莴苣颗粒负压微波高效节能均匀干燥机理及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
莴苣是营养价值较高的蔬菜之一,尤其莴苣茎营养更为丰富,富含K+,Na+,Ca+等多种离子。本文以莴苣茎颗粒作为果蔬原料的代表进行负压微波高效节能均匀干燥机理及工艺实验研究。
     为了分析莴苣颗粒介电特性与电特性变化,以及对负压微波干燥特性及品质影响的目的,进行热水漂烫(HWB)及微波漂烫(MWB)莴苣颗粒在冷却、冻结、解冻及冻干(FD)过程介电特性、电导率变化趋势研究,以及HWB与MWB莴苣颗粒微波冻干(MFD)干燥特性与品质研究。实验结果表明:漂烫处理可以明显地改变莴苣颗粒细胞中电解质区域化分布,MWB莴苣颗粒的电导率值在常温下是HWB电导率值的2倍,是未漂烫(NOB)电导率值的5倍;MWB导致莴苣颗粒介电常数的减小及介电损耗的增加;HWB与MWB莴苣颗粒的介电常数及介电损耗因子随着温度的降低而快速下降;在FD过程中,介电常数及介电损耗因子随着干燥时间先上升再下降; MWB莴苣颗粒MFD干燥时间(4.5h)比HWB缩短30%以上。
     为了从干燥机理上分析导致负压微波干燥低压气体放电原因的目的,进行了MFD机理研究。通过热水、微波两种漂烫方式对莴苣颗粒冻结点与融化点温度、未冻结水分布与流动性研究、以及结合上述对莴苣颗粒介电特性、电导率及MFD特性影响研究,发现莴苣颗粒在MFD过程中吸收的微波能量与莴苣的组织结构、未冻结水的含量及分布有直接的关系。基于冻结产品中未冻结水的数量及分布、介电特性、离子特性,以及有效地防止低压气体放电,根据热量的供应方式,MFD过程分成三个干燥阶段,即预升华阶段、微波升华阶段及解吸阶段。
     为了开发高效均匀负压微波干燥实验装置的目的,在介电特性、电导率及MFD机理研究的基础上,通过分析影响负压微波干燥均匀性的各种因素,提出了颗粒物料负压微波脉冲喷动干燥概念,并进行实验装置设计、研制。实验结果表明:负压微波脉冲喷动干燥装置设计合理,解决了低压气体放电现象,并且改善了微波干燥均匀性。
     为了验证负压微波脉冲喷动干燥装置性能的目的,进行了莴苣颗粒脉冲喷动微波真空干燥及冻干均匀性、干燥特性及品质的工艺实验研究。实验结果表明:与传统负压微波干燥装置相比,负压微波脉冲喷动干燥可以明显地提高莴苣颗粒负压微波干燥均匀度(90%以上)及复水后的弹性,缩短干燥周期50%(微波真空)及20%(微波冻干)以上,单位干燥产品的能耗比传统的真空干燥节能50%以上。
Stem lettuce is one of the highly valued vegetables for its ediblestems, especially beingrich in K+, Na+, and Ca2+. In this paper, mechanism and technology of negative pressuredrying assisted by microwave for stem lettuce cubes as a model for plant tissue were studiedwith efficiency, energy-saving, and uniformity。
     Effects of boiling water and microwave blanching methods on the dielectric properties,electrical conductivity, drying characteristics as well as quality of stem lettuce cubes werestudied. Results showed that the electrical conductivity of samples blanched by microwavewas two times higher than that of boiling water blanched ones and five times higher than thatof unblanched samples. Apart from that, dielectric constant (ε ') and loss factor (ε '') of thestem lettuce cubes decreased significantly after freezing. MFD duration of microwaveblanched samples was approximately4.5h, reduced by30%compared to boiling waterblanched ones. MFD process in a circular conduit yielded products of high quality comparedto that in a tray.
     Mechanism of microwave freeze drying (MFD) was studied by investigating the changesin the ice-melting and freezing point temperature as well as distribution and migration ofunfrozen water in stem lettuce cubes using differential blanching methods. Results showedthat the microwave energy supplied and specimen temperature profiles during MFD werestrongly influenced by the tissues, unfreezable water content, moisture distribution, and ioniccharacteristics of the samples. It was also found that the MFD process involving the conduitscan be divided into three steps based on the amount and distribution of unfrozen water in thefrozen samples and how heat is supplied in order to prevent corona discharge.
     Based on the studies above, a laboratory scale apparatus was designed and developedtaking into account some key factors which influence uniformity of quality ofnegative-pressure microwave dried products, and the energy-consumption for dried stemlettuce slices was also analyzed. Results showed that this negative-pressure pulse-spoutedmicrowave dryer can prevent corona discharge and improve drying uniformity as well asreduce energy-consumption by more than50%when compared to conventional vacuumdryer. In addition, this apparatus owns simple structure, small investment and easy operation.
     Technology, Drying uniformity,drying characteristics,and quality of stem lettuce slices were studied using the newly developed laboratory scale negative-pressure pulse-spoutedmicrowave dryer containing microwave vacuum drying (MVD) and MFD. Results showedthat negative-pressure pulse-spouted microwave drying resulted in dried stem lettuce sliceswith more uniform (90%), higher rehydration capacity as well as greater hardness afterrehydration over a shorter drying time reducing by50%for MVD and20%for MFD relativeto those obtained in a conventional negative-pressure microwave dryer.
引文
1张慜,徐建华,洪利红等.区域食用农产品加工业发展战略规划和应用.北京:中国医药科技出版社,2011.23-25
    2Mujumdar A S, Law C L. Drying Technology: Trends and Applications in PostharvestProcessing. Food and Bioprocess Technology,2010,3(6):843-852
    3Jangam S V. An overview of recent developments and some R&D challenges related todrying of foods. Drying Technology,2011,29(12):1343-1357
    4Zhang M, Tang J-M, Mujumdar A S,et al. Trends in microwave-related drying of fruitsand vegetables. Trends in Food Science&Technology,2006,17(10):524-534
    5Vadivambal R, Jayas D S. Changes in quality of microwave-treated agriculturalproducts—a review. Biosystems Engineering,2007,98(1):1-16
    6Vadivambal R, Jayas, D S. Non-uniform Temperature Distribution During MicrowaveHeating of Food Materials—A Review. Food and Bioprocess Technology,2008,3(2):161-171
    7Feng H, Tang J-M. Microwave finish drying of diced apples in a spouted bed. Journal ofFood Science,1998,63(4):679-683
    8Li Z Y, Wang R F, Kudra T,et al. Uniformity issue in microwave drying. DryingTechnology,2011,29(6):652-660
    9Sunderland J E. Microwave freeze drying. Journal of Food Process Engineering,1980,4(4):195-212
    10Wang Y-C, Zhang M, Mujumdar A S,et al. Experimental Investigation and MechanismAnalysis on Microwave Freeze Drying of Stem Lettuce Cubes in a Circular Conduit.Drying Technology,2012,30(11-12):1377-1386
    11Duan X, Zhang M, Mujumdar A S,et al. Trends in microwave-assisted freeze drying offoods. Drying Technology,2010,28(4):444-453
    12Feng H, Tang J-M,Cavalieri R P. Dielectric properties of dehydrated apples as affectedby moisture and temperature. American Society of Agricultural Engineers,2002,45(1):129–135
    13Sipahioglu O, Barringer S A. Dielectric properties of vegetables and fruits as a functionof temperature, ash, and moisture content. Journal of Food Science,2003,68(1):234-239
    14Wang Y-C, Zhang M, Mujumdar A S,et al. Effect of blanching on microwave freezedrying of stem lettuce cubes in a circular conduit drying chamber. Journal of FoodEngineering,2012,113:177-185
    15Al-Holy M, Wang Y-F, Tang J-M,et al. Dielectric properties of salmon (Oncorhynchusketa) and sturgeon (Acipenser transmontanus) caviar at radio frequency (RF) andmicrowave (MW) pasteurization frequencies. Journal of Food Engineering,2005,70(4):564-570
    16Geedipalli S S R, Rakesh V, Datta A K. Modeling the heating uniformity contributed bya rotating turntable in microwave ovens. Journal of Food Engineering,2007,82(3):359-368
    17Fakhouri M O, Ramaswamy H S. Temperature uniformity of microwave heated foodsas influenced by product type and composition. Food Research International,1993,26(2):89-95
    18Feng H, Tang J-M, Mattinson D S,et al. Microwave and spouted bed drying of frozenblueberries: the effect of dryingand pretreatment methods on physical properties andretention of flavor volatiles. Journal of Food Processing and Preservation,1999,23(6):463-479
    19Adedeji A A, Gachovska T K, Ngadi M O,et al. Effect of Pretreatments on DryingCharacteristics of Okra. Drying Technology,2008,26(10):1251-1256
    20Zhang M, Jiang H, Lim R-X. Recent developments in microwave-assisted drying ofvegetables, fruits, and aquatic products—Drying kinetics and quality considerations.Drying Technology,2010,28(11):1307-1316
    21Christopher G J, Baker著.食品工业化干燥[M].张慜,王剑平,李云飞等翻译.北京:中国轻工业出版社,2003.118-133
    22Ramaswamy H, Tang, J-M. Microwave and radio frequency heating. Food Science andTechnology International,2008,14(5):423-427
    23Mullin J. Microwave processing, In: New Methods of Food Preservation Gould GW,eds. Bishopbriggs: Blackie Academic and Professional,1995.112-134
    24曹崇文.微波真空干燥技术现状[J].干燥技术与设备,2004,2(3):5-9
    25Maskan M. Drying, shrinkage and rehydration characteristics of kiwifruits during hotair and microwave drying. Journal of Food Engineering,2001,48(2):177-182
    26Duan X, Zhang M, Mujumdar A S. Study on a combination drying technique of seacucumber. Drying Technology,2007,25(12):2011-2019
    27Cui Z-W, Xu S-Y, Sun D-W. Dehydration of garlic slices by combined microwave-vacuum and air drying. Drying Technology,2003,21(7):1173-1184
    28Xu Y-Y, Zhang M, Mujumdar A S,et al. Studies on hot air and microwave vacuumdrying of wild cabbage. Drying Technology,2004,22(9):2201-2209
    29Clary C D, Mejia-Meza E, Wang S,et al. Improving grape quality using microwavevacuum drying associated with temperature control. J Food Sci,2007,72(1): E023-028
    30Calín-Sánchez á, Szumny A, Figiel A,et al. Effects of vacuum level and microwavepower on rosemary volatile composition during vacuum–microwave drying. Journal ofFood Engineering,2011,103(2):219-227
    31Motavali A, Najafi G H, Abbasi S,et al. Microwave–vacuum drying of sour cherry:comparison of mathematical models and artificial neural networks. Journal of FoodScience and Technology,2013,50(4):714-722
    32Therdthai N, Northongkom H. Characterization of hot air drying and microwavevacuum drying of fingerroot (Boesenbergia pandurata). International Journal of FoodScience&Technology,2011,46(3):601-607
    33de Jesus S S, Filho R M. Optimizing drying conditions for the microwave vacuumdrying of enzymes. Drying Technology,2011,29(15):1828-1835
    34Kim S S, Bhowmik S R. Effective moisture diffusivity of plain yogurt undergoingmicrowave vacuum drying. Journal of Food Engineering,1995,42(2):359-368
    35Lian G, Harris C S, Evans R,et al. Coupled heat and moisture transfer during microwavevacuum drying. Journal of Microwave Power and Electromagnetic Energy,1997,32(0):34-44
    36Drouzas A E, Tsami E, Saravacos G D. Microwave/vacuum drying of model fruit gels.Journal of Food Engineering,1999,39(2):117-122
    37Bai-Ngew S, Therdthai N, Dhamvithee P. Characterization of microwave vacuum-drieddurian chips. Journal of Food Engineering,2011,104(1):114-122
    38Kiranoudis C T, Tsami E, Maroulis Z B. Microwave vacuum drying kinetics of somefruits. Drying Technology,1997,15(10):2421-2440
    39McMinn W. Thin-layer modelling of the convective, microwave, microwave-convective and microwave-vacuum drying of lactose powder. Journal of FoodEngineering,2006,72(2):113-123
    40Alibas I. Energy consumption and colour characteristics of nettle leaves duringmicrowave, vacuum and convective drying. Biosystems Engineering,2007,96(4):495-502
    41Motevali A, Minaei S, Khoshtaghaza M H,et al. Comparison of energy consumptionand specific energy requirements of different methods for drying mushroom slices.Energy,2011,36(11):6433-6441
    42Yongsawatdigul J, Gunasekaran S. Pulsed microwave-vacuum drying of cranberries,part I. energy use and efficiency. Journal of Food Processing and Preservation,1996a,20(2):121-143
    43Mousa N, Farid M. Microwave vacuum drying of banana slices. Drying Technology,2002,20(10):2055-2066
    44Chauhan A K S, Srivastava A K. Optimizing drying conditions for vacuum-assistedmicrowave drying of green peas (Pisum sativum L.). Drying Technology,2009,27(6):761-769
    45Figiel A. Drying kinetics and quality of vacuum-microwave dehydrated garlic clovesand slices. Journal of Food Engineering,2009,94(1):98-104
    46Corrêa J L G, Dev S R S, Gariepy Y,et al. Drying of pineapple bymicrowave-vacuumwith osmotic pretreatment. Drying Technology,2011,29(13):1556-1561
    47Sunjka P S, Rennie T J, Beaudry C,et al. Microwave-convective and microwave-vacuum drying of cranberries: A comparative study. Drying Technology,2004,22(5):1217-1231
    48Cui Z-W, Xu S-Y, Sun D-W. Microwave–vacuum drying kinetics of carrot slices.Journal of Food Engineering,2004,65(2):157-164
    49Han Q-H, Yin L-J, Li S-J,et al. Optimization of process parameters for microwavevacuum drying of apple slices using response surface method. Drying Technology,2010,28(4):523-532
    50崔正伟.微波真空干燥的数学模拟及其在食品加工中的应用[D]:[博士学位论文].无锡:江南大学食品学院,2004
    51张国琛.扇贝柱微波真空干燥机理及品质研究[D]:[博士学位论文].北京:中国农业大学,2004
    52Nahimana H, Zhang M. Shrinkage and color change during microwave vacuum dryingof carrot. Drying Technology,2011,29(7):836-847
    53Hu Q-G, Zhang M, Mujumdar A S,et al. Drying of edamames by hot air and vacuummicrowave combination. Journal of Food Engineering,2006,77(4):977-982
    54Cui Z-W, Xu S-Y, Sun D-W. Effect of microwave-vacuum drying on the carotenoidsretention of carrot slices and chlorophyll retention of chinese chivel eaves. DryingTechnology,2004,22(3):563-575
    55韩清华.微波真空干燥膨化苹果片的机理及品质研究和设备设计[D]:[博士学位论文].北京:中国农业机械化科学研究院,2007
    56王绍林.微波加热工艺及国外专利精选.北京:专利文献出版社,1995.23-25
    57Lu L, Tang J, Ran X. Temperature and moisture changes during microwave drying ofsliced food. Drying Technology,1999,17(3):414-431
    58Kelen A, Ress S, Nagy T,et al. Mapping of temperature distribution in pharmaceuticalmicrowave vacuum drying. Powder technology,2006,162(2):133-137
    59Dominguez-Tortajada E, Plaza-Gonzalez P, Diaz-Morcillo A,et al. Optimisation ofelectric field uniformity in microwave heating systems by means of multi-feeding andgenetic algorithms. International Journal of Materials and Product Technology,2007,29(1):149-162
    60Manickavasagan A, Jayas D, White N. Non-uniformity of surface temperatures of grainafter microwave treatment in an industrial microwave dryer. Drying Technology,2006,24(12):1559-1567
    61Ryyn nen S, Ohlsson T. Microwave heating uniformity of ready meals as affected byplacement, composition, and geometry. Journal of Food Science,1996,61(3):620-624
    62Kaensup W, Chutima S, Wongwises S. Experimental study on drying of chilli in acombined microwave-vacuum-rotary drum dryer. Drying Technology,2002,20(10):2067-2079
    63Sheng L. Microwave vacuum drying apparatus[P]. U.S., Applied Patent, No.2010/0000100A1.2010
    64PUESCHNER. www.pueschner.com.
    65Vennerstrum S. Microwave vacuum dryer [P]. U.S., Applied Patent, No.4,856,203.1989
    66Geedipalli S, Datta A K, Rakesh V. Heat transfer in a combination microwave-jetimpingement oven. Food and Bioproducts Processing,2008,86:53-63
    67Judge M D, Okos M R, Baker T G,et al. Energy requirements and prcessing costs forfreezing-rehydration of prerigor meat [used in sausage manufacturing]. FoodTechnology1981,35(4):61,64-62,67
    68Litvin S, Mannheim C, Miltz J. Dehydration of carrots by a combination of freezedrying, microwave heating and air or vacuum drying. Journal of Food Engineering,1998,36(1):103-111
    69Ratti C. Hot air and freeze-drying of high-value foods: a review. Journal of FoodEngineering,2001,49(4):311-319
    70Bell G A, Mellor J D. Adsorption of freeze-drying. Food Australia,1990a,42(5):226-227
    71Bell G A, Mellor J D. Further developments in adsorption of freeze-drying. FoodResearch Quaterly,1990b,50(2):48-53
    72Matteo P D, DonsìG, Ferrari G. The role of heat and mass transfer phenomena inatmospheric freeze-drying of foods in a fluidised bed. Journal of Food Engineering,2003,59(2-3):267-275
    73Wolff E, Gibert H. Atmospheric freeze-drying part1: design, experimental investigationand energy-saving advantages. Drying Technology,1990,8(2):385-404
    74Wolff E, Gibert H. Atmospheric freeze-drying part2: modelling drying kinetics usingadsorption isotherms. Drying Technology,1990,8(2):405-428
    75Lombraňa J I, Villanán M. The influence of pressure and temperature on freeze dryingin an adsorbent medium and establishment of drying strategies. Food ResarchInternational,1997,30(3/4):213-222
    76Ang T K, Ford J D, Pei D C T. Optimal modes of operation for microwave freezedrying of food. Journal of Food Science,1978,43(2):648-649
    77Ma Y H, Peltre P. Mathematical simulation of a freeze drying process using microwaveenergy[C]. AIChE Symposium Series.1973.47-54
    78孙帅,崔政伟.微波联合干燥方法的发展趋势及展望[J].食品工业,2013,34(1):158-161
    79Erle U, Schubert H. Combined osmotic and microwave-vacuum dehydration of appleand strawberries. Journal of Food Engineering,200149(2-3):193-199
    80张慜、杜卫华、孙金才等.前期热风后期真空微波联合干燥制备颗粒状果蔬脆粒的方法[P].中国专利,发明专利,200510038918.6.2005
    81李瑞杰,张慜,孙金才等.冷冻干燥与后续真空微波联合干燥开发草莓休闲食品[J].食品与生物技术学报,2009,28(4):456-460
    82黄略略,张憨.草莓冻干-真空微波联合干燥节能保质研究[J].干燥技术与设备,2010,8(3):105-111
    83Cui Z-W, Li C-Y, S C-F,et al. Combined microwave-vacuum and freeze drying of carrotand apple chips. Drying Technology,2008,26(12):1517-1523
    84张慜,李瑞杰,孙金才等.冻干与真空微波联合干燥制备果蔬和水产品休闲食品的方法[P].中国专利,发明专利,200710134873.1.2007
    85于华宁,郑先哲,贾暑花等.黑加仑真空冷冻与微波真空联合干燥工艺研究[J].干燥技术与设备,2008,6(5):235-241
    86卜召辉,胡庆国,陆宁.真空微波与真空冷冻联合干燥金针菇的研究[J].包装与食品机械,2011,29(3):16-19
    87Hall C W. Snippets on drying: Working knowledge of freeze drying. Drying Technology,1997,15(3&4):1239–1242
    88Wang R, Zhang M, Mujumdar A S. Effects of vacuum and microwave freeze drying onmicrostructure and quality of potato slices. Journal of Food Engineering,2010,101(2):131-139
    89Singh S, Raina C S, Saxena D C. Effect of pretreatments on drying and rehydrationkinetics and color of sweet potato slices. Drying Technology,2006,24(10/12):1487-1494
    90Dorantes-Alvarez L, Parada-Dorantes L. Blanching using microwave processing, In:The Microwave Processing of Foods, Schubert H, Regie, M.,eds. England: WoodheadPub Lim,2005.
    91Lin S, Brewer M S. Effects of blanching method on the quality characteristics of frozenpeas. Journal of Food Quality,2005,28(4):350–360
    92Ramesh M N, Wolf W, Tevini D,et al. Microwave Blanching of Vegetables. Journal ofFood Science and Technology,2002,67(1):390-398
    93Krokida M K, Kiranoudis C T, Maroulis Z B,et al. Effect of pretreatmen on color ofdehydrated products. Drying Technology,2000,18(6):1239-1250
    94Walde S G, Velu V, Jyothirmayi T,et al. Effects of pretreatments and drying methods ondehydration of mushroom. Journal of Food Engineering,2006,74(1):108-115
    95Kowalska H, Lenart A, Leszczyk D. The effect of blanching and freezing on osmoticdehydration of pumpkin. Journal of Food Engineering,2008,86(1):30-38
    96Quenzer N M, Burns E E. Effects of microwave, steam and water blanching on freeze-dried spinach. Journal of Food Science,1981,46(2):410-413
    97Feng H, Tang J, Cavalieri R. Dielectric properties of dehydrated apples as affected bymoisture and temperature. Transactions-American Society of Agricultural Engineers,2002,45(1):129-136
    98Wang R, Zhang M, Mujumdar A S,et al. Effect of salt and sucrose content on dielectricproperties and microwave freeze drying behavior of re-structured potato slices. Journalof Food Engineering,2011,106(4):290-297
    99Zhang L, Lyng J G, Brunton N P. The effect of fat, water and salt on the thermal anddielectric properties of meat batter and its temperature following microwave or radiofrequency heating. Journal of Food Engineering,2007,80(1):142-151
    100Venkatesh M S, Raghavan G S V. An overview of microwave processing and dielectricproperties of agri-food materials. Biosystems Engineering,2004,88(1):1-18
    101Sosa-Morales M E, Valerio-Junco L, López-Malo A,et al. Dielectric properties of foods:Reported data in the21st Century and their potential applications. LWT-Food Scienceand Technology,2010,43(8):1169-1179
    102Wang W, Chen G-H, Gao F-R. Effect of dielectric material on microwave freeze dryingof skim milk. Drying Technology,2005,23(1-2):317-340
    103Wang W, Chen G-H. Freeze drying with dielectric-material-assisted microwave heating.AIChE Journal,2007,53(12):3077-3088
    104Tao Z, Wu H-W, Chen G-H,et al. Numerical simulation of conjugate heat and masstransfer process within cylindrical porous media with cylindrical dielectric cores inmicrowave freeze-drying. International Journal of Heat and Mass Transfer,2005,48(3):561-572
    105Duan X, Zhang M, Li X-L,et al. Microwave freeze drying of sea cucumber coated withnanoscale silver. Drying Technology,2008,26(4):413-419
    106Duan X, Ren G-Y, Zhu W-X. Microwave Freeze Drying of Apple Slices Based on theDielectric Properties. Drying Technology,2012,30(5):535-541
    107Duan X, Zhang M, Mujumdar A S,et al. A novel dielectric drying method of seacucumber. International Journal of Food Science&Technology,2010,45(12):2538-2545
    108Liu Y-H, Tang J-M, Mao Z-H. Analysis of bread dielectric properties using mixtureequations. Journal of Food Engineering,2009,93(1):72-79
    109Buffler C R, Stanford M A. Effects of dielectric and thermal properties on themicrowave heating of foods. Microwave World,1991,12(4):15-23
    110Venkatesh M S. Cavity perturbation technique for measurement of dielectric propertiesof some agri-food materials[D]:[Ph.D.]. Macdonald Campus, Canada: McGillUniversity,1996
    111Chamchong M. Microwave thawing of foods: effect of power levels, dielectricproperties, and sample geometry[D]:[Ph.D.]. Cornell: Cornell University,1997
    112中国人民共和国卫生部. GB/5009.3-2010.2010-03-26发布.食品安全国家标准-食品中水分的测定[S].北京:中国标准出版社,2010
    113Agilent Technologies. Agilent E5061A/E5062A ENA Series RF network analyzersuser’s guide[S].2009
    114Thuwapanichayanan R, Prachayawarakorn S, Soponronnarit S. Drying characteristicsand quality of banana foam mat. Journal of Food Engineering,2008,86(4):573-583
    115Canet W, Alvarez M D, Luna P,et al. Blanching effects on chemistry, quality andstructure of green beans (cv. Moncayo). European Food Research and Technology,2004,220(3-4):421-430
    116Owen R, Fennema. Food Chemistry.3th ed. New York: Marcel Dekker,1996. Chapter6
    117Karp G. Cell and Molecular Biology: Concepts and Experiments.2nd ed. New York:John Wiley&Sons inco,1999.
    118李晓谨,李艳娥,石明辉等.阿尔泰莴苣的营养成分的分析.中国食物与营养,2007,8:52-54
    119李秀锦,仲飞,郭红艳.食用野菜与蔬菜某些营养成分的分析与比较.食品工业科技,2004,7:123-124
    120Venkatesh M S, Raghavan G S V. An Overview of Microwave Processing andDielectric Properties of Agri-food Materials. Biosystems Engineering,2004,88(1):1-18
    121Wang Y-F, Wig T D, Tang J-M,et al. Dielectric properties of foods relevant to RF andmicrowave pasteurization and sterilization. Journal of Food Engineering,2003,57(3):257-268
    122Bah eci K S, Serpen A, G kmen V,et al. Study of lipoxygenase and peroxidase asindicator enzymes in green beans: change of enzyme activity, ascorbic acid andchlorophylls during frozen storage. Journal of Food Engineering,2005,66(2):187-192
    123Ryyn nen S. The electromagnetic properties of food materials: a review of the basicprinciples. Journal of Food Engineering,1995,26(4):409-429
    124Searles J A. Freezing and annealing phenomena in lyophilization, In: Freeze-Drying/Lyophilization of Pharmaceutical and Biological Products, Rey L, May, J C,eds. MarcelDekker Inc.: New York,2004.109-146
    125Severini C, Baiano A, De Pilli T,et al. Combined treatments of blanching anddehydration: study on potato cubes. Journal of Food Engineering,2005,68(3):289-296
    126Coronel P, Simunovic J, Sandeep K P,et al. Sterilization solutions for aseptic processingusing a continuous flow microwave system. Journal of Food Engineering,2008,85(4):528-536
    127Vega-Gálvez A, Lemus-Mondaca R, Bilbao-Sáinz C,et al. Effect of air dryingtemperature on the quality of rehydrated dried red bell pepper (var. Lamuyo). Journal ofFood Engineering,2008,85(1):42-50
    128Ma Y H, Peltre P R. Freeze dehydration by microwave energy: Part I. Theoreticalinvestigation. AIChE Journal,1975,21(2):335-344
    129Ang T K, Pei D C T, Ford J D. Microwave freeze drying: an experimental investigation.Chemical Engineering Science,1977,32(12):1477-1489
    130Ang T K. Microwave freeze-drying-A theoretical and experimental investigation [D]:[Ph.D]. Waterloo,Ontario, Canada: University of Waterloo,1975
    131Ang T K, Ford J D, Pei D C T. Microwave freeze-drying of food: A theoreticalinvestigation. International Journal of Heat and Mass Transfer,1977,20(5):517-526
    132Arsem H B, Ma Y H. Simulation of a combined microwave and radiant freeze dryer.Drying Technology,1990,8(5):993-1016
    133Arsem H B, Ma Y H. Aerosol formation during the microwave freeze dehydration ofbeef. Biotechnology Progress,1985,1(2):104-110
    134Duan X, Zhang M, Mujumdar A S. Studies on the microwave freeze drying techniqueand sterilization characteristics of cabbage. Drying Technology,2007,25(10):1725-1731
    135Wang R, Zhang M, Mujumdar A S,et al. Microwave Freeze–Drying Characteristics andSensory Quality of Instant Vegetable Soup. Drying Technology,2009,27(9):962-968
    136Wang Z-H, Shi M-H. Microwave freeze drying characteristics of beef. DryingTechnology,1999,17(3):434-447
    137Soleiman A, Sara A. Novel microwave–freeze drying of onion slices. InternationalJournal of Food Science&Technology,2009,44(5):974-979
    138Wang R, Zhang M, Mujumdar A S. Effect of osmotic dehydration on microwavefreeze-drying characteristics and quality of potato chips. Drying Technology,2010,28(6):798-806
    139Jiang H, Zhang M, Mujumdar A S. Microwave Freeze-Drying Characteristics of BananaCrisps. Drying Technology,2010,28(12):1377-1384
    140Sadikoglu H, Liapis A I. Mathematical modelling of the primary and secondary dryingstages of bulk solution freeze-drying in trays: Parameter estimation and modeldiscrimination by comparison of theoretical results with experimental data. DryingTechnology,1997,15(3-4):791-810
    141Lombraňa J I, Zuazo I, Ikara J. Moisture diffusivity behavior during freeze drying undermicrowave heating power application. Drying Technology,2001,19(8):1613-1627
    142Wang W, Chen G-H. Theoretical study on microwave freeze-drying of an aqueouspharmaceutical excipient with the aid of dielectric material. Drying Technology,2005,23(9-11):2147-2168
    143Witkiewicz K. The Numerical Modeling of Freeze Drying of Granular Solids atMicrowave Heating[D]:[Ph. D]. Szczecin, Poland: Szczecin University of Technology,2006
    144Nakagawa K, Hottot A, Vessot S,et al. Influence of controlled nucleation by ultrasoundson ice morphology of frozen formulations for pharmaceutical proteins freeze-drying.Chemical Engineering and Processing: Process Intensification,2006,45(9):783-791
    145Meister E, Gieseler H. Freeze-dry microscopy of protein/sugar mixtures: Dryingbehavior, interpretation of collapse temperatures and a comparison to correspondingglass transition Data. Journal of pharmaceutical sciences,2009,98(9):3072-3087
    146Hottot A, Vessot S, Andrieu J. A direct characterization method of the ice morphology.Relationship between mean crystals size and primary drying times of freeze-dryingprocesses. Drying Technology,2004,22(8):2009-2021
    147Sablani S S, Syamaladevi R M, Swanson B G. A review of methods, data andapplications of state diagrams of food systems. Food Engineering Reviews,2010,2(3):168-203
    148Rahman M S. State diagram of date flesh using differential scanning calorimetry (DSC).International Journal of Food Properties,2004,7(3):407-428
    149Han M-Y, Zhang Y-J, Fei Y,et al. Effect of microbial transglutaminase on NMRrelaxometry and microstructure of pork myofibrillar protein gel. European FoodResearch and Technology,2009,228(4):665-670
    150McCarthy M J, Lasseux D, Maneval J E. NMR imaging in the study of diffusion ofwater in foods. Journal of Food Engineering,1994,22(1):211-224
    151Hills B P, Nott K P. NMR studies of water compartmentation in carrot parenchymatissue during drying and freezing. Applied Magnetic Resonance,1999,17(4):521-535
    152Chen F L, Wei Y M, Zhang B. Characterization of water state and distribution intextured soybean protein using DSC and NMR. Journal of Food Engineering,2010,100(3):522-526
    153Shao X-L, Li Y-F. Application of low-field NMR to analyze water characteristics andpredict unfrozen water in blanched sweet corn. Food and Bioprocess Technology,2011,in press, DOI:10.1007/s11947-11011-10727-z.
    154Tang X-L, Charlie P, Michael J. Design of freeze-drying processes for pharmaceuticals:practical advice. Pharmaceutical research,2004,21(2):191-200
    155Miller L A, Gordon J, Davis E. Dielectric and thermal transition properties ofchemically modified starches during heating. Cereal Chemistry,1991,68(5):441-448
    156Li A, Barringer S A. The effect of salt on the dielectric properties of ham at sterilizationtemperatures[C]. IFT Annual Meeting Book of Abstracts.1997.155
    157Lambert J B, Mazzola E P. Nuclear magnetic resonance spectroscopy: an introductionto principles, applications, and experimental methods. Pearson Education: Upper SaddleRiver, NJ,2004.
    158Hinrichs R, G tz J, Noll M,et al. Characterisation of the water-holding capacity of freshcheese samples by means of low resolution nuclear magnetic resonance. Food ResearchInternational,2004,37(7):667-676
    159Holtz E, AhrnéL, Rittenauer M,et al. Influence of dielectric and sorption properties ondrying behaviour and energy efficiency during microwave convective drying of selectedfood and non-food inorganic materials. Journal of Food Engineering,2010,97(2):144-153
    160Duan X, Zhang M, Mujumdar A S,et al. Microwave freeze drying of sea cucumber(Stichopus japonicus). Journal of Food Engineering,2010,96(4):491-497
    161Liapis A I, Bruttini R. Freeze drying, In: Handbook of industrial drying, Mujumdar AS,eds. New York: CRC2006.257–284
    162King C J. Freeze drying of foodstuffs. CRC Critical Reviews in Food Technology,1970,1(0):379-451
    163Ma Y H, Arsem H P. Theoretical study of freeze-drying. Final Report for GrantDAAK03-74-G-0002. New York: U.S. Army Natick Research and DevelopmentCommand,1979.
    164Wang Y-C, Zhang M, Mujumdar A S,et al. Microwave-Assisted Pulse-Spouted BedFreeze-Drying of Stem Lettuce Slices—Effect on Product Quality. Food and BioprocessTechnology,2012, In press
    165Wang Y-C, Zhang M, Mujumdar A S,et al. Study of Drying Uniformity inPulse-Spouted Microwave-Vacuum Drying of Stem Lettuce Slices with Regard toProduct Quality. Drying Technology,2013,31(1):91-101
    166张慜,孙金才,钟齐丰等.一种提高颗粒状果蔬微波干燥均匀性的喷动辅助方法[P].中国专利,发明专利, ZL200810244418.1.2008
    167颜伟强.颗粒状切割块茎类蔬菜微波喷动均匀干燥特性及模型研究[D]:[博士学位论文].无锡:江南大学食品学院,2011
    168王玉川,时兴荣,郑小卫.用于食品生产的微波冷冻干燥设备[P].中国专利,发明专利, ZL200303249124.7.2003
    169丛繁滋.可用于食品药品生产的微波真空冷冻干燥设备[P].中国专利,实用新型,CN200610010411.4.2006
    170Jiang H, Zhang M, Mujumdar A S,et al. Analysis of Temperature Distribution and SEMImages of Microwave Freeze Drying Banana Chips. Food and Bioprocess Technology,2013,6(5):1144-1152
    171李树君,曹有福,杨炳南等.一种微波真空冷冻干燥设备[P].中国专利,实用型专利,201010101353.6.2011
    172曹有富,韩清华,李树君等.微波真空冷冻干燥装置设计与试验[J].农业机械化学报,2010,41(7):105-108
    173Huang L-L, Zhang M, Mujumdar A S,et al. Comparison of four drying methods forre-structured mixed potato with apple chips. Journal of Food Engineering,2011,103(3):279-284
    174Sunderland J E. An economic study of microwave freeze-drying. Food Technology,1982,36(2):50-56
    175王建楠,胡志超,王海鸥等.微波冻干节能探析[J].江苏农业科学,2010,4:417-420
    176上滝具贞著.粉粒体空气输送[M].阮少明,许尚宏,蹇人鸾译.北京:电力工业出版社,1982.
    177Molerus O. Overview: Pneumatic transport of solids. Powder Technology,1996,88(3):309-321
    178Klinzing G E, Klinzing G E, Rizk F,et al. Pneumatic conveying of solids:A theoreticaland practical approach.3rd edition. New York: Springer,2010.1-32
    179潘永康,王喜忠.现代干燥技术[M].北京:化学工业出版社,1998.346-423
    180Indarto A, Halim Y, Partoputro P,et al. Pneumatic drying of solid particle: Experimentaland model comparison. Experimental Heat Transfer,2007,20(4):277-287
    181王玉川,陈哲敏.微波冻干速溶汤块的研制[C].第九届全国冷冻干燥学术交流.上海,2008.82-87
    182Giri S K, Prasad S. Drying kinetics and rehydration characteristics of microwave-vacuum and convective hot-air dried mushrooms. Journal of Food Engineering,2007,78(2):512-521
    183Balakrishnan M, Raghavan G S V, Sreenarayanan V,et al. Batch drying kinetics ofcardamom in a two-dimensional spouted bed. Drying Technology,2011,29(11):1283-1290
    184张慜,王玉川.一种负压微波均匀化喷动干燥装置及应用[P].中国专利,发明专利,ZL201010572843.0.2010
    185全国煤炭标准化技术委员. GB/T6949-1998.1998-12-08发布.煤的视相对密度测定方法[S].北京:中国标准出版社,1998
    186Mohsenin N N. Physical properties of plant and animal materials. New York: GordonBreach Science,1986.
    187Lewicki P P. Some remarks on rehydration of dried foods. Journal of Food Engineering,1998,36(1):81-87
    188Kelen A, Pallai-Varsanyi E, Ress S,et al. Practical method for choosing diluent thatensures the best temperature uniformity in the case of pharmaceutical microwavevacuum drying of a heat sensitive product. Eur J Pharm Biopharm,2006,62(1):101-109
    189Kelen á, Ress S, Nagy T,et al. Mapping of temperature distribution in pharmaceuticalmicrowave vacuum drying. Powder Technology,2006,162(2):133-137
    190Gunasekaran S, Yang H. Effect of experimental parameters on temperature distributionduring continuous and pulsed microwave heating. Journal of Food Engineering,2007,78(4):1452–1456
    191Gunasekaran S. Grain drying using continuous and pulsed microwave energy. DryingTechnology,1990,8(5):1039–1047.
    192Hutchings J B. Food color and appearance, In: Chemistry of Food Colour, London:Blackie Academic&Professional publisher Inc.,1994.367-449
    193Hendry G A F, Houghton J D. Natural food colorants. New York: Van NorstrandReinhold,1992.
    194Krokida M K, Maroulis Z B. Structural properties of dehydrated products duringrehydration. International journal of food science&technology,2001,36(5):529-538
    195Mounir S, Besombes C, Al-Bitar N,et al. Study of instant controlled pressure drop DICtreatment in manufacturing snack and expanded granule powder of apple and onion.Drying Technology,2011,29(3):331-341
    196Wang R, Zhang M, Mujumdar A S. Effect of food ingredient on microwave freezedrying of instant vegetable soup. LWT-Food Science and Technology,2010,43(7):1144-1150
    197Nastaj J F, Witkiewicz K. Mathematical modeling of the primary and secondary vacuumfreeze drying of random solids at microwave heating. International Journal of Heat andMass Transfer,2009,52(21-22):4796-4806
    198Wang W, Chen G-H. Numerical investigation on dielectric material assisted microwavefreeze-drying of aqueous mannitol solution. Drying Technology,2003,21(6):995-1017
    199Lewicki P P. Effect of pre-drying treatment, drying and rehydration on plant tissueproperties: A review. International Journal of Food Properties,1998,1(1):1-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700