PAN纤维微缺陷及微晶结构的形成与演变
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维的力学性能与其微观结构息息相关,微晶结构是碳纤维强度的基石,而微缺陷结构如纤维表面裂纹、内部微孔等大大降低了纤维的强度;因此以微缺陷为视角,研究并掌握碳纤维生产过程中微缺陷与微晶结构的形成与演变规律,对制定合理的生产工艺,以及制备高性能PAN基碳纤维具有重要应用价值。本文主要采用场发射扫描电镜(FESEM)、同步辐射X射线小角散射(SAXS)与广角散射(WAXS)等测试技术,对PAN纤维在纺丝过程、预氧化过程及碳化过程中表面与断面形貌、内部微孔等微缺陷与微晶结构的形成与演变进行了基础性研究,并根据不同阶段PAN纤维内部微孔的形态差异,建立了低取向微孔结构模型和高取向微孔结构模型,并结合Guinier理论与Ruland理论对数据进行处理,有效表征了纤维内部微孔的变化规律。
     本文首先对日本东丽T系列PAN基碳纤维T300、T700S、T800H和T1000G的微缺陷与微晶结构以及与力学性能的相关性进行了对比研究。表面形貌显示T300与T800H表面有明显的条纹和沟槽;其中T300直径最大,表面缺陷最多;T800H直径较小,表面条纹与沟槽规整、尺寸小,表面划痕、裂纹等缺陷少。T700S与T1000G表面光滑,但高倍下仍可观察到在数十纳米尺度的条纹与沟槽;T1000G直径最小,表面更加光滑、缺陷最少。SAXS与WAXS数据显示T300内部微孔数量多、尺寸最大、分布宽,微孔取向度、结晶度与结晶取向度都是最差的,所以其力学性能最低。从T300到T1000G,随着强度提高,碳纤维内部微孔尺寸减小,长径比增大,微孔取向度提高;同时结晶度、晶粒尺寸、结晶取向度也有提高。综合对比发现,四种碳纤维的微晶结构参数都在一定的尺度范围内,和微缺陷参数差异相比,其变化较小,不是提高纤维力学性能的关键所在;因此,减少纤维微缺陷的尺寸与数量是目前提高碳纤维拉伸强度的最直接途径。
     本文在准干喷湿纺条件下,对PAN原丝微缺陷及微晶结构在初级凝固浴、梯度凝固浴、水洗、致密化、蒸汽牵伸等工艺过程中形成与演变规律进行了系统研究。研究发现在较低的初级凝固浴温度下(30℃),可制备表面缺陷少、微孔尺寸小,结晶度适中的初生纤维;提高初级凝固浴牵伸倍率(三倍),可显著降低纤维纤度,减小微孔尺寸,提高纤维的均匀与致密性,并增加纤维的结晶度。经多级凝固浴牵伸后,纤维的纤度更细,纤维表面更加规整、光滑。纤维的内部微孔缺陷减少,尺寸变小,长径比增大,取向性提高。尤其是300℃热管牵伸使纤维内部的网络骨架结构消失,转变为沿纤维轴向排列的束状原纤结构,纤维组织更加致密;经第四级凝固浴后,纤维的结晶度,晶体取向度、晶粒尺寸都有大幅增加。
     采用5级水洗脱除纤维内残留的溶剂DMSO,但随着水洗时间增加,纤维发生轴向收缩、径向膨胀,纤维直径变大,紧密排列的大原纤板条束分离为细小的板条束,表面条纹变细,沟槽变浅;内部原纤逆分离,形成骨架网络结构,纤维内部微孔尺寸与数量都大幅增加,造成纤维的取向度、致密性变差;同时,高温水洗使纤维大分子链产生解取向,造成纤维的结晶度与取向度不断下降。
     致密化1圈时,纤维内溶胀的水分急剧挥发,纤维直径显著变细,同时纤维内部微孔的尺寸与数量大幅减小,微孔的长径比和沿纤维轴向的取向度都有提高,纤维变致密;致密化5圈时,微孔的尺寸与数量仍变化较大;但在致密化10圈时,微孔结构变化量较小,致密化效果减弱。延长致密化时间,纤维的结晶度、晶体取向度以及晶粒尺寸都不断增加。在固定牵伸倍率下,提高蒸汽压力,可进一步增强大分子链段的活动能力,表面原纤边缘更加圆滑。在蒸汽压为0.3MPa时,纤维直径大幅减小,微孔沿轴向被拉长,而短轴尺寸变小,微孔的长径比、取向度都增加;蒸汽压为0.4MPa时,纤维微孔结构参数仍有明显改善;蒸汽压为0.5MPa时,由于牵伸倍率的限制,微孔参数改善效果明显减弱。纤维的结晶度、取向度等参数,随蒸气压力的提高,一直稳定增加。
     对两种不同PAN原丝A0和B0进行了相同的预氧化热处理,并对纤维微缺陷及微晶结构的演变规律进行了对比研究。在预氧化过程中,A0原丝光滑的表面逐渐出现沿纤维轴向的条纹与沟槽,而B0原丝表面粗大的沟槽逐渐变浅。随着预氧化温度的提高,纤维韧性降低,断口形貌逐渐变为颗粒状结构,并在高温预氧化阶段出现皮芯结构,尤其是A10皮芯结构严重。A0与B0两纤维内部微孔变化趋势相同,微孔的径向平均尺寸先变大后变小,轴向平均尺寸先变小后变大,取向度先略有变差后又逐渐提高,微孔相对体积逐渐增加,但A10生成了更多、更大尺寸的微孔,微孔尺寸分布较宽。预氧化初期,纤维解取向造成结晶度降低,但晶粒尺寸略有长大;预氧化中期,晶区开始氧化、环化,纤维结晶度下降,晶粒尺寸减小:预氧化后期,氧化、环化反应剧烈,纤维结晶度、晶粒尺寸和取向度都明显减小,并生成新的结构,其中A10耐热梯形结构的转变不如B10完善。
     对A10与B10两预氧化纤维进行了500-1000℃的碳化实验,数据显示碳化纤维的微缺陷及微晶结构具有很强的遗传性。随碳化温度提高,纤维直径变细,纤维表面保留原特征,但表面质量提高;SAXS数据显示预氧化纤维内部微孔会遗传到碳化纤维中,并随温度升高尺寸增加;随着非碳元素的脱除,会产生更多微孔。与B10相比,皮芯结构严重的A10纤维微缺陷的尺寸与数量增幅较大,尺寸分布更宽,甚至出现了超过1μm的大孔缺陷;随碳化温度的升高,两纤维的石墨微晶逐渐完善,取向度提高,两纤维的微晶结构差异较小。A1000碳化纤维的强度为1.52Gpa,明显低于B1000碳化纤维的2.68GPa;拉伸强度的差异主要由大孔缺陷造成的,数量极少的大孔对纤维力学性能的影响远大于大量纳米级微孔。
     为了更好研究工艺参数与PAN纤维微结构的关联性,研制了一套同步辐射原位在线检测纤维微结构的系统,该系统可实现室温至900℃连续升温热处理,温度控制精度为±2℃;冷却循环水套保证了炉外壁的热辐射温度小于100℃;采用张力伺服控制系统,实现了走丝与张力的精确控制;气氛保护系统,满足了纤维碳化试验的要求。该系统所有参数的设置,都实现了远程电脑控制。借助同步辐射WAXS/SAXS大装置,可实时、原位在线跟踪纤维微结构的演化过程,为纤维微结构的原位在线表征提供了技术平台。
The mechanical properties of Polyacrylonitrile (PAN)-based carbon fiber are closely related with their microstructure. Microcrystalline structure is the foundation of carbon fiber strength, but the micro-defects, such as surface defects, and internal micro-voids has greatly reduced the strength of the fiber. Therefore, In the perspective of micro-defects, study and master the formation and evolution of the microstructure during carbon fiber production process, to make reasonable production process, as well as the preparation of high performance PAN-based carbon fiber, has significance and application value. In this paper, the testing technology, such as field emission scanning electron microscopy (FESEM), synchrotron radiation SAXS and WAXS were mainly employed, the formation and evolution of the fiber surface and cross section topography, micro-voids, and microcrystalline structure, etc. were studied, throughout the whole production process of PAN precursor molding, pre-oxidation, carbonation; And according to the different shapes of the micro-voids in PAN fibers at different stages, low orientation micro-voids structure model and hige orientation micro-voids structure model are made,Guinier theory and Ruland theory are adopted to process SAXS data,which effectively characterizing the variation of micro-voids structure.
     The differences in micro-defects and microcrystalline structure and its effects on the mechanical properties of Japan Toray high-strength carbon fiber T300, T700S, T800H and T1000G were systematically studied. The surface topography shows that the surface of T300and T800H carbon fibers have obvious stripes and grooves; the diameter of T300is the biggest and has the most surface defects; the diameter of T800H gets smaller, the stripes and grooves become regular and size reduces, surface defects also get fewer. The surface of T700S T1000G is smooth, but nanometer scale stripes and grooves can still be seen under high resolution; the diameter of T1000G is the smallest, which surface is smoother and has less defects. The datas of SAXS and WAXS show that the quantity and size distribution width of internal voids in T300are maximum, the degree of crystallinity is minimum, the micro-voids orientation and crystal orientation are the worst, so its mechanical properties is the lowest; With the improvement of fiber strength, the size of micro-voids is decreased, the aspect ratio becomes large, the orientation of micro-voids increases;at the same time crystallinity, grain size, crystal orientation also improves.By comprehensive comparison we found that the crystallite structure parameters of the four high-strength carbon fibers are within a certain scale, compared with the difference of micro-defects, the crystallite structure is not the key to impact the fiber mechanical properties;Thus, reducing micro-defects (surface defects and internal defects) is the most direct way to increase the strength of carbon fiber at present.
     The formation and evolution of the micro-defects and microcrystalline structure during primary coagulation bath, the gradient coagulation bath, washing bath, collapsing, drawing in vapor, etc. processes under quasi-dry jet wet spinning, are detailed studied, it has a guiding role to improve the PAN fiber structure and improve the performance of carbon fiber. We found that the nascent fibers have less surface defects, smaller micro-voids size, and moderate crystallinity, under a lower coagulation bath temperature; Raising the draft ratio, can significantly reduce the fiber denier, decrease the size of micro-voids, improve the uniformity and compactness of fibers, and improve the crystallinity. Under multi-step gradient coagulation bath drawing, the denier of fibers gets finer, surface becomes more regular and smoother, the number and size of micro-voids gradually reduce and become smaller, the aspect ratio increases, the orientation is also improved. Especially3YU drawing in hot air makes network skeleton structure of fibers inside disappear, and turn to a bundle fibrils aligned along the fiber axis, fibers get more dense; After4YU the crystallinity, crystal orientation degree and grain size of fibers have increased dramatically.
     With the washing time increasing, the fiber occurs radial expansion, axial shrinkage and the diameter becomes bigger, closely spaced fibril separated into small bundle, surface stripes get thinner, grooves become shallower. Part of the fibrils inversely separates and forms the skeleton network structure; the number and size of micro-voids inner fibers have substantially increased, the orientation and density of fiber get deteriorated; High temperature water washing makes molecular chains disoriented, crystallinity and orientation of the fibers decline.
     Being collapsed one circle, the water swelling in fibers sharply volatilize, the fiber diameters get significantly smaller, and at the same time, the number and size of micro-voids inner fibers greatly reduce, the aspect ratio and the orientation degree along the fiber axis of micro-voids also increases, all that made fibers more densificaion. Being collapsed five circles, the size and number of micro-voids are largely reduced; but at the tenth circle the effect of collapsing weakened. With increasing collapsing time, Crystallinity, grain size and crystal orientation of the fibers increase steadily.
     Under a fixed drawing ratio, improving vapor pressure, activity of macromolecular chain segments can be further enhanced, fibrils edges become smoother. As the vapor pressure reachs0.3MPa, the fiber diameter substantially reduces, the major axis of micro-voids is elongated, the minor axis dimension is greatly reduced, the aspect ratio and the degree of orientation are increased; the vapor pressure being up to0.4Mpa, micro-voids parameters can still be improved in a certain degree; but the effect of improving the pore parameters by vapor pressure of0.5MPa, because of the limitation of drawing ratio, significantly reduced. The microcrystal structure parameters of fibers such as crystallinity, orientation degree, etc., with the vapor pressure increasing, grow steadily.
     Under the same pre-oxidation process, the evolution of micro-defects and microcrystal structure of two different PAN fibers AO and BO are systematically studied. With the pre-oxidation process carrying out, shallow grooves along the fiber axis gradually emerge in the smooth surface of AO fiber, while the grooves in the surface of BO fiber become shallow gradually. With the rising of pre-oxidation temperature, fiber toughness gets lower, fracture morphology gradually becomes granular structure and skin-core structure in fibers began to appear in the stage of high-temperature pre-oxidation, especially the skin-core structure in A10fibers is more serious. During the pre-oxidation process, the Variation of micro-voids in AO is similar to BO fiber, the radial average size of micro-voids becomes larger firstly and then smaller, axial average size increases gradually, orientation degree along the fiber axis gradually improves after a first slight deterioration, the relative volume of micro-voids increases gradually, A10fiber generates more and larger micro-voids than B10fiber. In the initial pre-oxidation stage, the deterioration of macromolecular chain orientation reduces crystallinity, but grain size grows slightly;In the middle of the pre-oxidation, the crystalline region starts cyclization reaction, Crystallinity and grain size begin to decline; In the late pre-oxidation, cyclization reaction and oxidation reaction becomes severe, crystallinity, grain size and orientation degree of fibers are obviously reduced, and a new structure generates; while the Heat resistant trapezoidal structure in A10is less perfect than that in B10fiber.
     A10and B10pre-oxidation fiber are carbonized at500-1000℃, the test data show that the micro-defects and microcrystal structure of pre-oxidation fibers have a strong hereditary during carbonization.With the increasing of carbonization temperature, the fibril becomes finer and more dense, fiber diameter gets smaller, and surface quality of fibers improves, but the original surface characteristics still remains. SAXS data shows that the micro-voids inner fibers are genetic in the process of carbonization and size increases with temperature rising; More micro-voids are formed with the removal of non-carbon elements. Compared with the B10fibers, the size and the number increment of micro-voids inner A10fiber with severe skin-core structure is larger, the size distribution is wider, A1000fiber even forms big voids more than1μm and other defects; With the temperature increasing, graphite microcrystalline of fiber A10and fiber B10gradually get perfect, the orientation degree increasing, the difference of microcrystalline structure parameter between A1000fiber and B1000fiber is small. A1000fiber strength is1.52Gpa, significantly lower than2.68GPa of B1000fiber; The difference in tensile strength mainly caused by macro-voids in A1000fiber, a few macro-voids have much larger effect on the mechanical properties of the fiber than a large number of nano-scale micro-voids.
     An in-situ online system that detecting microstructure of fibers on synchrotron radiation facility is developed. The system using remote computer control, by the means of synchrotron radiation SAXS/WAXS, the relationships between process and microstructure of fibers can be characterized with the range of900℃. By debugging and testing, the system can test the structure changes of carbon fiber, aramid fiber and uhmwpe fiber in-situ online under different temperture, different strain or different atmosphere. According to the requirements of experiment, the functions such as temperature, drawing tension, fiber feeding speed and protective atmosphere can be set. Given the advantages of the synchrotron radiation, the system provides conditions characterizing the microstructureonline of pan fibers in-situ online.
引文
[1]罗益锋.世纪之交的世界碳纤维展望.新型炭材料,1997,12(4):5-12.
    [2]赵稼祥.碳纤维的现状与新发展.材料工程,1997,(12):3-6.
    [3]贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    [4]贺福.碳纤维及石墨纤维.北京:化学工业出版社,2010.
    [5]王海英.碳纤维的发展前景与市场分析.高科技纤维与应用,2007,32(4):23-26.
    [6]刘国昌,徐淑琼.聚丙烯腈基碳纤维及其应用.机械制造与自动化,2004,33(4):41-43.
    [7]张家杰.国内外碳纤维生产现状及发展趋势.化工技术经济,2005,23(4):12-19.
    [8]赵稼祥.2002年世界碳纤维前景.高科技纤维与应用,2002,27(6):6-9.
    [9]Walsh PJ. Carbon fibers in:ASM Handbook. ASM International, Ohio, USA, 2001,21:35-39.
    [10]Chand S. Review carbon fibers for composites. Journal of Material Science, 2000,35:1303-1313.
    [11]邹汉涛,孟家光.高性能纤维的性能及其应用.纺织科学研究,2001,12(4):23-31.
    [12]曾凡龙,潘鼎.粘胶活性碳纤维预浸剂的热分解作用及效能评选.材料科学 与工程学报,2004,22(5):688-692.
    [13]珊峦.高性能纤维的特性与发展.上海丝绸,2009,4:6-10.
    [14]Sudo K, Shimizu K. New carbon fiber from lignin. Journal of Applied Polymer Science,1992,44:127-134.
    [15]王德诚.PAN基及沥青基碳纤维生产现状与展望.合成纤维工业,1998,21(2):45-48.
    [16]贺福,杨永岗.创新是发展我国碳纤维工业的必由之路.材料导报,2000,14(11):3-4.
    [17]杨秀珍,李青山,卢东.聚丙烯腈基碳纤维研究进展.现代纺织技术,2007,(1):45-47.
    [18]吴人洁.我国PAN基碳纤维发展的对策.材料导报,2000,14(11):1-2.
    [19]时锋.国内外PAN基碳纤维的研究进展.化工科技,2012,20(5):85-88.
    [20]刘清玲,郑立群,程佳.世界PAN基碳纤维市场分析及发展建议.化工科技市场,2007,30(10):1-4.
    [21]罗益锋.我国聚丙烯腈基碳纤维发展的回顾与几点建议.材料导报,2000,14(4):1-3.
    [22]熊佳,黄英,王琦洁.高性能纤维的发展和应用.玻璃钢/复合材料,2004,5:49-52.
    [23]Datye KV. Spinning of PAN-fiber Part Ⅱ Dry spinning. Synthetic Fibers,1995,2: 7-11.
    [24]Datye KV. Spinning of PAN-fiber Part Ⅲ Wet spinning. Synthetic Fibers,1996, 4:11-19.
    [25]Bajaj P, Sreekumar T V, Sen K. Structure development during dry-jet-wet spinning of acrylonitrile/vinyl acids and acrylonitrile/methyl acrylate copolymers. Journal of applied polymer science,2002,86(3):773-787.
    [26]Datye KV. Acrylic fibers by melt spinning process. Synthetic fibers,1994,3: 27-31.
    [27]Edie DD, Fox NK, Barnett BC. Melt-spun non-circular carbon fibers. Carbon, 1986,24:477-482.
    [28]Tan L, Wan A, Pan D. Pregelled gel spinning of polyacrylonitrile precursor fiber. Materials Letters,2011,65(5):887-890.
    [29]Ji BH, Wang JH, Wang CG, Wang YX. Study on the formation process of PAN as-spun fiber. Journal of applied polymer science,2008,108:328-333.
    [30]Chen J, Ge HY, Dong XG, Wang CG. The formation of polyacrylonitrile nascent fibers in wet-spinning process. Journal of applied polymer science,2007,106: 692-696.
    [31]Wang Q, Wang YX, Zhu B, Bai YJ. The effect of coagulation and stretch on the structure and properties of PAN precursor by wet Spinning. Synthetic fiber in China,2005,34(5):24-28.
    [32]葛曷一,柳华实,陈娟.PAN原丝至碳纤维缺陷的形成与遗传性.合成纤维,2009(2):21-25.
    [33]Wangxi Z, Jie L, Gang W. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon,2003,41(14): 2805-2812.
    [34]史晓健.干湿法工艺制备的PAN原丝结构特征及预氧化规律研究.硕士论文,北京化工大学,2013.
    [35]刘川,刘杰,王培华.化学改性聚丙烯腈原丝热应力的研究.北京化工大学学报,1999,26(4):30-32.
    [36]吕春祥,吴刚平,吕永根等.聚丙烯腈原丝氧化工艺的研究.新型炭材料,2003,18(3):186-190.
    [37]张利珍,吕春祥,吕永根.聚丙烯腈纤维在预氧化过程中的结构和热性能转变.新型炭材料,2005,20(2):144-150.
    [38]刘杰,李佳,王雷等.预氧化温度对聚丙烯腈纤维皮芯结构形成的影响.北京化工大学学报,2006,33(1):41-45.
    [39]岳奇伟,吕永根,徐敏端,等.聚丙烯腈纤维预氧化工艺条件对孔隙结构的影响.合成纤维,2010,2:18-20.
    [40]华中,杨玉蓉,袁媛等.聚丙烯腈纤维预氧化过程中微观结构的演变.材料工程,2009,9:61-65.
    [41]王志英,杨玉蓉,华中.小角X射线散射研究聚丙烯腈预氧丝的微孔结构.吉林师范大学学报(自然科学版),2009,4:029.
    [42]侯永平,孙同庆,王浩静,等.预氧化时间和温度对聚丙烯腈纤维预氧化的影响.化工新型材料,2009,37(12):61-63.
    [43]刘晖,李常清,孔令强,等.PAN预氧化纤维结构与热处理温度的关系.合成纤维工业,2009(5):5-8..
    [44]于美杰.聚丙烯腈纤维预氧化过程中的热行为与结构演变.博十学位论文,山东大学,2007.
    [45]Yu MJ, Wang CG, Bai YJ. Evolution of tension during the thermal stabilization of polyacrylonitrile fibers under different parameters. Journal of Applied Polymer Science,2006,102:5500-5506.
    [46]王平华,刘杰,李仍元.聚丙烯腈原丝连续预氧化过程中纤维张力的变化.合成纤维工业,1991,14(5):32-35.
    [47]岳中仁.炭化过程中预氧化PAN纤维的热分析[J].炭素技术,1990,2:1-3.
    [48]葛曷一,陈娟,柳华实.聚丙烯腈预氧化纤维碳化中的结构演变与碳纤维微观结构.化工学报,2009,60(1):238-243.
    [49]童元建,王统帅,王小谦等.PAN基碳纤维制备过程中的组成演变.化工新型材料,2011,39(4):97-99.
    [50]王统帅.低温碳化过程中PAN纤维结构与性能的研究.硕十论文,北京化工大学,2011.
    [51]马骁,白瑞成,任慕苏等.聚丙烯腈(PAN)基纤维中微孔的2维小角X射线散射.材料科学与工程学报,2010(2):167-170.
    [52]井敏,谭婷婷,王成国等.PAN基碳纤维的微观结构与力学性能相关性分析.航空材料学报,2013,33(1):78-85.
    [53]陈晓.高性能聚丙烯腈基碳纤维微观结构和形态结构研究.硕十论文,东华大学,2010.
    [54]Perret R, Ruland W. The microstructure of PAN-base carbon fibres. Journal of Applied Crystallography,1970,3(6):525-532.
    [55]Ruland W, Tompa H. The effect of preferred orientation on the intensity distribution of (hk) interferences. Acta Crystallographica Section A:Crystal Physics, Diffraction, Theoretical and General Crystallography,1968,24(1): 93-99
    [56]Watt W., Johnson W. Proc. third Conf. Ind. Carbon and Graphite. London: Society of Chemical Industry,1970.
    [57]Diefendorf R J, Tokarsky E W. The Relationship of Structure to Properties in Graphite Fibers. Part 1. Rensselaer Polytechnic Inst Troy Ny Materials Div, 1971.
    [58]Diefendorf R J, Tokarsky E W. High-Performance Carbon Fibers. Polymer Engineering and Science,1975,15:150-159.
    [59]Bennett S C, Johnson D J. Electron-microscope studies of structural heterogeneity in PAN-based carbon fibres. Carbon,1979,17(1):25-39.
    [60]Johnson D J. Structure-property relationships in carbon fibres. Journal of Physics D:Applied Physics,1987,20(3):286.
    [61]Johnson D J, Crawford D. Defocusing phase contrast effects in electron microscopy. Journal of Microscopy,1973,98(3):313-324.
    [62]Toray's Strategy for Carbon Fiber Composite Materials. Website: http://www.toray.com/ir/pdf/lib/lib_a268.pdf#page=57.
    [63]Williams W S, Steffens D A, Bacon R. Bending behavior and tensile strength of carbon fibers. Journal of Applied Physics,1970,41(12):4893-4901.
    [64]Burger C, Hsiao B S, Chu B. Preferred orientation in polymer fiber scattering. Journal of Macromolecular Science, Part C:Polymer Reviews,2010,50(1): 91-111.
    [65]Garcia-Gutierrez M C, Nogales A, Gomez M. Applications of synchrotron light to scattering and diffraction in materials and life sciences. Germany:Springer, 2009.
    [66]Sandeman I, Keller A. Crystallinity studies of polyamides by infrared, specific volume and X-ray methods. Journal of polymer science,1956,19(93):401-435.
    [67]Hyndman D, Origlio G F. Nuclear magnetic resonance in polyethylene and polypropylene fibers. Journal of Polymer Science,1959,39(135):556-558.
    [68]Sakurai J J. Eight ways of determining the p-meson coupling constant. Physical Review Letters,1966,17(19):1021-1022.
    [69]Lindner W L. Characterization of the crystalline, intermediate and amorphous phase in poly (ethylene terephthalate) fibres by X-ray diffraction. Polymer,1973, 14(1):9-15.
    [70]Flory P J, Yoon D Y, Dill K A. The interphase in lamellar semicrystalline polymers. Macromolecules,1984,17(4):862-868
    [71]殷敬华,莫志深.现代高分子物理学.北京:科学出版社,2001.
    [72]Yoon D Y, Flory P J. Chain packing at polymer interfaces. Macromolecules, 1984,17(4):868-871.
    [73]俞金林,晏雄.纤维内部孔隙形态的表征.天津纺织科技,2009,2:4-8.
    [74]李国希.活性炭纤维微孔结构分析方法.新型炭材料,2001,16(1):76-79.
    [75]赵志根,蒋新生.谈煤的孔隙大小分类.标准化报道,2000,21(5):23-24.
    [76]Perret R, Ruland W. Single and multiple X-ray small-angle scattering of carbon fibres. Journal of Applied Crystallography,1969,2(5):209-218.
    [77]Gupta A, Harrison I R, Lahijani J. Small-angle X-ray scattering in carbon fibers. Journal of applied crystallography,1994,27(4):627-636.
    [78]Cohaut N, Guet J M, Diduszko R. SAXS investigations on the porosity of pitch based carbon fibres. Carbon,1996,34(5):674-676.
    [79]Glatter, Otto, and Otto Kratky, eds. Small angle X-ray scattering. Vol.102. London:Academic press,1982.
    [80]Aerts J. Small-angle X-ray scattering of aramid fibre. Journal of Applied Crystallography,1991,24(5):709-711.
    [81]Mark H F. Physik und Chemie der Cellulose. Berlin:Springer,1932.
    [82]Hendricks R W. The role of Soller slits in small-angle scattering collimation systems. Journal of Applied Crystallography,1972,5(4):302-304.
    [83]Warren, Bertram E. X-ray Diffraction. Dover Publications. com,1969.
    [84]Glatter, Otto, and Otto Kratky. Small angle X-ray scattering. London:Academic press,1982.
    [85]Guinier A, Fournet G, Yudowitch K L. Small-angle scattering of X-rays. New York:Wiley,1955.
    [86]Hosemann R, Bagchi S N. Direct analysis of diffraction by matter. Amsterdam: North-Holland Publishing Company,1962.
    [87]Debye P J W. Polar molecules. New York:Dover,1929.
    [88]Porod G, Glatter O, Kratky O. Small angle X-ray scattering. Academic, London, 1982:17-51.
    [89]胡恒亮,穆祥祺.X射线衍射技术.北京:纺织工业出版社,1990.
    [90]朱育平,小角X射线散射-理论、测试、计算及应用.北京:化学工业出版社,2008.
    [91]Effler L J, Fellers J F. Structural orientation functions for anisotropic small-angle scattering, Journal of Physics D:Applied Physics,1992,25(1):74.
    [92]Lozano-Castell D, Raymundo-Pinero E, Cazorla-Amors D, et al. Characterization of pore distribution in activated carbon fibers by microbeam small angle X-ray scattering. Carbon,2002,40(14):2727-2735.
    [93]W. Wang, X. Chen, etal. In-situ SAXS study on size changes of platinum nanoparticles with temperature. The European Physical Journal B,2008,65:57-64.
    [94]Thunemann A F, Ruland W. Microvoids in polyacrylonitrile fibers:a small-angle X-ray scattering study. Macromolecules,2000,33(5):1848-1852.
    [95]Ruland W. X-Ray Studies on Preferred Orientation in Carbon Fibers. Journal of Applied Physics,2004,38(9):3585-3589.
    [96]Ruland W. Carbon fibers. Advanced Materials,1990,2(11):528-536.
    [97]徐仲榆,刘洪波,张红波等.PAN系石墨纤维的拉伸断裂机制.炭素技术,1993,2:2-4.
    [98]Mandelbrot B B. The fractal geometry of nature. San Francisco:Macmillan, 1983.
    [99]Hausdorff J M, Mitchell S L, Firtion R, et al. Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington's disease. Journal of applied physiology,1997,82(1):262-269.
    [100]Goldberger A L, Amaral L A N, Hausdorff J M, et al. Fractal dynamics in
    [101]physiology:alterations with disease and aging. Proceedings of the National Academy of Sciences of the United States of America,2002,99(1):2466-2472.
    [102]Bale H D, Schmidt P W. Small-angle X-ray-scattering investigation of submicroscopic porosity with fractal properties. Physical Review Letters,1984, 53:596-599.
    [103]李浩虎,余笑寒,何建华.上海光源介绍.现代物理知识,2010(003):14-19.
    [104]许璐,柏莲桂,颜廷姿等.同步辐射小角和广角X射线散射在高分子材料研究中的应用.高分子通报,2010,10:1-26.
    [105]陆燕玲,文闻,罗仕海等.上海光源在材料与能源科学中的应用.现代物理知识,2010,22(3):36-41.
    [106]李秀宏,黄胜,王玉柱等.上海光源在生命科学和高分子材料中的应用.现代物理知识,2010(003):20-28.
    [1]周普查,吕春祥,李开喜干燥法制备聚丙烯腈初生纤维样品的研究,化工新型材料2009,37(12):49-51.
    [2]W. Wang, X. Chen, etal. In-situ SAXS study on size changes of platinum nanoparticles with temperature. The European Physical Journal B,2008,65:57-64.
    [3]M. H. J ellinek, H. Solomon, I. Fankuchen. Measurement and analysis of small angle X-ray scattering. Industrial & Engineering Chemistry Analytical Edition. 1946,18(3):172-175.
    [4]Wilchinsky Z W. Measurement of orientation in polypropylene film. Journal of Applied Physics,2004,31(11):1969-1972.
    [5]莫志深,张宏放.晶态聚合物结构和X射线衍射.北京:科学出版社,2003.
    [6]殷敬华,莫志深.现代高分子物理学.北京:科学出版社,2008.
    [7]Hinrichsen G. Structural changes of drawn polyacrylonitrile during annealing. Journal of Polymer Science, Part C, Polymer Symposia,1972,38:303-314.
    [1]贺福.缺陷是碳纤维的致命伤.高科技纤维与应用,2010,35(4):25-31.
    [2]贺福,王润娥.缺陷对碳纤维强度的影响.航空材料,1989,9(1):27-30.
    [3]Johnson D J. Structure-property relationships in carbon fibres. Journal of Physics D:Applied Physics,1987,20(3):286-291.
    [4]Bennett S C, Johnson D J, Johnson W. Strength-structure relationships in PAN-based carbon fibres. Journal of Materials Science,1983,18(11):3337-3347.
    [5]张敏,朱波,王成国,等.用SEM研究碳纤维的表面及断口形貌.功能材料,2010,10(41):1731-1732.
    [6]于美杰,王启芬,胡秀颖.原纤结构在聚丙烯腈原丝-预氧丝-碳纤维中的遗传与演变.第十四届中国科协年会第11分会场:低成本,高性能复合材料发展论坛论文集,2012.
    [7]郭慧玲,仲伟虹,张佐光.几种碳纤维的表面状态表征与分析.复合材料学报,2001,18(3):38-42.
    [8]Guigon M, Oberlin A, Desarmot G. Microtexture and structure of some high tensile strength, PAN-base carbon fibres. Fibre Science and Technology,1984, 20(1):55-72.
    [9]Gupta A, Harrison I R, Lahijani J. Small-angle X-ray scattering in carbon fibers. Journal of applied crystallography,1994,27(4):627-636.
    [10]Thunemann A F, Ruland W. Microvoids in polyacrylonitrile fibers:a small-angle X-ray scattering study. Macromolecules,2000,33(5):1848-1852.
    [11]Liu X D, Ruland W. X-ray studies on the structure of polyacrylonitrile fibers. Macromolecules,1993,26(12):3030-3036.
    [12]Jiang H, Wu C, Zhang A, et al. Structural characteristics of polyacrylonitrile (PAN) fibers during oxidative stabilization. Composites science and technology,1987, 29(1):33-44.
    [13]贺福.研制高性能碳纤维已是当务之急.高技术纤维与应用,2010(2):14-18.
    [14]Toray corporation. Torayca high-performance carbon fiber. Website: http://www.torayca.cn/download/pdf/torayca.pdf.
    [15]贺福.碳纤维及其应用技术.北京:化学工业出版社,2004.
    [16]王茂章,贺福.碳纤维的制造、性质及应用.北京:科学出版社,1984.
    [17]井敏,谭婷婷,王成国,冯志海,杨云华.PAN基碳纤维的微观结构与力学性能相关性分析.航空材料学报,2013,33(1):78-85.
    [18]Diefendorf R J, Tokarsky E. High-performance carbon fibers[J]. Polymer Engineering & Science,1975,15(3):150-159.
    [19]徐海萍,孙彦平,陈新谋.PAN基预氧化纤维表面超微结构的STM研究.新型炭材料,2005,20(4):312-316.
    [20]胡恒亮,穆祥祺.X射线衍射技术.北京:纺织工业出版社,1990.
    [1]马向军,张裕卿.提高聚丙烯腈基碳纤维原丝质量的研究进展.合成纤维,2005,34(11):28-32.
    [2]徐梁华.突破原丝瓶颈效应加速我国PAN炭纤维技术的发展.材料导报,2000,14(11):14-15.
    [3]贺福.炭纤维及其应用技术.北京:化学工业出版社,2004.
    [4]贺福,杨永岗.突破原丝“瓶颈”是碳纤维产业化的必备条件.高科技纤维与应用,2001,26(6):1-5.
    [5]Vickers P E, Watts J F, Perruchot C, et al. The surface chemistry and acid-base properties of a PAN-based carbon fibre. Carbon,2000,38(5):675-689.
    [6]李英儒,王淑芳.PAN基原丝质量与成丝途径对碳纤维力学性能影响.新型炭材料,1994(2):4-10.
    [7]Pamula E, Rouxhet P G. Bulk and surface chemical functionalities of type Ⅲ PAN-based carbon fibres. Carbon,2003,41(10):1905-15.
    [8]Johnson D J. Structure-property relationships in carbon fibres. Journal of Physics D:Applied Physics,1987,20(3):286.
    [9]Oya N, Johnson D J. Longitudinal compressive behavior and microstructure of PAN-based carbon fibres. Carbon,2001,39(5):635-645.
    [10]Sugimoto Y, Shioya M, Yamamoto K, et al. Relationship between axial compression strength and longitudinal microvoid size for PAN-based carbon fibers. Carbon,2012,50(8):2860-2869.
    [11]Paiva M C, Bernardo C A, Nardin M. Mechanical, surface and interfacial characterization of pitch and PAN-based carbon fibres. Carbon,2000,38(9): 1323-1337.
    [12]A T Serkov, L A Zlatoustova. Strength of a Carbon Fibre as a Function of the Physic mechanical Properties of the Initial Polyacrylonitrile Fibre. Fibre Chemistry.2000,32(4):279-281.
    [13]谢奔.二步法制备聚丙烯腈基碳纤维原丝技术研究.博士学位论文,山东大学,2013.
    [14]葛曷一,柳华实,陈娟.PAN原丝至碳纤维缺陷的形成与遗传性.合成纤维,2009,38(2):21-23.
    [15]董兴广,王成国,曹伟伟等.凝固浴条件对PAN纤维结构及性能的影响.高分子材料科学与工程,2007,23(2):170-173.
    [16]葛曷一.聚丙烯腈原丝与碳纤维结构相关性研究.博士学位论文,山东大学,2007.
    [17]董瑞蛟,赵炯心,张幼维,等.成形条件对PAN原丝微孔结构及热性能的影响.合成纤维工业,2009(3):24-26.
    [18]董兴广.聚丙烯腈纤维纺丝成形机理及工艺相关性研究.博士学文论文,山东大学,2006.
    [19]韩曙鹏,徐华,曹维宇,姚红.X射线衍射法研究聚丙烯腈原丝的晶态结构.北京化工大学学报,2005,32(2):63-67.
    [20]唐春红,吴彤,刘杰,等.聚丙烯腈原丝微结构的X射线衍射分析.北京化工大学学报,2004,31(3):55-58.
    [21]李常清,蓝雁,徐樑华.凝固条件对PAN初生纤维微结构的影响.合成纤维工业,2008,31(4):21-25.
    [22]林凤崎,徐樑华,李常清等.凝固条件对PAN初生纤维微孔结构形态的影响.合成纤维工业,2006,29(1):16-19.
    [23]张均,李常清,孔令强等.凝固与拉伸条件对PAN纤维结构形态的影响.合成纤维工业,2007,30(1):21-26.
    [24]王成国,朱波.制约我国炭纤维工业发展的原因分析.山东大学学报(工学版),2002,32(6):521-525.
    [25]王启芬.聚丙烯腈纤维结构及其形成过程的研究.博士学位论文,山东大学,2010.
    [1]王茂章,贺福.碳纤维的制造性质及其应用.北京:科学出版社.1984:23-40.
    [2]Gupta A K, Maiti A K. Effect of heat treatment on the structure and mechanical properties of polyacrylonitrile fibers. Journal of Applied Polymer Science,1982, 27(7):2409-2416.
    [3]Li X, Luo Q, Zhu Y, et al. Evolution of the composition and structure of PAN carbon fiber during preoxidation. Science in China Series B:Chemistry,2001, 44(2):196-202.
    [4]Bahl O P, Manocha L M. Characterization of oxidised pan fibres. Carbon,1974, 12(4):417-423.
    [5]Ji M, Wang C, Bai Y, et al. Structural evolution of polyacrylonitrile precursor fibers during preoxidation and carbonization. Polymer Bulletin,2007,59(4): 527-536.
    [6]Takahagi T, Shimada I, Fukuhara M, et al. XPS studies on the chemical structure of the stabilized polyacrylonitrile fiber in the carbon fiber production process. Journal of Polymer Science Part A:Polymer Chemistry,1986,24(11):3101-3107.
    [7]Usami T, Itoh T, Ohtani H, et al. Structural study of polyacrylonitrile fibers during oxidative thermal degradation by pyrolysis-gas chromatography, solid-state carbon-13 NMR, and Fourier-transform infrared spectroscopy. Macromolecules,1990,23(9):2460-2465.
    [8]Ko T H, Ting H Y, Lin C H. Thermal stabilization of polyacrylonitrile fibers. Journal of applied polymer science,1988,35(3):631-640.
    [9]Liu X D, Ruland W. X-ray studies on the structure of polyacrylonitrile fibers. Macromolecules,1993,26(12):3030-3036.
    [10]Ko T H, Ting H Y, Lin C H, et al. The microstructure of stabilized fibers. Journal of applied polymer science,1988,35(4):863-874.
    [11]Thunemann A F, Ruland W. Microvoids in polyacrylonitrile fibers:a small-angle X-ray scattering study. Macromolecules,2000,33(5):1848-1852.
    [12]贺福.碳纤维及石墨纤维.北京:化学工业出版社,2010.
    [13]Kaburagi M, Bin Y, Zhu D, Xu C, Matsuo M. Small angle X-ray scattering from voids within fibers during the stabilization and carbonization stages. Carbon, 2003,41(5):915-926.
    [14]徐跃,李向山.碳纤维中纳米微孔的X射线小角散射分析.理化检验-物理分册,2003,39(1):28-31.
    [15]Johnson DJ, Tyson CN. Low-angle X-ray diffraction and physical properties of carbon fibres. Journal of Physics D:Applied Physics,1970,3(4):527-534.
    [16]李登华,吴刚平,吕春祥等.聚丙烯腈基碳纤维及其原丝中的微孔尺寸分布.分析测试学报,2010,29(4):321-326.
    [17]朱育平.小角X射线散射——理论、测试、计算及应用.北京:化学工业出版社,2008.
    [18]殷敬华,莫志深.现代高分子物理学.北京:科学出版社,2001.
    [19]胡恒亮,穆祥祺.X射线衍射技术.北京:纺织工业出版社,1990.
    [1]Edie D. The effect of processing on the structure and properties of carbon fibers. Carbon,1998,36(4):345-362.
    [2]Diefendorf R J, Tokarsky E. High-performance carbon fibers. Polymer Engineering & Science,1975,15(3):150-159.
    [3]Mittal J, Konno H, Inagaki M, Bahl OP. Denitrogenation behavior and tensile strength increase during carbonization of stabilized PAN fibers. Carbon,1998, 36(9):1327-1330.
    [4]Wangxi Z, Jie L, Gang W. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon,2003,41(14):2805-2812.
    [5]Chand S. Review carbon fibers for composites. Journal of Materials Science,2000, 35(6):1303-1313.
    [6]Ruland W. Carbon fibers. Advanced Materials,1990,2(11):528-536.
    [7]Thunemann A F, Ruland W. Microvoids in polyacrylonitrile fibers:a small-angle X-ray scattering study. Macromolecules,2000,33(5):1848-1852.
    [8]Ko T, Day T, Perng J, Lin M. The characterization of PAN-based carbon fibers developed by two-stage continuous carbonization. Carbon,1993,31(5):765-771.
    [9]Ko T, Day T, Lin M. The Effect of Precarbonization on Mechanical Properties of Final Polyacrylonitrile-based carbon fibers. Journal of Materials Science Letter, 1993,12(3):343-345.
    [10]Ko T. The influence of pyrolysis on physical properties and microstrucuture of modified PAN fiber during carbonization. Journal of Applied Polymer Science, 1991,43:589-600.
    [11]Warner S B, Peebles Jr L H, Uhlmann D R. Oxidative stabilization of acrylic fibres. Journal of Materials Science,1979,14(3):556-564.
    [12]Craig J P, Knudsen J P, Holland V F. Characterization of acrylic fiber structure. Textile Research Journal,1962,32(6):435-448.
    [13]Guigon M, Oberlin A, Desarmot G. Microtexture and structure of some high tensile strength, PAN-base carbon fibres. Fibre Science and Technology,1984, 20(1):55-72.
    [14]Guigon M, Oberlin A, Desarmot G. Microtexture and structure of some high tensile strength, PAN-base carbon fibres. Fibre Science and Technology,1984, 20(1):55-72.
    [15]Gupta A, Harrison I R, Lahijani J. Small-angle X-ray scattering in carbon fibers. Journal of applied crystallography,1994,27(4):627-636.
    [16]Kaburagi M, Bin Y, Zhu D, et al. Small angle X-ray scattering from voids within fibers during the stabilization and carbonization stages. Carbon,2003,41(5): 915-926.
    [17]Thunemann A F, Ruland W. Microvoids in polyacrylonitrile fibers:a small-angle X-ray scattering study. Macromolecules,2000,33(5):1848-1852.
    [18]胡恒亮,穆祥祺.x射线衍射技术.北京:纺织工业出版社,1990.
    [19]贺福.碳纤维及石墨纤维.北京:化学工业出版社,2010.
    [20]林雪,王成国,于美杰等.500-1350℃碳化纤维的结构缺陷和力学性能.材料研究学报,2013,27(5):483-488.
    [1]朱育平.小角x射线散射—理论、测试、计算及应用.北京:化学工业出版社,2008.
    [2]胡恒亮,穆祥祺.X射线衍射技术.北京:纺织工业出版社,1988.
    [3]Andreas F. ThuInemann*W. Ruland.Microvoids in Polyacrylonitrile Fibers:A Small-Angle X-ray Scattering Study. Macromolecules,2000,33:1848-1852.
    [4]Ruland W. Apparent fractal dimensions obtained from small-angle scattering of carbon materials.Carbon,2001,39 (2):323-324.
    [5]马骁,白瑞成,任慕苏.聚丙烯腈(PAN)基纤维中微孔的2维小角X射线散射材.材料科学与工程学报,2010,28(2):167-170.
    [6]李登华,吴刚平,吕春祥等.聚丙烯腈基炭纤维中微孔的演变规律.新型炭材料,2010,25(1):41-47.
    [7]Lozano-Castello D, Macia-Agullo J A, Cazorla-Amoros D, et al. Isotropic and anisotropic microporosity development upon chemical activation of carbon fibers, revealed by microbeam small-angle X-ray scattering. Carbon,2006,44(7): 1121-1129.
    [8]Fukuyama K, Kasahara Y, Kasahara N, et al. Small-angle X-ray scattering study of the pore structure of carbon fibers prepared from a polymer blend of phenolic resin and polystyrene. Carbon,2001,39(2):287-290.
    [9]马礼敦,杨福家.同步辐射概论.上海:复旦大学出版社,2001:73-108.
    [10]王琴,梁晓怿,吕春祥等,同步辐射小角X射线散射研究PAN原丝制备过程中孔结构的演变.高分子材料科学与工程,2009,25(1):126-127.
    [11]杨传铮,程国峰,黄月鸿.同步辐射的基本知识第三讲同步辐射中的散射术及其应用(一).理化检验-物理分册,2008:44(11):656-663.
    [12]Riekel C. Applications of micro-SAXS/WAXS to study polymer fiber. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2003,199:106-111.
    [13]Ran S, Zong X, Fang D, etal. Studies of the mesophase development in polymeric fibers during deformation by synchrotron SAXS/WAXD. Journal of materials science,2001,36(13):3071-3077.
    [14]S. Ran, D. Fang, X. Zong, B.S. Hsiao, B. Chu, P.M. Cunniff.Structural changes during deformation of Kevlar fibers via on-linesynchrotron SAXS/WAXD techniques. Polymer,2001,42:1601-1612.
    [15]华中,杨玉蓉,袁媛等.聚丙烯腈纤维预氧化过程中微观结构的演变.材料工 程,200,9:61-65.
    [16]梁颖琳,岳奇伟,秦显营等.X射线小角散射研究碳纤维原丝预氧化过程中的微孔结构.光散射学报,2009,21(4):341-344.
    [17]岳奇伟,吕永根,徐敏端等.聚丙烯腈纤维预氧化工艺条件对孔隙结构的影响.合成纤维,2010,2:18-20.
    [18]Wang W, Murthy N S, Chae H G, etal. Small-angle X-ray scattering investigation of carbon nanotube-reinforced polyacrylonitrile fibers during deformation. Journal of Polymer Science Part B:Polymer Physics,2009,47(23): 2394-2409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700