生物质燃料干燥和燃烧特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石能源的日益枯竭以及焚烧化石燃料引发一系列环境问题,可再生能源日益受到关注,其中生物质能以其清洁性与C02零排放性备受亲睐。生物质发电是利用农业、林业和工业废弃物、城市垃圾等为原料,采取直接燃烧或气化的发电方式。
     生物质电厂燃料水分含量变化范围宽,收获季节农作物秸秆的初含水量通常在30%以上,长时间储存非常容易引起秸秆变质。生物质炉排炉直燃技术由于其良好的燃料适应性及不需要对燃料进行预处理而受到普遍关注。尽管炉排炉在国内已经运行和调试多年,但炉排炉仍然存在飞灰含碳量高、燃烧效率低、污染物排放高等问题,且生物质所含元素类型与特性,焚烧时极易引起燃烧系统的积灰、腐蚀等问题。因此深入了解生物质锅炉的干燥和燃烧特性具有重要意义。
     针对生物质电厂燃料的特性,以玉米秆和稻壳为原料,研究干燥温度、原料初始水分含量和料层厚度耦合作用下的干燥特性,绘制干燥曲线,获得不同生物质原料的最佳干燥温度区间;以玉米秆为原料,研究了干燥条件对与料层厚度耦合作用下的干燥特性;以玉米秆、高粱秆和稻壳为原料,研究了料层厚度、干燥条件与空气湿度多因素作用下的干燥特性;在空气氛围下以玉米秆为原料开展了多因素作用下的干燥脱挥发分实验,综合考察温度、燃料初始水分含量及料层厚度对其干燥脱挥发分的影响。在此基础上提出一种新型蓄热式干燥方案,为生物质直燃锅炉的设计及优化提供必要的基础数据。
     鉴于目前我国锅炉炉内除尘设备的种种缺陷,在深入了解48t/h生物质锅炉存在问题的基础上,提出一种新型的炉内预除尘设备,利用惯性分离原理进行大粒径颗粒的分离,此设备布置在烟道转向处,由三组竖直与倾斜导流挡板组成,不仅可以进行炉内预除尘,且能矫正竖直烟道的气流走向,使得生物质直燃炉严重的气流偏斜得到了很好的缓解。另外,提出双炉排改造方案,通过改变一次风、二次风、点火风的配比,改变前后墙二次风量比,采取双炉排燃烧方式,以使生物质在炉内能够充分燃烧,提高生物质在炉内停留时间,确保生物质燃料燃尽,提高生物质锅炉燃烧效率。通过开展数值模拟、冷态实验和热态实验,获得燃烧特性参数,验证改造方案的可行性,并为生物质电站锅炉的运行提供参考数据。
Renewable energy has received more attention along with the exhaustion of fossil energy and environmental problems caused by combustion of fossil fuel. Biomass energy is an important renewable source for cleaning and zero CO2emission. Wastes from agriculture, forestry and municipal refuse could be used for power generation through direct combustion or gasification methods.
     The range of moisture changed in biomass is wide. Initial moisture content of crop straws can be higher than30wt%, and longtime storage would cause straw deterioration. Biomass grate boiler direct combustion technology got general attention for its preferable fuel adaptability and no need for pretreatment. Unfortunately, grate boiler still has some operation problems such as high carbon content in fly ash, low combustion efficiency and high pollutant discharge, although it has been operated and debugged for many years in our country. Besides, combustion system could be readily deposited and corroded due to the element characteristics in biomass fuel. Consequently, understanding of the drying and combustion properties of biomass boiler possesses a great significance.
     Influence of moisture content, pyrolysis and volatile removal properties of biomass fuel to boiler combustion efficiency and operation stability was investigated in this paper. Cornstalk and rice husk were selected as raw materials to research the drying property with various drying temperature, initial moisture content and material layer thickness. The optimum drying temperature interval was obtained through the analysis of drying curve. Furthermore, drying characteristics of core stalk was studied under coupling effect of drying conditions and material layer thickness. Drying characteristics with diverse material layer thickness, drying conditions and air moisture was investigated with core stalk, sorghum straw and rice husk. Devolatilization experiments were conducted under multiple factors with corn stalk in air atmosphere, and influence of temperature, initial moisture of fuel and material layer thickness to devolatilization was investigated. On the basis of drying and devolatilization curves, regenerative drying scheme was proposed, and the experimental results could provide necessary data base for the design and optimization of biomass direct combustion boiler.
     Considering the deficiencies of the existed biomass boiler dust removal equipment in China, on the basis of a deep understanding the existing problems of the48t/h biomass boiler, a new type of equipment for dust removal in furnace was put forward. The equipment makes use of the inertia separation principle for large particle separation, and it is arranged in the turning of pass, being composed of three groups of vertical and inclined baffle. The device can not only remove dust in furnace, but also correct the flue gas flow direction, relieving the severe airflow deviation of the biomass boiler. Double grates modification scheme was proposed according to the operation status of a48t/h biomass boiler in Bio Energy Group. Biomass fuel could be fully burned through changing the proportion between primary air, secondary air, ignite air and secondary air rate in front and rear wall using double grates combustion method. Besides, residence time of biomass fuel in furnace could increase through such a scheme, and combustion efficiency could hence be promoted. Combustion characteristic parameters would be obtained by conducting numerical simulation, cold-state and thermal state experiments. Feasibility of reforming scheme can be tested and then reference data for the operation of biomass power plant boilers can be provided.
引文
[1]BP世界能源统计2011.英国石油公司.2011.06.
    [2]Gungor A.. Two-dimensional Biomass Combustion Modeling of CFB. Fuel, 2008,87(8-9):1453-1468
    [3]Peters B., D'ziugys A., Hunsinger H.. An approach to qualify the intensity of mixing on a forward acting grate [J]. Chemical Engineering Science.2005, (60):1649-1659.
    [4]Bi J. C, Luo C. H., Kenichi A., A numerical simulation of a jetting fluidized bed coal gasifier [J]. Fuel,1997,76(4):285-301.
    [5]Blasiak W., Yang W. H., Dong W.. Combustion performance improvement of grate fired furnaces using Ecotube system [J]. Inst Energy.2006, (79):67-74.
    [6]Calvo L. F., Otero M., Jenkins B. M., Moran A., Garcia A. I. Heating process characteristics and kinetics of rice straw in different atmospheres [J]. Fuel Processing Technology,2004,85:279-291.
    [7]Ryu C, Shin D., Choi S.. Effect of fuel layer mixing in waste bed combustion [J]. Advances in Environmental Research.2001, (5):259-267.
    [8]Demirbas A.. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues[J]. Progress in Energy and Combustion Science,2005. 31(2):171-192.
    [9]Fagernas, L., et al. Drying of biomass for second generation synfuel production[J]. Biomass and Bioenergy,2010.34(9):1267-1277.
    [10]Fang M.X., Shen D.K., Li Y.X., et al. Kinetic study on pyrolysis and combustion of wood under different oxygen concentrations by using TG-FTIR analysis[J]. Journal of Analytical and Applied Pyrolysis,2006, 77(1):22-27
    [11]Figiel A.. Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods [J]. Journal of Food Engineering,2010.98(4):461-470.
    [12]Fleteher D. F., Haynes B. S., Christo F. C., Joseph S. D, A CFD based Combustion model of an entrained flow biomass gasifier[J]. Applied Mathematical Modelling.2000 (24):165-182.
    [13]Fluent6.3 User's guide. Fluent Inc., Centerra Resource Park,10 Cavendish Court, Lebanon, NH 03766, January 2005
    [14]Gani A.. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass [J]. Renewable Energy,2007, 32:649-661.
    [15]Gonzalez J. F., et al. Study of the influence of the composition of several biomass pellets on the drying process[J]. Biomass and Bioenergy,2011. 35(10):4399-4406.
    [16]HaykIrI-Acma H. Combustion characteristics of different biomass materials[J]. Energy Conversion and Management,2003,44(1):155-162
    [17]Thunman H., Leckner B.. Influence of size and density of fuel on combustion in a packed bed[J]. Proceedings of the Combustion Institute.2005, (30): 2939-2946.
    [18]Johansson R., Thunman H., Leckner B. Influence of intraparticle gradients in modeling of fixed bed combustion[J]. Combustion and Flame.2007, (149): 49-62.
    [19]Ma L., Jones J.M., Pourkashanian M., et al. The combustion of Pulverized biomass in an industrial combustion test furnace[J]. Fuel.2007,86, (12-13): 1959-1965.
    [20]K?r S. K., Rosendahl L. A., Baxter L. L. Towards a CFD-based mechanistic deposit formation model for straw-fired boilers[J], Fuel.2006, (85):833-848.
    [21]Kim Y. J., Lee J. M., Kim S. D., Modeling of coal gasification in an internally circulating fluidized bed reactor with draught tube. Fuel,2000,79(1):69-77.
    [22]Klason T., Bai X. S. Combustion process in a biomass grate fired industry furnace:a CFD study[J]. Progr Comput Fluid Dyn.2006, (6):278-286.
    [23]Kucuk A., Kadoglu Y., Gulaboglu M. S. A Study of Spontaneous Combustion Characteristics of a Turkish Lignite:Particle Size, Moist ure of Coal, Humidity of Air. Combustion and Flame,2003,133:255-261
    [24]Lee S.-B., Fasina O. TG-FTIR analysis of switchgrass pyrolysis[J]. Journal of Analytical and Applied Pyrolysis,2009,86(1):39-43
    [25]Li H. N., et al. Evaluation of a biomass drying process using waste heat from process industries:a case study[J]. Applied Thermal Engineering,2011.
    [26]Li H., et al. Evaluation of a biomass drying process using waste heat from process industries:a case study. Applied Thermal Engineering,2011.
    [27]Liu Q., Zhong Z., Wang S., et al. Interactions of biomass components during pyrolysis:A TG-FTIR study[J]. Journal of Analytical and Applied Pyrolysis,2011,90(2):213-218
    [28]Miltner M., MIltner A., Harasek M., Friedl A., Process simulation and CFD Calculations for the development of an innovative baled biomass-fired combustion Chamber. Applied Thermal Engineering.2007,27(7):1138-1143.
    [29]Pang S., Mujumdar A. Drying of Woody Biomass for Bioenergy:Drying Technologies and Optimization for an Integrated Bioenergy Plant[J]. Drying &Technology 2010.28690-701.
    [30]Munir S., Daood S. S., Nimmo W., Cunliffe A. M., Gibbs B. M. Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres [J]. Bioresource Technology,2009,100:1413-1418.
    [31]Nasserzadeh V., Swithenbank J., Jones B. Effect of high speed secondary air jets on the overall performance of a large MSW incinerator with a vertical shaft[J]. Combust Sci Technol.1993, (92):389-422
    [32]Nasserzadeh V., Swithenbank J., Jones B. Three-dimensional modelling of a municipal solid-waste incinerator [J]. Inst Energy.1991, (64):166-175.
    [33]Kaushal P., Proll T., Hofbauer H.. Model Development and Validation:Co-combustion of Residual Char, Gases and Volatile Fuels in the Fast Fluidized Combustion Chamber of a Dual Fluidized Bed Biomass Gasifier. Fuel,2007,86:2687-2695.
    [34]Kaushal P., Proll T., Hofbauer H. Model for Biomass Char Combustion in the Riser of a Dual Fluidized Bed Gasification unit:Part 1-Model Development and Sensitivity analysis. Fuel Process. Technol,2008,89,7:651-659
    [35]Rupar K., Mehri S. The release of organic compounds during biomass drying depends upon the feedstock and/or altering drying heating medium [J]. Biomass and Bioenergy,2003.25(6):615-622.
    [36]Senneca O. Kinetics of pyrolysis, combustion and gasification of three biomass fuels [J]. Fuel Processing Technology,2007,88:87-97.
    [37]Ergun S.. Fluid Flow through Packed Columns. Chem. Eng. Prog.1952,48(2): 89-94
    [38]Saario A., Oksanen A., Comparison of global ammonia chemistry mechanisms in biomass combustion and selective noncatalytic reduction process conditions. Energy & Fuels.2008,22(1):297-305.
    [39]Sharma A., Rao T. R. Kinetics of pyrolysis of rice husk [J]. Bioresource Technology,1999,67:53-59.
    [40]Shen D. K., Gu S., Luo K. H., et al. Kinetic study on thermal decomposition of woods in oxidative environment [J]. Fuel,2009,88:1024-1030.
    [41]Shen L. H., Gao Y., Xiao J., Simulation of hydrogen production from biomass gasification in interconnected fluidized beds. Biomass & Bioenergy,2008, 32(2):120-127.
    [42]Simsek E, Brosch B, Wirtz S, et al. Numerical simulation of grate firing systems using a coupled CFD/discrete element method (DEM)[J]. Powder Technology.2009, (193):266-273.
    [43]Sofialidis D., Faltsi O., Simulation of Biomass Gasification in Fluidized Beds Using Computational Fluid Dynamics Approach. Thermal science.2001(5): 95-105.
    [44]Soimakallio S., et al. Greenhouse gas balances of transportation biofuels, electricity and heat generation in Finland-Dealing with the uncertainties [J]. Energy Policy,2009.37(1):80-90.
    [45]S(?)ren K. Kaer. Numerical modeling of a straw-fired grate boiler[J]. Fuel.2004, (83):1183-1190
    [46]Stahl M. et al. Industrial processes for biomass drying and their effects on the quality properties of wood pellets[J]. Biomass and Bioenergy,2004.27(6): 621-628.
    [47]Vamvuka D., Kakaras E., Kastanaki E., Grammelis P. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite[small star, filled] [J]. Fuel,2003,82:1949-1960.
    [48]Dong W, Blasiak W. CFD modeling of ecotube system in coal and waste grate combustion[J]. Energy Conversion and Management.2001, (42):1887-1896.
    [49]Yang H, Yan R, Chen H, Lee D H, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis [J]. Fuel,2007,86: 1781-1788.
    [50]Yang Y. B., Goh Y. R., Zakaria R. Mathematical modelling of MSW incineration on a travelling bed[J]. Waste Management.2002, (22):369-380.
    [51]Yang Y. B., Goodfellow J., Ward D., et al. Cutting wastes from municipal solid waste incinerator plants[J]. Trans IchemE.2003, (81):143-155.
    [52]Yang Y. B., Sharifi V. N., Swithenbank J.. Effect of air flow rate and fuel moisture on the burning behaviours of biomass and simulated municipal solid wastes in packed beds[J]. Fuel,2004, (83):1553-1562.
    [53]Yang Y. B., Swithenbank J., et al. Mathematical modeling of particle mixing effect on the combustion of municipal solid wastes in a packed-bed furnace[J]. Fuel.2007,(86):129-142.
    [54]Yang Y. B., Yu C. R., Goodfellow J. Modelling waste combustion in grate furnaces[J]. Trans IchemE.2004, (82):208-222.
    [55]Yorulmaz S. Y., Atimtay A T. Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis [J]. Fuel Processing Technology,2009,90:939-946.
    [56]Yu L., Lu J., Zhang X. P., Numerical simulation of the bubbling fluidized bed coal gasification by the kinetic theory of granular flow(KTGF). Fuel,2007, 86(5/6):722-734.
    [57]Zhou H., Jensen A. D., Glarborg P, et al. Numerical modeling of straw combustion in a fixed bed[J]. Fuel.2005, (84):389-403.
    [58]Zhou, L., Wang, Y., Huang, Q., et al. Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis[J]. Fuel Processing Technology,2006,87(11):963-969
    [59]蔡杰,凡凤仙,袁竹林.秸秆循环流化床高效燃烧数值模拟研究[C].南京:东南大学,2006.
    [60]傅维标,卫景彬.燃烧物理学基础[M].北京机械工业出版社,1984:256-259.
    [61]华磊,郝庆英,刘圣勇,张璐凡,梁盼,刘亮,郭超.生物质捆烧锅炉结渣特性及影响因素研究[J].河南农业大学学报.2010,4(6):303-306.
    [62]蒋大龙.生物质直燃发电展望[J].现代电力.2007.10.
    [63]雷廷宙,沈胜强,吴创之,李在峰,王华军.玉米秸秆干燥特性的试验研究[J].太阳能学报,2005.26(2):224-227.
    [64]雷廷宙.秸秆干燥过程的实验研究与理论分析[D].大连:大连理工大学,2006.
    [65]李乾军,潘效军,张东平,蒋斌.流化床中生物质气化的数值模拟[J].动力工程学报.2011,31(8):624-629.
    [66]李延军.杉木木束干燥特性的研究[D].北京:北京林业大学,2005.
    [67]李志军.木材微波干燥特性的研究[D].北京:北京林业大学,2006.
    [68]刘洪涛,董金友.自主创新与科技成果转化[M].郑州:河南人民出版社,2008.
    [69]刘仁.生物质能发电产业专利技术优势明显[N].中国知识产权报.2010.03.
    [70]柳金伟.生物质的热解及燃烧特性研究[D].武汉:华中科技大学,2007.
    [71]马孝琴.生物质燃烧动力学特性实验研究[J].可再生能源,2004,(6):18-22.
    [72]孟辉,段立强,杨勇平.基于Aspen plus的Texaco气化炉性能研究[J].现代电力,2008,25(4):53-58.
    [73]曲增杰.我国生物质直燃发电产业发展的几点思考[J].科技创新导报.2009
    [74]冉景煜,张力,杨琳,辛明道.固态医疗垃圾循环流化床不同密相区性状对气固运动特性影响的数值研究[J].中国电机工程学报.2006,26(14):86-92.
    [75]沈来宏,肖军,高杨.串行流化床生物质催化制氢模拟研究[J].中国电机工程学报.2006,26(6):7-11.
    [76]宋莉媛.城市生活垃圾干燥过程的数值模拟研究[D].北京:北京交通大学,2007.
    [77]陶斌斌,杨历.多孔介质干燥的非平衡热力学模型[J].河北工业大学学报.2005,34(1):109-112.
    [78]万根香.生物质成型燃料技术及其特性[J].节能技术,2011,(3):72-80.
    [79]王益群.生物质在流化床中热解过程的动力学数值模拟[D].合肥:中国科学技术大学,2008.
    [80]温正,石良辰,任毅如.Fluent流体计算应用教程[M].清华大学出版社.2008:81-86
    [81]夏萍,刘盛全,周亮.不同供热方式对木材干燥特性的影响[J].木材工业,2007.21(1):18-23.
    [82]许康,杨肖曦,王弥康,等.过剩空气系数对原油加热炉热效率的影响[J].节能环保,2000,19(12):51-53.
    [83]杨小静.流化床干燥玉米的理论研究[D].河北:河北工业大学,2004.
    [84]叶贻杰,陈汉平,王贤华,杨海平,赵向富,张世红.生物质流化床燃烧过程中的结渣特性[J].可再生能源,2007,25(6):50-53.
    [85]张宗飞,汤连英,吕庆元,等.基于Aspen plus的粉煤气化模拟[J].化肥设计,2008,46(3):14-18.
    [86]中国能源统计年鉴2011.中国统计出版社.2011.12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700