微波冷冻干燥中试设备及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波冷冻干燥是以微波替代传统加热隔板作为热源的新型冻干技术,与常规冻干技术相比,在提高干燥速率、缩短干燥时间、降低能耗等方面具有较大优势,但由于过程中低压放电、干燥不均匀、工艺优化与过程控制难等技术难题的存在,该技术在大规模工业化应用方面仍面临诸多困难。本论文研制出微波冷冻干燥中试设备,针对微波冻干现有技术难题,选用当前面广量大、具有典型代表性的干燥蔬菜品种胡萝卜、作为试验原料,采用理论分析与试验研究相结合的研究方法,重点开展中试生产规模下的低压放电防控、干燥均匀性调控、真空冷却预处理技术等关键技术研究,综合多项条件和指标,对胡萝卜微波冷冻干燥工艺过程进行系统优化研究,以期为推动微波冷冻干燥技术工业化应用进程提供技术积累。主要研究结果分述如下:
     1、研制的微波冷冻干燥中试设备干燥仓与捕水仓为筒形仓呈上下连体配置,中间通过屏蔽过流板相隔,可以允许水蒸气自由透过,同时也能防止微波进入捕水仓;微波系统采用小功率多口馈入方式,微波馈入口沿干燥仓周向交错排列,单只磁控管可独立启闭、功率连续可调,微波系统可实现精细化调节;设备测控系统具备光纤实时测温、实时称重、视频监视,能耗跟踪等功能,便于微波冻干干燥特性、干燥工艺优化等研究。
     2、对研制设备的低压放电特性进行了试验研究和分析,并针对性提出低压放电防控措施。设备最易产生放电的干燥仓压强区域在150Pa附近,物料冻结温度越低、装载量越大,则低压放电临界功率密度越小;研究低压放电特性时,建议明确物料装载量,以微波放电功率为考量指标。微波放电特性随着冻干进程而不断变化,微波放电功率与升华干燥速率几乎同步变化;在冷冻干燥初期和后期,微波放电功率和安全加载功率较小,微波功率加载易受低压放电限制;而在干燥中期,微波放电功率和安全加载功率均明显高于干燥初期和后期,且呈先增后降趋势。在干燥初始和干燥末期测试表明,微波整体开启法、左右开启法对微波放电功率的影响差异不大。基于低压放电特性研究分析结果,提出干燥压强、物料冻结温度、预抽时间控制等工艺条件确定原则,提出冻干过程中“干燥前期小功率、中期高功率、后期小功率”的三段微波功率控制方案。
     3、对研制设备的干燥均匀性进行了测试和分析,并据此确定了适宜的微波开启方式和干燥均匀性调控方案。在微波整体开启、交替开启两种方式下,不同料层间、同一料盘不同铺料区域均表现出相类似的干燥速度差异:20盘物料呈现中间层干燥速度慢、外层干燥速度快的趋势,同一料盘呈现周边物料干燥速度快、中心部位干燥速度慢的趋势;与整体连续开启方式相比,微波交替间歇开启方式虽能较好地改善料盘之间物料和同一料盘内物料的干燥均匀性,但总体来看,20盘物料存留的干燥速度差异仍影响物料整体的干燥效率和干燥品质,干燥均匀性与干燥成品要求还有一定差距。在微波交替开启控制方案的基础上,通过采用料盘中心部位空缺铺料法、冻干期间料盘2次出仓换位堆垛法,可以较好地改善不同层料盘间、同一料盘内物料因干燥速度差异而引起的干燥不均匀问题,料盘内物料含水率均匀度约为90%,料盘间物料平均含水率均匀度达94.5%,基本满足冻干制品的实际生产要求。
     4、基于研制的微波冻干设备,提出采用真空冷却预处理的微波冻干加工工艺方法,可以一次完成冻干加工中的冷却、沥水、预干燥、冻结、冻干等5个工序,简化工艺过程,降低设备设施投入成本及生产成本,并开展试验研究。对40kg胡萝卜片物料进行60min真空冷却处理,物料温度呈现4个阶段变化:闪发前降压段、闪发冷却至冰点温度段、冰晶生成段、深层冻结段;处理结束后,胡萝卜片芯部温度接近-30℃,表层温度为-40℃以下,可以满足冷冻干燥对物料冻结温度的要求;真空冷却预处理可脱除物料中29%的初始水分,脱水速率在闪发现象出现后突然增加,达到高峰并维持一段时间后,随后快速下降,并在后期达到平衡,维持极低的脱水速率。过程中可能有冷量损耗和无效失水等现象的存在,导致真空冷却过程中理论脱水量与实测值存在一定的差异。
     5、真空冷却后无冷库冻结(A组)、真空冷却后再冷库冻结(B组)、无真空冷却处理(C组)三组冻干工艺试验表明:经过真空冷却处理的A、B两组在0~1h干燥区间的微波加载功率可明显高于C组,可明显改善冻干初期的低压放电问题;按照设定的微波功率加载方案,A、B、C三组所用的干燥时间分别为8h、8.5h、10h,由于真空冷却处理的预先脱水和冻干初期低压放电问题改善效果等原因,A、B组比C组分别减少冻干时间2、1.5h;在干燥终点,三组工艺处理的整批物料平均含水率分别约为:A组14%、B组16%、C组22%,A、B、C三组物料含水率实际上均未达到干燥要求,各层料盘整体干燥进度不一致,其中C组整体干燥进度最慢;整个工艺过程中,三组处理的单位脱水量耗电大小依次为A     6、针对胡萝卜片微波冷冻干燥主要工艺环节与技术特点,从胡萝卜切片厚度、批次装料量、过程微波调控工艺、开仓换盘堆垛方案等方面对胡萝卜微波冷冻干燥工艺过程控制进行系统优化研究。综合考虑批次物料干燥程度、冻干生产率、单位能耗以及制品品质等指标,冻干工艺中胡萝卜切片厚度应控制在5mm左右,批次装料量为40kg,即每料盘铺料2kg。以冻干耗时、平均含水率、品质评分作为响应指标,对微波调控工艺进行响应面优化试验研究,微波调控工艺参数组合优化确定为:交替开启时间t1为10min,冷冻干燥中期微波功率Pm为6.5kw,干燥中一后期转化点含水率Rk为40%,产品干燥终点温度Te为60℃。通过在线称重系统测定冻干过程中的整批物料平均含水率Pt,并以此为开仓换盘堆垛操作的判定依据;冻干期间开仓换盘堆垛操作2次,按照制定的换盘堆垛方法,以干燥后物料含水率、含水率均匀度、品质评分作为响应指标,对冻干期间出仓换盘堆垛的物料含水率控制点Pt进行响应面优化试验研究,第一次出仓含水率控制点Pt1、第二次出仓含水率控制点Pt2优化确定为:Pt1(58.9%)、Pt2(30.1%)。
Microwave freeze-drying is a new freeze drying technology using microwave heating system instead of conventional radiant heating panels. Compared with the conventional freeze-drying technology, it has some advantages in terms of improving drying rate, shortening drying time, reducing energy consumption, and soon on. However, due to the existence of technical problems including glow discharge, uneven drying, difficulties in process optimization and process control, there are many difficulties before the large-scale industrial application of microwave freeze-drying. In this paper, a microwave freeze-drying pilot test equipment was developed. Based on the existing technical problems of microwave freeze-drying, and employing the research method of a combination of theoretical analysis and experimental study, some key technologies such as glow discharge prevention, drying uniformity regulation and vacuum cooling pretreatment were investigated under the pilot production scale of carrots freeze-drying, and the drying technological process was systematacially optimized by considering of all kinds of conditions and indices. The above studies were aiming at providing some technical accumulation for promoting the forward course of industrial application of microwave freeze-drying technology. The results were as follows:
     1. Cylinder-shaped drying chamber and cold trap chamber of the pilot test equipment were connected in top-bottom position configuration, and were separated by the shielding pore plate which can allow the freedom passing through of water vapor and also prevent microwave's penetrating into clod trap chamber. For the microwave system, low-power and multi-port feed entrances were staggered along the circumference of the drying chamber. Every microwave magnetron can be turned on or off independently, and is continuously adjustable in the power, which enable the microwave system achieve a fine adjustment. The measurement and control system many real-time functions including material temperature measuring, water loss weighing, video surveillance, energy consumption tracking, etc., which contribute to the studies on the drying characteristics and the process optimization of microwave freeze-drying.
     2. Some experimental studies and analysis were carried out on the glow discharge characteristics of the developed equipment, and the prevention and control measures were proposed subsequently. When the drying chamber pressrue was around150Pa, glow discharge was most prone to occurring. The lower temperature of freezed materials and the more materials loading, the smaller the critical power density of glow discharge was. Microwave discharge power at specific material loading was recommended as the consideration index for the studying of glow discharge characteristics. Discharge characteristics of the freeze-dryer changed along with the freeze-drying process, during which microwave discharge power almost varied synchronously with sublimation drying rate. During the initial and latter process of freeze-drying, microwave discharge power and safe loading power were comparatively smaller, and microwave power loading was susceptible to the restriction of glow discharge. However, the microwave discharge power and safe loading power during the medium-term drying process were evidently higher, and represented a variation trend of first-increasing and succedent-decreasing. The testing results of the initial and latter process of freeze-drying showed that there was no significant difference between the influences on microwave discharge power by two kinds of microwave operating methods, i.e., the whole working method and the two-group alternative working method. Based on the above research results, the principles of deteriming the technological conditions involving drying chamber pressure, freezing temperature, and pre-vacuumizing time and soon on were established. And the three-stage microwave power control scheme was determined for the drying process controlling, that is, low power for the initial term of drying process, high power for the medium term, small power for the latter term.
     3. Testing and analysis of drying uniformity were performed on this pilot-test equipment, and the appropriate microwave operating method and regulation scheme of drying uniformity were accordingly determined. For both the whole working method and the two-group alternative working method of microwave system, there were similar drying speed differences among the20layers of material trays or different areas in the material trays. The results concluded that out layers of20material trays were dried faster than inner ones, and as for the materials within the same layer tray, peripheral materials were dried faster than central ones. Compared with the whole working method, although the two-group alternative working method can improve the drying uniformity among the different layers or the different material areas of the same layer, however, the remaining drying speed differences among the20layers of materials still brought out great influences on the drying efficiency and drying quality of the batch of materials as a whole, so that the drying uniformity didn't achieve the requirements of freeze-dried products. Based on the two-group alternative controlling scheme of microwave system, tray-center-vacant materials loading method and trays'transposition and restacking method were adopted to realize a considerable improvement on the problems of uneven drying, with the result that the uniformity degrees of material content in single tray and between all the trays were about90%and94.5%,respectively.
     4. A new technological process of applying vacuum-cooling pretreatment to microwave freeze drying was proposed on the basis of the developed microwave freeze-drier, during which5process steps including cooling, draining, pre-drying, freezing and freezing-drying were accomplished at a time on the drier, simplifying the original processes, reducing equipments and facilities investments and production costs.60min vacuum-cooling pretreatment experiments were performed on40kg carrot slices, resulting in4-phase variation of material temperature, that is, pre-flashing phase, flashing to ice point phase, ice crystals generating phase, deep freezing phase. After the vacuum-cooling pretreatment, the core and surface temperatures of carrot slices were close to-30℃and below-40℃, respectively, satisfying the requirements for the freezing temperature of freezing drying. The whole vacuum-cooling pretreatment removed29%of original moisture in the materials, during which dehydrate rate rose rapidly to the peak after the appearing of flash point, then sustained the peak for a period of time, run a deep decrease and leveled off with a very low rate at the latter period. The pretreatment process may have the phenomena of refrigerating capacity loss and invalid moisture loss, leading to a certain difference between the theoretical moisture dehydration and the actual measurement value.
     5. Three different microwave freeze-drying technological tests were conducted using the material of carrot slices, which involved group A:vacuum cooling substituting the process of freezing in refrigerator, group B:vacuum cooling followed by freezing in refrigerator, and group C:no vacuum cooling pretreatment. The test results showed that: compared with group C, group A and B had a evident increase on the microwave loading power during the initial1hour drying stage and significantly improved the glow discharge problem at the initial term of the freeze-drying; under the scheduled microwave power loading scheme, the demanded drying time of group A, B and C were8h,8.5h and10h, respectively. Due to the pre-dehydration function and the improvement of discharge problem in initial freeze-drying stage by vacuum cooling treatment, compared with group C, group A and B shortened the drying time2h and1.5h, respectively. At the drying end point, the average moisture content of the entire batch of materials in group A, B and C were14%,16%and22%, respectively, all of which didn't meet the requirements of freeze-dried products. The dehydration rate of all material trays were inequable, that of group C was slowest. During the entire process, power consumption of every unit dehydration in the three groups ranked according to the increasing sequence of A, B and C, i.e., energy utilization efficiency in group A was highest, that of group C was lowest. There were no significant differences on quality indices of the top tray materials in the three groups, including rehydration ratio and color, etc. Loss ratios of Vitamin C in group A, B and C were17.6%,19.0%and31.6%, respectively, which showed that vacuum cooling pretreatment significantly reduced the loss of vitamin C in the freeze-drying process. In conclusion for the above experimental results, vacuum cooling pretreatment can accomplish4process steps of material cooling, draining, pre-drying and freezing, improve the initial-term glow discharge problem, reduce freeze-drying time and energy consumption, enhance the preservation ratio of Vitamin C and had no significant influence on the other freeze-drying qualities.
     6. Based on the process steps and technical characteristics in microwave freeze-drying of carrot slices, the drying process optimization was comprehensively investigated including thickness of carrot slices, batch loading capacity, microwave regulation technology during the drying process, scheme of trays'transposition and restacking, etc. Considering the comprehensive factors including drying degree of batch materials, freeze-drying productivity, energy consumption of unit materials and quality indices, about5mm-thick carrot slices and40kg of batch loading capacity, i.e.,2kg materials for every tray were adopted in the freeze-drying process. Response surface optimization experiments on microwave regulation process were investigated with the response indices of freeze-drying time, average moisture content and quality evaluation of the dried products. The optimized parameters of microwave regulation process were as flows:alternative intermission time ti was10min, microwave power Pm during the medium-term freeze-drying process was6.5kw, moisture transition point of medium-latter drying term Rk was40%, drying endpoint temperature Te was60℃.
     Real-time average moisture content of the batch materials Pt during the freeze-drying process was measured by online weighing system, which was viewed as the criterion for the operation of trays'transposition and restacking. According to the scheduled twice operation method of trays' transposition and restacking, response surface optimization experiments on control points of Pt for trays' transposition and restacking were investigated with the response indices of moisture content of materials, uniformity degree of tray's moisture content and quality evaluation of the dried products. And the first moisture content control point Ptl and the second moisture content control point Pt2were optimized to be58.9%and30.1%, respectively.
引文
[1]赵鹤皋,郑效东,黄良瑾,等.冷冻干燥技术与设备[M].武汉:华中科技大学出版社,2005.
    [2]华泽钊.冷冻干燥新技术[M].北京:科学出版社,2006.
    [3]徐成海,彭润林,刘军,等(译).冷冻干燥[M].北京:化学工业出版社,2005.
    [4]秦红平.真空冷冻干燥技术的设备与工艺[D].合肥:合肥工业大学,2006.
    [5]王白鸥,崔春红.真空冷冻干燥技术在果蔬加工中的应用[J].果蔬加工,2009,3:52-53.
    [6]关柏鹤.食品真空冷冻干燥技术应用状况与发展前景分析[J].肉类工业,2008,2:24-26.
    [7]韩娜.真空冷冻干燥技术研究进展[J].食品工程,2007,3:28-29,47.
    [8]乔晓玲,闰祝伟,张原飞,等.食品真空冷冻干燥技术研究进展[J].食品科学,2008,29(s):469-474.
    [9]Ratti C. Hot air and freeze-drying of high-value foods:A review[J]. Journal of Food Engineering, 2001,49(4):311-319.
    [10]Agnieazka C,Andrzej L. Rehydration and sorption properties of osmotically pretreated freeze-dried strawberries[J]. Journal of Food Engineering,2010,97:267-274.
    [11]Shishehgarha F, Makhlouf J, Ratti C. Freeze-drying characteristics of strawberries[J]. Drying Technology,2002,20(1):131-145.
    [12]Babic J, Cantalejo M J, Arroqui C. The effects of freeze-drying process parameters on broiler chicken breast meat[J]. LWT-Food Science and Technology,2009,42(8):1325-1334.
    [13]Venir E, Del Torre M, Stecchini M L, et al. Preparation of freeze-dried yoghurt as a space food[J]. Journal of Food Engineering,2007,80(2):402-407.
    [14]Marques L G, Prado M M, Freire J T. Rehydration characteristics of freeze-dried tropical fruits[J]. LWT-Food Science and Technology,2009,42(7):1232-1237.
    [15]Marques L G, Ferreira M C, Freire J T. Freeze-drying of acerola (malpighia glabra I.)[J]. Chemical Engineering and Processing,2007,46(5):451-457.
    [16]Lee S-W, Rhee C. Effect of heating condition and starch concentration on the structure and properties of freeze-dried rice starch paste[J]. Food Research International,2007,40(2):215-223.
    [17]Sablani S S, Rahman M S, Al-Kuseibi M K, et al. Influence of shelf temperature on pore formation in garlic during freeze-drying[J]. Journal of Food Engineering,2007,80(1):68-79.
    [18]Jaekel T, Dautel K, Ternes W. Preserving functional properties of hen's egg yolk during freeze-drying[J]. Journal of Food Engineering,2008,87(4):522-526.
    [19]徐成海,张世伟,彭润玲,等.真空冷冻干燥的现状与展望(一)[J].真空,2008,45(2):1-11.
    [20]王博.胡萝卜真空冷冻干燥工艺参数的试验研究[D].沈阳:沈阳农业大学,2005.
    [21]汪喜波.不同操作条件对食品真空冷冻干燥过程的影响[D].北京:中国农业大学,2000.
    [22]张俊艳.蕨菜真空冷冻干燥技术研究[D].长春:吉林农业大学,2003.
    [23]罗瑞明,周光宏,白杰,等.牛肉冷冻干燥过程优化及最佳工艺条件的确立[J].食品科学,2005,26(11):163-168.
    [24]刘玉环.胡萝卜片的真空冷冻干燥加工工艺及研究[J].食品科技,2006,(03):62-64.
    [25]龚卫清,章程辉,郑荣珍.西芹冷冻干燥工艺条件的研究[J].热带农业科学,1999,(03):36-39.
    [26]薛毅,刘凌,王亚南,等.双孢蘑菇的冷冻干燥与高真空干燥[J].郑州轻工业学院学报(自然科学版),1999,14(03):20-23.
    [27]郑秀莲.真空冷冻干燥技术原理及其在食用菌加工方面的应用[J].食用菌学报,1999,6(03):43-45.
    [28]宫元娟,王博,林静,等.香菇冷冻干燥工艺参数的试验研究[J].农业工程学报,2004,20(01):226-229.
    [29]张颜民,徐光,童建民,等.荔枝真空冷冻干燥实验研究[J].食品工业科技,1999,20(01):31-32.
    [30]张余诚,孙晋快,房士宝.真空冷冻干燥制取脱水草莓片[J].冷饮与速冻食品工业,1999,(03):4-6.
    [31]包建强,缪松,杨迎春.香蕉真空冷冻升华干燥技术探讨[J].冷藏技术,2000,(01):1-4.
    [32]汪喜波,毛志怀.生姜真空冷冻干燥过程影响因素的试验研究[J].中国农业大学学报,2002,7(06):39-43.
    [33]朱文学,程远霞,谢秀英.大蒜冷冻干燥工艺的试验研究[J].农业机械学报,2002,33(02):67-69.
    [34]丁成翠,徐志,章程辉,等.青胡椒冷冻干燥工艺的优化[J].中国调味品,2012,37(2):46-50.
    [35]段续,任广跃,朱文学,等.超声波处理对香菇冷冻干燥过程的影响[J].食品与机械,2012,(1):41-43.
    [36]郭树国,王丽艳,李成华.黄瓜真空冷冻干燥工艺参数优化[J].食品研究与开发,2012,33(1):232-234.
    [37]王元春,谢晓航,黄忠闯,等.芒果冷冻干燥过程中营养成分变化的研究[J].食品工业,2012,(12):65-68.
    [38]胡绍德,戴前颖,金丹,等.真空冷冻干燥对绿茶品质影响的研究[J].茶业通报,2011,(4):174-177.
    [39]段续.海参微波·冻干联合干燥工艺与机理研究[D].无锡:江南大学,2009.
    [40]黄略略.冻干-真空微波串联联合干燥苹果的保质和节能工艺及模型研究[D].无锡:江南大学,2011.
    [41]宋芸.微波真空与真空冷冻干燥组合生产脱水果蔬[D].无锡:江南大学,2008.
    [42]李瑞杰.休闲型脱水果蔬的联合干燥工艺研究[D].无锡:江南大学,2008.
    [43]邹兴华.太湖银鱼的真空冷冻和真空微波联合干燥[D].无锡:江南大学,2005.
    [44]徐艳阳.毛竹笋真空冷冻与热风联合干燥研究[D].无锡:江南大学,2005.
    [45]S. Litvin, C. H. Mannheim & J. Miltz. Dehydration of carrots by a combination of freeze drying, microwave heating and ar or vacuum and air or vacuum drying [J]. Journal of Food Engineering, 1998,(36):103-111.
    [46]徐成海,彭润玲,赵雨霞,等.真空冷冻干燥技术的国内外动态[J].通用机械,2005,(08):52-54.
    [47]王建楠,胡志超,王海鸥,钟挺,陈友庆,彭宝良.微波冻干节能探析.江苏农业科学,2010,(4):417-420.
    [48]潘永康.现代干燥技术[M].北京:化学工业出版社,1998.
    [49]徐树来,郑先哲(译).食品微波加工技术[M].北京:中国轻工业出版社,2008.
    [50]彭润玲,徐成海,张世伟,等.真空冷冻干燥过程传热传质理论研究的动态[J].真空与低温,2006,12(01):51-61.
    [5]]张建龙.微波真空冷冻干燥机理及其工艺参数的研究[D].洛阳:河南科技大学,2003.
    [52]Wang Wei. Dielectric-material-assisted microwave heating in freeze drying[D]. Hong Kong University of Science and Technology,2005.
    [53]Arsem, H. B., Ma, Y. H. Microwave freeze drying:A brief review[J]. IEE Conference Publication, 1980,1,258-264.
    [54]Sunderland, J. Edward. Microwave freeze drying[J]. Journal of Food Process Engineering,1982,4 (4),195-212.
    [55]Jackson S., Rickter S.L., Chichester C. O. Freeze-Drying of Fruit[J]. Food Technology, 1957,11:468-473.
    [56]Copson. D.A. Microwave sublimation of foods[J]. Food Technology,1958, (12):270-272.
    [57]Hoover M.W, Markantonatos. A., Parker. W.N. Dielectric heating in experimental acceleration of freeze-drying of foods[J]. Food Technology,1966,20:103-105.
    [58]Hammond. L.H. Economic evaluation of uhf dielectric vs radiant heating for freeze-drying[J]. Food Technology,1967, (20):735-738.
    [59]Peltre,nR., Ma,YH. Application of computer simulation in the study of microwave freeze-drying[J]. Applied Physics,1975,70-71.
    [60]Sunderland, J. E. An economic study of microwave freeze drying[J]. Food Technology,1982, 36(2):50.
    [61]Ben-Souda, K., Akyel, C.& Bilgen. Freeze dehydration of milk using microwave energy[J]. Journal of Microwave Power and Electromagnetic Energy,1989,24(4):195-201.
    [62]Arsem, H. B.& Ma, Y. H. Aerosol formation during the microwave freeze dehydration of beef[J]. Biotechnology Progress,1985,1:104-110.
    [63]Zhang Min, Tang J., Mujumdar Arun S., et al. Trends in microwave-related drying of fruits and vegetables[J]. Trends in Food Science & Technology,2006,(17):524-534.
    [64]孙恒.微波冷冻干燥中的热电耦合和控制策略优化[D].上海:上海交通大学,2005.
    [65]王朝晖.微波冷冻干燥过程的传热传质机理[D].南京:东南大学,1996.
    [66]吴宏伟.具有电介质核心多孔介质微波冷冻干燥过程的耦合传热传质研究[D].北京:北京航空航天大学,2004.
    [67]王朝晖,施明恒.牛肉的微波冷冻干燥特性[J].南京林业大学学报,1997,21(S1):139-142.
    [68]施明恒,祝涛,王朝晖.蜂王浆微波冷冻干燥特性的实验研究[J].东南大学学报,1998,28(11):1-6.
    [69]孙恒,张洁,朱鸿梅等.微波冷冻干燥技术的发展和有待解决的问题[J].食品科学,2005,26(4):256-260.
    [70]赵珺,王安建,黄纪念.真空微波冻干法制备怀山药片的研究[J].食品科技,2007,(5):89-91
    [71]王安建,黄纪念,王玉川.微波真空冻干怀山药生产工艺的研究[J].食品工业,2007,(5):35-36.
    [72]段续,张慜.甘蓝微波冷冻干燥工艺与杀菌特性[J].食品与生物技术学报,2007,26(5):20-24.
    [73]Duan Xu, Zhang Min, Li Xinlin, et al. Microwave Freeze Drying of Sea Cucumber Coated with Nanoscale Silver[J]. Drying Technology,2008,26(4):413-419.
    [74]Duan Xu, Zhang Min, Li Xinlin, et al. Ultrasonically Enhanced Osmotic Pretreatment of Sea Cucumber Prior to Microwave Freeze Drying[J]. Drying Technology,2008,(26):420-426.
    [75]Duan X, Zhang Min, Mujumdar A S. Study on a Combination Drying Technique of Sea Cucumber[J]. Drying Technology,2007,12 (25):2011-2019.
    [76]Duan Xu, Zhang Min, Mujumdar AS., et al. Microwave freeze drying of sea cucumber (Stichopus japonicus)[J]. Journal of Food Engineering,2010,96(4):491-497.
    [77]吴港城,茅周祎,沈康俊,等.海参微波冻干过程活性成分保存研究[J].渔业现代化,2008,35(5):47-51.
    [78]施明恒,祝涛,曹康敏等.微波冷冻干燥过程中光纤测温技术的研究[J].上海交通大学学报,1999,33(8):1039-1042.
    [79]陶智,马鸿信.具有电介质内核的平板状Si02凝胶的微波冷冻干燥实验研究[J].热科学与技术,2007,6(3):204-208.
    [80]潘伟鹤,金听祥.苹果微波冷冻干燥过程的试验研究[J].现代农业科技,2008,(17):7-8.
    [81]赵庆亮.微波真空冷冻干燥苹果片及对比试验研究[D].北京:中国农业机械化科学研究院,2009.
    [82]董铁有,李素云,张建龙,等.微波真空冷冻干燥的工艺及设备问题[J].食品科技,2004,(10):43-45.
    [83]王瑞.蔬菜制品高效微波冷冻干燥的工艺与机理研究[D].无锡:江南大学,2010.
    [84]Wang Rui, Zhang Min, Mujumdar Arun S. Microwave freeze-drying characteristics and sensory quality of instant vegetable soup[J]. Drying Technology.2009,27 (9):962-968.
    [85]Wang Rui, Zhang Min, Mujumdar Arun S. Effect of food ingredient on microwave freeze drying of instant vegetable soup[J]. LWT-Food Science and Technology.2010,43(7):1144-1150.
    [86]Wang Rui, Zhang Min, Mujumdar Arun S. Effect of osmotic dehydration on microwave freeze-drying characteristics and quality of potato chips[J]. Drying Technology.2010,28 (6): 798-806.
    [87]Wang Rui, Zhang Min, Mujumdar Arun S. Effects of vacuum and microwave freeze drying on microstructure and quality of potato slices[J]. Journal of Food Engineering.2010,101(2):131-139.
    [88]Wang Rui, Zhang Min, Mujumdar Arun S., et al. Effect of salt and sucrose content on dielectric properties and microwave freeze drying behavior of re-structured potato slices[J]. Journal of Food Engineering,2011,106(4):290-297.
    [89]Ma Y Hua, Peltre Philippe R. Freeze dehydration by microwave energy:Pan Ⅰ. Theoretical investigation[J]. AIChE Journal,1975,21(2):335-344.
    [90]Ma Y Hua, Peltre Philippe R. Freeze dehydration by microwave energy:Part Ⅱ. Experimental study[J]. AIChEJournal,1975,21(2):344-350.
    [91]Ma Y. H., Peltre P. Mathematical simulation of a freeze drying process using microwave energy[J]. AIChES,1973,69:47-53.
    [92]Ang, T. K., Ford, J. D., Pei, D. C.I, Microwave freeze-drying of food:A theoretical investigation [J]. International Journal of Heat and Mass Transfer,1977,20(5):517-526.
    [93]Arsem, H. B.& Ma, Y. H. Simulation of a combined microwave and radiant freeze dryer [J]. Dying Technology,1990,8(5):993-1016.
    [94]J.F. Nastaj, K. Witkiewicz, B. Wilczyska. Experimental and simulation studies of primary vacuum freeze-drying process of random solids at microwave heating[J]. International Communications in Heat and Mass Transfer,2008, (35):430-438.
    [95]Lombrana, J.I., Zuaso, I., Ikara, J. Moisture diffusivity behavior during freeze drying under microwave heating power application[J]. Drying Technology,2001,19 (8):1613-1627.
    [96]王朝晖,施明恒.微波冷冻干燥过程的升华冷凝现象[J].中国科学,1998,28(3):225-231.
    [97]王朝晖,施明恒.非饱和含湿多孔介质微波冷冻干燥过程传热传质分析[J].化工学报,1996,47(2):131-136.
    [98]王朝晖,施明恒.初始饱和度对微波冷冻干燥过程传热传质的影响[J].化工学报,1997,48(3):294-299.
    [99]施明恒,王朝晖.多孔介质微波冷冻干燥的升华—冷凝理论[J].东南大学学报,1995,25(4):92-98.
    [100]Wang, Zhaohui, Shi, Mingheng, Effects of sublimation-condensation region on heat and mass transfer during microwave freeze drying, Journal of Heat Transfer, Transactions ASME,1998,120 (3),654-660.
    [101]Wang, Zhaohui, Shi, Mingheng. Numerical study on sublimation-condensation phenomena during microwave freeze drying, Chemical Engineering Science,1998,53(18),3189-3197.
    [102]Wang, Zhaohui, Shi, Mingheng. Sublimation-condensation phenomenon in microwave freeze-drying, Science China Series E Technological Sciences,1998,41 (3),321-329.
    [103]孙恒,朱鸿梅,张洁,等.微波冷冻干燥升华阶段热失速控制的模拟[J].沈阳农业大学学报,2004,35(3):250-252.
    [104]孙恒,朱鸿梅,张洁等.微波加热冷冻干燥过程中热电耦合的研究[J].真空与低温,2004,10(4):221-224.
    [105]Sun Heng, Zhu Hongmei, Feng Haidong, et al. Thermoelectromagnetic coupling in microwave freeze-drying[J]. Journal of Food Process Engineering,2007,30(2):131-149.
    [106]吴宏伟,陶智,陈国华等.具有电介质核心多孔介质微波冷冻干燥过程的耦合传热传质的数值研究[J].高校化学工程学报,2005,19(2):181-186.
    [107]吴宏伟,陶智,陈国华.具有电介质核圆柱多孔介质微波冷冻干燥过程的双升华面模型[J].化工学报,2004,55(6):869-875.
    [108]Wu Hongwei, Tao Zhi, Chen Guohua, et al. Conjugate heat and mass transfer process within porous media with dielectric cores in microwave freeze drying [J]. Chemical Engineering Science, 2004 (59):2921-2928.
    [109]Tao Zhi, Wu Hongwei, Chen Guobao, et al. Numerical simulation of conjugate heat and mass transfer process within cylindrical porous media with cylindrical dielectric cores in microwave freeze-drying [J]. International Journal of Heat and Mass Transfer,2005 (48) 561-572.
    [110]王维,陈国华.介电物质对微波冷冻干燥影响的理论研究(一)[J].干燥技术与设备,2004,2(3):10-14.
    [111]王维,陈国华.介电物质对微波冷冻干燥影响的理论研究(二)[J].干燥技术与设备,2004,2(4):10-15.
    [112]Wang Wei, Chen Guohua. Heat and mass transfer model of dielectric-material-assisted microwave freeze-drying of skim milk with hygroscopic effect[J]. Chemical Engineering Science 2005, (60):6542-6550.
    [113]张憨,段续,范柳萍.一种采用带介电内核来缩短果蔬粉微波冷冻干燥时间的方法[P].中国,发明:ZL200610088075.5,2006-06-22.
    [114]Gould J.W., Kenyon F.M. Gas discharge and electric field strength in microwave freeze-drying[J]. Journal of Microwave Power,1971,6(2):151-167.
    [115]Ang, T.K., Ford,.D.,Pei, D.C.T. Optimal modes of operation for microwave freeze drying of food[J]. Journal of Food Science,1978,43:648-649.
    [116]Duan Xu, Zhang Min, Mujumdar Arun S., et al. Trends in microwave-assisted freeze drying of foods[J]. Drying Technology,2010,28 (4):444-453.
    [117]段续,张慜,朱文学.食品微波冷冻干燥技术的研究进展[J].化工机械,2009,(3):178-184.
    [118]胡志超,陈有庆,谢焕雄,等.微波真空冷冻干燥技术研究及应用现状[J].农机化研究,2009,(9):6-9.
    [119]张建龙,董铁有,朱文学.微波冷冻干燥技术的特点及发展前景[J].食品科技,2002,(12):88-91.
    [120]孙恒,朱鸿梅,张洁,等.微波冷冻干燥技术的研究现状[J].真空与低温,2004,10(2):117-121.
    [121]李素云,贺艺,董铁有,等.微波真空冷冻干燥中的典型问题研究[J].河南科技大学学报,2004,24(3):68-71.
    [122]王海鸥,胡志超,屠康,等.微波施加方式对微波冷冻干燥均匀性的影响试验[J].农业机械学报,2011,42(5):131-135.
    [123]胡继强.奶粉微波真空喷雾冷冻干燥技术与设备研究[J].中国乳品工业,2012,40(2):42-44.
    [124]徐振方,吴才章,郭顺生.微波真空冷冻干燥中关键技术研究[J].农业机械,2011,(17):126-128.
    [125]Toai, L.V. Microwave freeze drying method and apparatus [P]. United States patent:4204336, 1980-05-27.
    [126]Clayton, V.I. Freezing drying apparatus[P]. United States patent:4033048,1977-07-05.
    [127]胡小松,吴继红,廖小军,等.我国果蔬贮藏与加工发展专题报告[J].食品与机械,2007,23(4):3-7.
    [128]张学杰,王金玉,方智远.我国蔬菜加工产业发展现状[J].中国蔬菜,2007,4:1-4.
    [129]王勇,李恒,马超.我国果蔬加工技术现状及产业发展对策[J].农产品加工,2010,(6):64-65.
    [130]宋祺.我国出口蔬菜的状况及发展趋势[J].湖北植保,2010,(5):40-41.
    [131]于勇,胡桂仙,王俊,脱水蔬菜的研究现状及展望[J].粮油加工与食品机械,2003,(4):63-65.
    [132]赵春权.脱水胡萝卜粒加工技术及发展前景[J].农产品加工,2004,(9):40-41.
    [133]徐成海,彭润玲,刘军.冷冻真空干燥设备的选型技术[J].干燥技术与设备,2008,(6):142-153.
    [134]韩清华.微波真空干燥膨化苹果片的机理及品质研究和设备设计[D].北京:中国农业机械化 科学研究院,2007.
    [135]韩清华,李树君,马季威,等.连续式微波真空干燥设备的研究[J].农业机械学报,2006,37(8):136-139.
    [136]Arun S. Mujumdar. Handbook of Industrial Drying(Third Edition)[M].CRC Press,2006.
    [137]G. Ahrens, H. Kriszio, G. Langer. Advances in Microwave and Radio Frequency Processing[M]. 2006, Part Ⅵ,426-435.
    [138]王瑞芳,李占勇.水平转盘与转鼓微波干燥均匀性的实验研究[J].天津科技大学学报,2009,24(4):58-61.
    [139]张慜,王瑞.果蔬微波联合干燥技术研究进展[J].干燥技术与设备.2005,3(3):107-110.
    [140]Wappling-Raaholt B.Ohlsson T. Tools for improving the heating uniformity of foods heated in a microwave oven [J]. Microwave World,2000,21 (1):24-28.
    [141]Geedipalli S S R,Rakesh V,Datta A K. Modeling the heating uniformity contributed by a rotating turntable in microwave ovens [J]. Journal of Food Engineering,2007,82:359-368.
    [142]张志涌.精通MATLAB教程6.5版[M].北京航空航天大学出版社,2003.
    [143]张平.MATLAB基础与应用简明教程[M].北京航空航天大学出版社,2001.
    [144]王海鸥,胡志超,屠康,等.真空冷却预处理在微波冻干胡萝卜片中的应用[J].农业工程学报,2011,27(7):358-363.
    [145]陈羽白,林海英,赵华海,等.菜心真空预冷效果的试验研究[J].农业工程学报,2003,19(5):161-165.
    [146]石小琼,邓金星,张映斌.真空预冷技术在子芋冷藏保鲜上的应用研究[J].农业工程学报,2001,17(4):86-90.
    [147]李云雁.试验设计与数据处理[M].化学工业出版社,2005.
    [148]盖钧镒.试验统计方法[M].北京:中国农业出版社,2000.
    [149]张宏梅,王耀华,陆明,等.正交回归法在机械优化设计中的应用[J].解放军理工大学学报,2002,3(4):50-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700