermochim. Acta,2005,428(1-2):137-139.
    [20]Chen, D. Y; Zhang, D.; Zhu, X. F. Heat/mass transfer characteristics and nonisothermal drying kinetics at the first stage of biomass pyrolysis. J. Therm. Anal. Calorim.,2012,109(2): 847-854.
    [21]Mercer, D. G.; Rennie, T. J.; Tubeileh, A., Drying studies of sorghum for forage and biomass production. In 11th International Congress on Engineering and Food, Saravacos, G.; Taoukis, P.; Krokida, M.; Karathanos, V.; Lazarides, H.; Stoforos, N.; Tzia, C.; Yanniotis, S., Eds.2011; Vol. 1,pp 655-661.
    [22]Pakowski, Z.; Krupinska, B.; Adamski, R. Drying of biomass with superheated steam to produce pelletized biofuel. Przemysl Chemiczny,2003,82(8-9):1143-1145.
    [23]Svoboda, K.; Martinec, J.; Pohorely, M.; Baxter, D. Integration of biomass drying with combustion/gasification technologies and minimization of emissions of organic compounds, chemical papers,2009,63(1):15-25.
    [24]DB51/T1387—2011.固体生物质燃料发热量测定方法.四川省质量技术监督局,2011.
    [25]潘永康;王喜忠;刘相东.现代干燥技术(第二版).北京:化学工业出版社,2007.
    [26]Acharjee, T. C.; Coronella, C. J.; Vasquez, V. R. Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass. Bioresource Technology,2011, 102(7):4849-4854.
    [27]Singh, R. N. Equilibrium moisture content of biomass briquettes. Biomass & Bioenergy, 2004,26(3):251-253.
    [28]Vega-Galvez, A.; Miranda, M.; Diaz, L. P.; Lopez, L.; Rodriguez, K.; Di Scala, K. Effective moisture diffusivity determination and mathematical modelling of the drying curves of the olive-waste cake. Bioresour. Technol.,2010,101(19):7265-7270.
    [29]雷廷宙.秸秆干燥过程的实验研究与理论分析.大连理工大学博士学位论文,2000.
    [30]周汝雁;张全国;黄浩.棉花秸秆干燥特性的高温综合热分析.华中农业大学学报,2006,25(5):571-574.
    [31]Li, C.; Suzuki, K. Kinetic analyses of biomass tar pyrolysis using the distributed activation energy model by TG/DTA technique. J. Therm. Anal. Calorim.,2009,98(1):261-266.
    [32]Hu, J.; Shen, S.; Lei, T.; Huang, H.; Zhang, Q. Research on constant-temperature drying test of cotton straw and regression analysis of drying rate. Adv. Mater. Res.,2012,472-475: 1645-1651.
    [33]Erbay, Z.; Icier, F. A review of thin layer drying of foods:theory modeling, and experimental results. Crit. Rev. Food Sci. Nutr.,2010,50(5):441-464.
    [34]Madamba, P. S.; Driscoll, R. H.; Buckle, K. A. The thin-layer drying characteristics of garlic slices. Journal of Food Engineering,1996,29(1):75-97.
    [35]Ozdemir, M.; Devres, Y. O. The thin layer drying characteristics of hazelnuts during roasting. Journal of Food Engineering,1999,42(4):225-233.
    [36]Diamante, L. M.; Munro, P. A. MATHEMATICAL-MODELING OF THE THIN-LAYER SOLAR DRYING OF SWEET-POTATO SLICES. Solar Energy,1993,51(4):271-276.
    [37]Lewis, W. K. The Rate of Drying of Solid Materials. Ind. Eng. Chem.,1921,13:427-432.
    [38]Page, G. E. Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin Layers. MSc Thesis, Purdue University, West Lafayette, IN.,1949.
    [39]Henderson, S. M.; Pabis, S. Grain Drying Theory:1. Temperature Affection Drying Coefficient. J. Agric. Eng. Res.,1961,6:169-170.
    [40]Chandra, P. K.; Singh, R. P. Applied Numerical Methods for Food and Agricultural Engineers. CRC Press, Boca Raton, FL,1995:pp.163-167.
    [41]Midilli, A.; Kucuk, H.; Yapar, Z. A new model for single-layer drying. Drying Technol.,2002, 20(7):1503-1513.
    [42]Thompson, T. L., Peart, P.M., Foster, G.H.. Mathematical simulation of corn drying:A new model. Trans. ASAE,1968,11:582-586.
    [43]Wang, C. Y; Singh, R. P. A thin layer drying equation for rough rice. ASAE paper No. 78-3001, St. Joseph, MI, USA.,1978.
    [44]Kaleemullah, S. Studies on engineering properties and drying kinetics of chillies. Ph.D.Thesis, Department of Agricultural Processing,. Tamil Nadu Agricultural University: Coimbatore, India.,2002.
    [45]Giri, S. K.; Prasad, S. Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. Journal of Food Engineering,2007,78(2):512-521.
    [46]Akal, D; Kahveci, K.; Cihan, A. Mathematical modelling of drying of rough rice in stacks. Food Science and Technology International,2007,13(6):437-445.
    [47]Sacilik, K.; Elicin, A. K. The thin layer drying characteristics of organic apple slices. Journal of Food Engineering,2006,73(3):281-289.
    [48]Ozkan, I. A.; Akbudak, B.; Akbudak, N. Microwave drying characteristics of spinach. Journal of Food Engineering,2007,78(2):577-583.
    [49]Ceylan, I.; Aktas, M.; Dogan, H. Mathematical modeling of drying characteristics of tropical fruits. Applied Thermal Engineering,2007,27(11-12):1931-1936.
    [1]Fagernas, L.; Brammer, J.; Wilen, C.; Lauer, M.; Verhoeff, F. Drying of biomass for second generation synfuel production. Biomass Bioenergy.,2010,34(9):1267-1277.
    [2]Doymaz,1. Thin-layer drying characteristics of sweet potato slices and mathematical modelling. Heat Mass Transfer,2010,47(3):277-285.
    [3]Srikiatden, J.; Roberts, J. Measuring moisture diffusivity of potato and carrot (core and cortex) during convective hot air and isothermal drying. J. Food Eng.,2006,74(1):143-152.
    [4]Li, Z.; Kobayashi, N. Determination of moisture diffusivity by thermo-gravimetric analysis under non-isothermal condition. Drying Technol.,2005,23(6):1331-1342.
    [5]Elenga, R. G.; Dirras, G F.; Maniongui, J. G.; Mabiala, B. Thin-layer drying of raffia textilis fiber. BioResources,2011,6(4):4135-4144.
    [6]Shi, J. L.; Pan, Z. L.; McHugh, T. H.; Wood, D.; Hirschberg, E.; Olson, D. Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. LWT Food Sci. Technol.,2008,41(10):1962-1972.
    [7]Minaei, S.; Motevali, A.; Ahmadi, E.; Azizi, M. H. Mathematical Models of Drying Pomegranate Arils in Vacuum. J. Agr. Sci. Tech.,2012,14(2):311-325.
    [8]Doymaz,I.; Kocayigit, F. Drying and Rehydration Behaviors of Convection Drying of Green Peas. Drying Technol.,2011,29(11):1273-1282.
    [9]Wu, L.; Orikasa, T.; Ogawa, Y.; Tagawa, A. Vacuum drying characteristics of eggplants. J. Food Eng.,2007,83(3):422-429.
    [10]Chen, D. Y.; Zheng, Y.; Zhu, X. F. Determination of effective moisture diffusivity and drying kinetics for poplar sawdust by thermogravimetric analysis under isothermal condition. Bioresour. Technol.,2012,107:451-455.
    [11]Kaya, A.; Aydin, O. An experimental study on drying kinetics of some herbal leaves. Energy Convers. Manage.,2009,50(1):118-124.
    [12]Roberts, J. S.; Tong, C. H. The development of an isothermal drying apparatus and the evaluation of the diffusion model on hygroscopic porous material. Int. J. Food Prop.,2003, 6(1):165-180.
    [13]Vega-Galvez, A.; Miranda, M.; Diaz, L. P.; Lopez, L.; Rodriguez, K.; Di Scala, K. Effective moisture diffusivity determination and mathematical modelling of the drying curves of the olive-waste cake. Bioresour. Technol.,2010,101(19):7265-7270.
    [14]Di Scala, K.; Crapiste, G Drying kinetics and quality changes during drying of red pepper. LWT Food Sci. Technol.,2008,41(5):789-795.
    [15]Vaccarezza, L. M.; Lombardi, J. L.; Chirife, J. Kinetics of moisture movement during air drying of sugar beet root. J. Food Technol.,1974,6:317-327.
    [16]Alzamora, S. M.; Chirife, J.; Voillaz, P. A simplified model for predicting the temperatures of foods during air dehydration. J. Food Technol.,1979,14(4):369-380.
    [17]Rovedo, C. O.; Suarez, C.; Viollaz, P. E. Drying of foods:Evaluation of a drying model. J. Food Technol.,1995,26:1-12.
    [18]Damartzis, T.; Vamvuka, D.; Sfakiotakis, S.; Zabaniotou, A. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour. Technol.,2011,102(10):6230-6238.
    [19]Madhava, M.; Rao, P. S.; Goswami, T. K. Drying kinetics of paddy using thermogravimetric analysis. Drying Technol.,2001,19(6):1201-1210.
    [20]Cai, J. M.; Liu, R. H. Research on water evaporation in the process of biomass pyrolysis. Energy Fuels,2007,21(6):3695-3697.
    [21]Gardelle, B.; Duquesne, S.; Vu, C.; Bourbigot, S. Thermal degradation and fire performance of polysilazane-based coatings. Thermochim. Acta.,2011,519(1-2):28-37.
    [22]Hu, J.; Shen, S.; Lei, T.; Huang, H.; Zhang, Q. Research on constant-temperature drying test of cotton straw and regression analysis of drying rate. Adv. Mater. Res.,2012,472-475: 1645-1651.
    [23]Phanphanich, M.; Mani, S. Drying characteristics of pine forest residues. BioResources,2010, 5(1):108-120.
    [24]Doymaz, I.; Tugrul, N.; Pala, M. Drying characteristics of dill and parsley leaves. J. Food Eng.,2006,77(3):559-565.
    [25]Rafiee, S.; Keyhani, A.; Sharifi, M.; Jafari, A.; Mobli, H.; Tabatabaeefar, A. Thin Layer Drying Properties of Soybean (Viliamz Cultivar). J. Agric. Sci. Technol.,2009,11(3): 289-300.
    [26]Thakur, A. K.; Gupta, A. K. Water absorption characteristics of paddy, brown rice and husk during soaking. J. Food Eng.,2006,75(2):252-257.
    [27]Tirawanichakul, S. Paddy dehydration by adsorption:Thermo-physical properties and diffusion model of agriculture residues. Biosystems Eng.,2008,99(2):249-255.
    [28]Alvarez, P.; Shene, C. Experimental Study of the Heat and Mass Transfer During Drying in a Fluidized Bed Dryer. Drying Technol.,1996,14(3-4):701-718.
    [29]Igathinathane, C.; Chattopadhyay, P. Moisture diffusion modelling of drying in parboiled paddy components. Part Ⅱ:Bran and Husk. J. Food Eng.,1999,41(2):89-101.
    [30]Chen, D.; Li, K.; Zhu, X. DETERMINATION OF EFFECTIVE MOISTURE DIFFUSIVTTY AND ACTIVATION ENERGY FOR DRYING OF POWDERED PEANUT SHELL UNDER ISOTHERMAL CONDITIONS. BioResources,2012,7(3):3670-3678.
    [31]Cai, J. M.; Chen, S. Y. Determination of drying kinetics for biomass by thermogravimetric analysis under nonisothermal condition. Drying Technol.,2008,26(12):1464-1468.
    [32]Chen, D. Y.; Zhang, D.; Zhu, X. F. Heat/mass transfer characteristics and nonisothermal drying kinetics at the first stage of biomass pyrolysis. J. Therm. Anal. Calorim.,2012,109(2): 847-854.
    [33]Erbay, Z.; Icier, F. A review of thin layer drying of foods:theory modeling, and experimental results. Crit. Rev. Food Sci. Nutr.,2010,50(5):441-464.
    [1]Chen, D.; Zheng, Y.; Zhu, X. In-depth investigation on the pyrolysis kinetics of raw biomass. Part I:Kinetic analysis for the drying and devolatilization stages. Bioresource Technology, 2013,131:40-46.
    [2]Chen, D. Y.; Zhang, D.; Zhu, X. F. Heat/mass transfer characteristics and nonisothermal drying kinetics at the first stage of biomass pyrolysis. J. Therm. Anal. Calorim.,2012,109(2): 847-854.
    [3]Cai, J. M.; Bi, L. S. Kinetic analysis of wheat straw pyrolysis using isoconversional methods. Journal of Thermal Analysis and Calorimetry,2009,98(1):325-330.
    [4]Haykiri-Acma, H. The role of particle size in the non-isothermal pyrolysis of hazelnut shell. Journal of Analytical and Applied Pyrolysis,2006,75(2):211-216.
    [5]Garcia Barneto, A.; Ariza Carmona, J.; Martin Alfonso, J. E.; Conesa Ferrer, J. A. Use of Thermogravimetry/Mass Spectrometry Analysis to Explain the Origin of Volatiles Produced during Biomass Pyrolysis. Industrial & Engineering Chemistry Research,2009,48(15): 7430-7436.
    [6]Liou, T. H. Kinetics study of thermal decomposition of electronic packaging material. Chemical Engineering Journal,2004,98(1-2):39-51.
    [7]Ren, Q.; Zhao, C.; Wu, X.; Liang, C.; Chen, X.; Shen, J.; Wang, Z. Catalytic effects of Fe, Al and Si on the formation of NO(X) precursors and HCl during straw pyrolysis. Journal of Thermal Analysis and Calorimetry,2010,99(1):301-306.
    [8]Encinar, J. M.; Gonzalez, J. F.; Martinez, G.; Roman, S. Jerusalem artichoke pyrolysis: Energetic evaluation. Journal of Analytical and Applied Pyrolysis,2009,85(1-2):294-300.
    [9]Demirbas, A. Effect of initial moisture content on the yields of oily products from pyrolysis of biomass. J. Anal. Appl. Pyrolysis,2004,71(2):803-815.
    [10]Cai, J. M.; Liu, R. H. Research on water evaporation in the process of biomass pyrolysis. Energy Fuels,2007,21(6):3695-3697.
    [11]He, F.; Yi, W.; Bai, X. Investigation on caloric requirement of biomass pyrolysis using TG-DSC analyzer. Energy Convers Manage,2006,47(15-16):2461-2469.
    [12]Artiaga, R.; Naya, S.; Garcia, A.; Barbadillo, F.; Garcia, L. Subtracting the water effect from DSC curves by using simultaneous TGA data. Thermochim. Acta,2005,428(1-2):137-139.
    [13]Shi, J.; Pan, Z.; McHugh, T. H.; Wood, D.; Hirschberg, E.; Olson, D. Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. Lwt-Food Science and Technology,2008,41(10):1962-1972.
    [14]Chen, X. D. The basics of a reaction engineering approach to modeling air-drying of small droplets or thin-layer materials. Drying Technology,2008,26(6):627-639.
    [15]Cai, J. M.; Chen, S. Y. Determination of drying kinetics for biomass by thermogravimetric analysis under nonisothermal condition. Drying Technol.,2008,26(12):1464-1468.
    [16]Idris, S. S.; Rahman, N. A.; Ismail, K.; Alias, A. B.; Rashid, Z. A.; Aris, M. J. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresource Technology,2010, 101(12):4584-4592.
    [17]Khelfa, A.; Finqueneisel, G.; Auber, M.; Weber, J. V. Influence of some minerals on the cellulose thermal degradation mechanisms-Thermogravimetic and pyrolysis-mass spectrometry studies. Journal of Thermal Analysis and Calorimetry,2008,92(3):795-799.
    [18]Souza, B. S.; Moreira, A. P. D.; Teixeira, A. M. R. F. TG-FTIR coupling to monitor the pyrolysis products from agricultural residues. Journal of Thermal Analysis and Calorimetry, 2009,97(2):637-642.
    [19]Erbay, Z.; Icier, F. A review of thin layer drying of foods:theory modeling, and experimental results. Crit. Rev. Food Sci. Nutr.,2010,50(5):441-464.
    [1]Taheri-Garavand, A.; Rafiee, S.; Keyhani, A. Study on effective moisture diffusivity, activation energy and mathematical modeling of thin layer drying kinetics of bell pepper. Aust. J. Crop Sci.,2011,5(2):128-131.
    [2]Srikiatden, J.; Roberts, J. Measuring moisture diffusivity of potato and carrot (core and cortex) during convective hot air and isothermal drying. J. Food Eng.,2006,74(1):143-152.
    [3]Doymaz, I.; Ismail, O. Drying characteristics of sweet cherry. Food Bioprod. Process.,2011, 89(1):31-38.
    [4]Vega-Galvez, A.; Miranda, M.; Diaz, L. P.; Lopez, L.; Rodriguez, K.; Di Scala, K. Effective moisture diffusivity determination and mathematical modelling of the drying curves of the olive-waste cake. Bioresour. Technol.,2010,101(19):7265-7270.
    [5]Di Scala, K.; Crapiste, G Drying kinetics and quality changes during drying of red pepper. LWT Food Sci. Technol.,2008,41(5):789-795.
    [6]Li, Z.; Kobayashi, N. Determination of moisture diffusivity by thermo-gravimetric analysis under non-isothermal condition. Drying Technol.,2005,23(6):1331-1342.
    [7]Chen, D. Y.; Zhang, Y.; Zhu, X. F. Drying kinetics of rice straw under isothermal and nonisothermal conditions:A comparative study by thermogravimetric analysis. Energy Fuels,2012,26(7):4189-4194.
    [8]Moreira, L. A.; Oliveira, F. A. R.; Silva, T. R.; Oliveira, J. C. Development of a non-isothermal method for determination of diffusional parameters. Int. J. Food Sci. Technol.,1993,28(6):575-586.
    [9]Rogers, A. R. An accelerated storage test with programmed temperature rise. J. Pharm. Pharmacol.,1963,15(suppl.):101T-105T.
    [10]Chen, D.; Liu, X.; Zhu, X. A one-step non-isothermal method for the determination of effective moisture diffusivity in powdered biomass. Biomass and Bioenergy,2013,50: 81-86.
    [11]Rupar, K.; Sanati, M. The release of organic compounds during biomass drying depends upon the feedstock and/or altering drying heating medium. Biomass Bioenergy,2003,25(6): 615-622.
    [12]Cai, J. M.; Liu, R. H. Research on water evaporation in the process of biomass pyrolysis. Energy Fuels,2007,21(6):3695-3697.
    [13]Chen, D. Y; Zheng, Y.; Zhu, X. F. Determination of effective moisture diffusivity and drying kinetics for poplar sawdust by thermogravimetric analysis under isothermal condition. Bioresour. Technol.,2012,107:451-455.
    [14]Chen, D. Y.; Li, K.; Zhu, X. F. Determination of effective moisture diffusivity and activation energy for drying of powdered peanut shell under isothermal conditions. BioResources, 2012,7(3):3670-3678.
    [15]Crank, J., The Mathematics of Diffusion, second ed. Oxford:Clarendon Press:1975. p. 44-68; pp 81-83.
    [1]Demirbas, A. Effect of temperature on pyrolysis products from four nut shells. Journal of Analytical and Applied Pyrolysis,2006,76(1-2):285-289.
    [2]Girods, P.; Dufour, A.; Rogaume, Y.; Rogaume, C.; Zoulalian, A. Comparison of gasification and pyrolysis of thermal pre-treated wood board waste. Journal of Analytical and Applied Pyrolysis,2009,85(1-2):171-183.
    [3]Bahng, M.-K.; Mukarakate, C.; Robichaud, D. J.; Nimlos, M. R. Current technologies for analysis of biomass thermochemical processing:A review. Analytica Chimica Acta,2009, 651(2):117-138.
    [4]Cai, J. M.; Chen, S. Y. Determination of drying kinetics for biomass by thermogravimetric analysis under nonisothermal condition. Drying Technol.,2008,26(12):1464-1468.
    [5]Demirbas, A. Pyrolysis of ground beech wood in irregular heating rate conditions. J. Anal. Appl. Pyrolysis,2005,73(1):39-43.
    [6]Font, R.; Conesa, J. A.; Molto, J.; Mufioz, M. Kinetics of pyrolysis and combustion of pine needles and cones. Journal of Analytical and Applied Pyrolysis,2009,85(1-2):276-286.
    [7]Putiin, E. Catalytic pyrolysis of biomass:Effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst. Energy,2010,35(7):2761-2766.
    [8]Nowakowski, D.; Woodbridge, C.; Jones, J. Phosphorus catalysis in the pyrolysis behaviour of biomass. J. Anal. Appl. Pyrolysis,2008,83(2):197-204.
    [9]Stenseng, M.; Jensen, A.; Dam-Johansen, K. Investigation of biomass pyrolysis bythermogravimetric analysis and differential. J. Anal. Appl. Pyrolysis,2001,58-59: 765-780.
    [10]Haykiriacma, H. The role of particle size in the non-isothermal pyrolysis of hazelnut shell. J. Anal. Appl. Pyrolysis,2006,75(2):211-216.
    [11]Demirbas, A. Effect of initial moisture content on the yields of oily products from pyrolysis of biomass. J. Anal. Appl. Pyrolysis,2004,71(2):803-815.
    [12]Sokhansanj, S.; Kumar, A.; Turhollow, A. Development and implementation of integrated biomass supply analysis and logistics model (EBSAL). Biomass Bioenergy,2006,30(10): 838-847.
    [13]Czernik, S.; Bridgwater, A. V. Overview of Applications of Biomass Fast Pyrolysis Oil. Energy Fuels,2004,18:590-598.
    [14]Kashaninejad, M.; Mortazavi, A.; Safekordi, A.; Tabil, L. Thin-layer drying characteristics and modeling of pistachio nuts. J. Food Eng,2007,78(1):98-108.
    [15]VanSoest, P. J.; Robertson, J. B., Systems of analysis for evaluating fibrous feeds. In Standardization of Analytical Methodology for Feeds, Pigden, W. J.; Balch, C. C.; Graham, M., Eds. International Research Development Center:Ottawa, Canada,2008.
    [16]Idris, S. S.; Rahman, N. A.; Ismail, K.; Alias, A. B.; Rashid, Z. A.; Aris, M. J. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresour Technol,2010,101: 4584-4592.
    [17]Yang, H.; Yan, R.; Chen, H.; Zheng, C.; Lee, D. H.; Liang, D. T. In-Depth Investigation of Biomass Pyrolysis Based on Three Major Components:Hemicellulose, Cellulose and Lignin. Energy Fuels,2006,20:388-393.
    [18]Wongsiriamnuay, T.; Tippayawong, N. Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis. Bioresource Technology,2010,101: 5638-5644.
    [19]Gasparovic, L.; Korenova, Z.; Jelemensky, E. Kinetic study of wood chips decomposition by TGA. chemical papers,2010,64(2):174-181.
    [20]Mohan, D.; Pittman, C. U.; Steele, P. H. Pyrolysis of Wood/Biomass for Bio-oil:A Critical Review. Energy & Fuels,2006,20:848-889.
    [21]Seo, D. K.; Park, S. S.; Hwang, J.; Yu, T.-U. Study of the pyrolysis of biomass using thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. J. Anal. Appl. Pyrolysis,2010,89(1):66-73.
    [22]胡荣祖;高胜利;赵凤起.热分析动力学.北京:科学出版社,2008.
    [23]Chen, Y.; Duan, J.; Luo, Y. Investigation of agricultural residues pyrolysis behavior under inert and oxidative conditions. J. Anal. Appl. Pyrolysis,2008,83(2):165-174.
    [24]陆强.生物质选择性热解液化的研究.中国科学技术大学博士学位论文,2010.
    [25]陈登宇;张栋;朱锡锋.干燥前后稻壳的热解及其动力学特性.太阳能学报,2010,31(10):1230-1235.
    [26]Chen, D.; Zheng, Y.; Zhu, X. In-depth investigation on the pyrolysis kinetics of raw biomass. Part Ⅰ:Kinetic analysis for the drying and devolatilization stages. Bioresource Technology, 2013,131:40-46.
    [27]Lu, Q.; Dong, C.-q.; Zhang, X.-m.; Tian, H.-y.; Yang, Y.-p.; Zhu, X.-f. Selective fast pyrolysis of biomass impregnated with ZnC12 to produce furfural:Analytical Py-GC/MS study. Journal of Analytical and Applied Pyrolysis,2011,90(2):204-212.
    [28]Lu, Q.; Yang, X.-c.; Dong, C.-q.; Zhang, Z.-f.; Zhang, X.-m.; Zhu, X.-f. Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products:Analytical Py-GC/MS study. J. Anal. Appl. Pyrolysis,2011,92(2):430-438.
    [1]Vispute, T. P.; Zhang, H.; Sanna, A.; Xiao, R.; Huber, G. W. Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils. Science, 2010,330(6008):1222-1227.
    [2]Kunkes, E.; Simonetti, D.; West, R.; Serrano-Ruiz, J.; Gartner, C.; Dumesic, J. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science,2008,322(5900):417-421.
    [3]Bungay, R. R. Biomass refining. Science,1982,218:643-646.
    [4]Demirbas, A. Effect of initial moisture content on the yields of oily products from pyrolysis of biomass. J. Anal. Appl. Pyrolysis,2004,71(2):803-815.
    [5]Cai, J. M.; Chen, S. Y. Determination of drying kinetics for biomass by thermogravimetric analysis under nonisothermal condition. Drying Technol.,2008,26(12):1464-1468.
    [6]Cai, J. M.; Liu, R. H. Research on water evaporation in the process of biomass pyrolysis. Energy Fuels,2007,21(6):3695-3697.
    [7]赵辉.生物质高温气流床气化制取合成气的机理试验研究.浙江大学博士论文,2007.
    [8]Sims, R. E. H.; Mabee, W.; Saddler, J. N.; Taylor, M. An overview of second generation biofuel technologies. Bioresour. Technol.,2010,101(6):1570-1580.
    [9]Chen, D. Y.; Zheng, Y; Zhu, X. F. Determination of effective moisture diffusivity and drying kinetics for poplar sawdust by thermogravimetric analysis under isothermal condition. Bioresour. Technol.,2012,107:451-455.
    [10]Park, J.; Meng, J.; Lim, K. H.; Rojas, O. J.; Park, S. Transformation of lignocellulosic biomass during torrefaction. Journal of Analytical and Applied Pyrolysis,2013,100: 199-206.
    [11]Boateng, A. A.; Mullen, C. A. Fast pyrolysis of biomass thermally pretreated by torrefaction. Journal of Analytical and Applied Pyrolysis,2013,100:95-102.
    [12]朱波.农业秸秆烘焙与高质化应用耦合研究.华中科技大学硕士学位论文,2011.
    [13]Bates, R. B.; Ghoniem, A. F. Biomass torrefaction:Modeling of volatile and solid product evolution kinetics. Bioresource Technology,2012,124:460-469.
    [14]Bates, R. B.; Ghoniem, A. F. Biomass torrefaction:Modeling of reaction thermochemistry. Bioresource Technology,2013,134:331-40.
    [15]Ren, S.; Lei, H.; Wang, L.; Bu, Q.; Chen, S.; Wu, J.; Julson, J.; Ruan, R. The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating. Bioresource Technology,2013,135:659-64.
    [16]Dhungana, A.; Dutta, A.; Basu, P. Torrefaction of non-lignocellulose biomass waste. The Canadian Journal of Chemical Engineering,2012,90(1):186-195.
    [17]Zheng, A.; Zhao, Z.; Chang, S.; Huang, Z.; He, F.; Li, H. Effect of Torrefaction Temperature on Product Distribution from Two-Staged Pyrolysis of Biomass. Energy & Fuels,2012, 26(5):2968-2974.
    [18]陈应泉;杨海平;朱波郝;宏蒙;王贤华;陈汉平.农业秸秆烘焙特性及对其产物能源特性的影响.农业机械学报,2012,43(4):75-82.
    [19]Fouquet, D. Policy instruments for renewable energy-From a European perspective. Renewable Energy,2013,49:15-18.
    [20]郝宏蒙;杨海平;刘汝杰;陈应泉;李攀;陈汉平.烘培对典型农业秸秆吸水性能的影响.中国电机工程学报,2013,33(8):90-94.
    [21]van der Stelt, M. J. C.; Gerhauser, H.; Kiel, J. H. A.; Ptasinski, K. J. Biomass upgrading by torrefaction for the production of biofuels:A review. Biomass and Bioenergy,2011.
    [22]van der Stelt, M. J. C.; Gerhauser, H.; Kiel, J. H. A.; Ptasinski, K. J. Biomass upgrading by torrefaction for the production of biofuels:A review. Biomass & Bioenergy,2011,35(9): 3748-3762.
    [23]D3173-11. Standard Test Method for Moisture in the Analysis Sample of Coal and Coke. American Society for Testing and Materials,2011.
    [24]D3175-11. Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. American Society for Testing and Materials,2011.
    [25]D3174-11. Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal. American Society for Testing and Materials,2011.
    [26]D3176-09. Standard Practice for Ultimate Analysis of Coal and Coke. American Society for Testing and Materials,2009.
    [27]D5865-03. Standard Test Method for Gross Calorific Value of Coal and Coke. American Society for Testing and Materials,2003.
    [28]VanSoest, P. J.; Robertson, J. B., Systems of analysis for evaluating fibrous feeds. In Standardization of Analytical Methodology for Feeds, Pigden, W. J.; Balch, C. C.; Graham, M., Eds. International Research Development Center:Ottawa, Canada,2008.
    [1]Bates, R. B.; Ghoniem, A. F. Biomass torrefaction:Modeling of volatile and solid product evolution kinetics. Bioresource Technology,2012,124:460-469.
    [2]Bridgeman, T. G.; Jones, J. M.; Shield, I.; Williams, P. T. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 2008,87(6):844-856.
    [3]Chen, W.-H.; Hsu, H.-C.; Lu, K.-M.; Lee, W.-J.; Lin, T.-C. Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass. Energy, 2011,36(5):3012-3021.
    [4]Chen, W.-H.; Kuo, P.-C. Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy, 2011,36(2):803-811.
    [5]Deng, J. Pretreatment of agricultural residues for co-gasification via torrefaction. Journal of Analytical and Applied Pyrolysis,2009,86(2):331-337.
    [6]Felflia, F. F.; Luengob, C. A.; Suarezc, J. A.; Beatonc, P. A. Wood briquette torrefaction. Energy for Sustainable Development,2005,9(3):19-22.
    [7]Prins, M. J.; Ptasinski, K. J.; Janssen, F. Torrefaction of wood-Part 2. Analysis of products. Journal of Analytical and Applied Pyrolysis,2006,77(1):35-40.
    [8]陈应泉;杨海平;朱波郝;宏蒙;王贤华;陈汉平.农业秸秆烘焙特性及对其产物能源特性的影响.农业机械学报,2012,43(4):75-82.
    [9]赵辉.生物质高温气流床气化制取合成气的机理试验研究.浙江大学博士论文,2007.
    [10]朱波.农业秸秆烘焙与高质化应用耦合研究.华中科技大学硕士学位论文,2011.
    [1]Acikgoz, C.; Kockar, O. M. Characterization of slow pyrolysis oil obtained from linseed (Linum usitatissimum L.). Journal of Analytical and Applied Pyrolysis,2009,85(1-2): 151-154.
    [2]Balat, M. An Overview of the Properties and Applications of Biomass Pyrolysis Oils. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects,2011,33(7): 674-689.
    [3]Bussemaker, M. J.; Zhang, D. Effect of Ultrasound on Lignocellulosic Biomass as a Pretreatment for Biorefinery and Biofuel Applications. Industrial & Engineering Chemistry Research,2013,52(10):3563-3580.
    [4]Chen, D.; Zheng, Y.; Zhu, X. In-depth investigation on the pyrolysis kinetics of raw biomass. Part Ⅰ:Kinetic analysis for the drying and devolatilization stages. Bioresource Technology, 2013,131:40-46.
    [5]Demirbas, A. Effect of initial moisture content on the yields of oily products from pyrolysis of biomass. J. Anal. Appl. Pyrolysis,2004,71(2):803-815.
    [6]Demirbas, A. Pyrolysis of ground beech wood in irregular heating rate conditions. J. Anal. Appl. Pyrolysis,2005,73(1):39-43.
    [7]Kim, S.; Kim, J.; Park, Y.; Park, Y. Pyrolysis kinetics and decomposition characteristics of pine trees. Bioresour. Technol.,2010,101(24):9797-9802.
    [8]Miranda, R.; Sosa_Blanco, C.; Bustos-Martinez, D.; Vasile, C. Pyrolysis of textile wastesI. Kinetics and yields. Journal of Analytical and Applied Pyrolysis,2007,80(2):489-495.
    [9]Rousset, P.; Macedo, L.; Commandre, J. M.; Moreira, A. Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product. Journal of Analytical and Applied Pyrolysis,2012,96:86-91.
    [10]Stenseng, M.; Jensen, A.; Dam-Johansen, K. Investigation of biomass pyrolysis bythermogravimetric analysis and differential. J. Anal. Appl. Pyrolysis,2001,58-59: 765-780.
    [11]Vamvuka, D.; Kakaras, E.; Kastanaki, E.; Grammelis, P. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel,2003,82(15-17):1949-1960.
    [12]Wu, M.; Varhegyi, G.; Zha, Q. Kinetics of cellulose pyrolysis after a pressurized heat treatment. Thermochimica Acta,2009,496(1-2):59-65.
    [13]Yaman, S. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion Manag,2004,45:651-671.
    [14]陈登宇;张栋;朱锡锋.干燥前后稻壳的热解及其动力学特性.太阳能学报,2010,31(10):1230-1235.
    [15]Chen, D. Y.; Zhang, Y.; Zhu, X. F. Drying kinetics of rice straw under isothermal and nonisothermal conditions:A comparative study by thermogravimetric analysis. Energy Fuels,2012,26(7):4189-4194.
    [16]van der Stelt, M. J. C.; Gerhauser, H.; Kiel, J. H. A.; Ptasinski, K. J. Biomass upgrading by torrefaction for the production of biofuels:A review. Biomass and Bioenergy,2011.
    [17]陈青;周劲松;刘炳俊;梅勤峰:骆仲泱.烘焙预处理对生物质气化工艺的影响.科学通报,2010,55(36):3437-3443.
    [18]赵辉.生物质高温气流床气化制取合成气的机理试验研究.浙江大学博士论文,2007.
    [19]Couhert, C.; Salvador, S.; Commandre, J. M. Impact of torrefaction on syngas production from wood. Fuel,2009,88(11):2286-2290.
    [20]Felflia, F. F.; Luengob, C. A.; Suarezc, J. A.; Beatonc, P. A. Wood briquette torrefaction. Energy for Sustainable Development,2005,9(3):19-22.
    [21]朱波.农业秸秆烘焙与高质化应用耦合研究.华中科技大学硕士学位论文,2011.
    [22]Zheng, A.; Zhao, Z.; Chang, S.; Huang, Z.; He, F.; Li, H. Effect of Torrefaction Temperature on Product Distribution from Two-Staged Pyrolysis of Biomass. Energy & Fuels,2012, 26(5):2968-2974.
    [23]Bridgwater, A. V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy,2012,38(SI):68-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700