通用级聚丙烯腈基碳纤维用原丝性能升级的考察
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提升国产通用碳纤维用PAN原丝的力学性能,原丝需要经过再次沸水牵伸、再次水洗及干燥致密化、再次高温高压蒸汽牵伸等工艺处理。实验结果表明:
     1、在实验室设备条件下,沸水牵伸、干燥致密化和高温高压蒸汽牵伸工艺分别最高能把原丝强度提高31.25%、35.6%和39%。这说明国产通用碳纤维用原丝的质量有提升的空间,可以通过再次原丝工艺流程,提高其质量。
     2、沸水牵伸实验中,随拉伸比的增大,纤维断裂伸长率及直径有下降的趋势,纤维的强度及结晶度先升高后降低,其转折点在12%-14%之间,之后会过牵。停留时间设定在80s比较合适,拉伸比11.59%时,纤维强度提高了31.25%,结晶度为70.08%,此时纤维直径为10.982μm,断裂伸长率为9.4%。
     3、水洗因使丝束增韧,与致密化起到相反的作用,不利于原丝力学性能的升级;不同温度下,随致密化时间的增加,丝束强度先增大后减小,55s时丝束强度提高最大;确定致密化时间55s时,在140-150℃温梯下丝束强度最大,约提升初始原丝的35.6%。增大温度区间,纤维的结晶度及强度都较高,并且结晶尺寸增加不多,有利于生产优质原丝。
     4、蒸汽介质下纤维承受的拉伸比要比干热牵伸时大,这是因为因水分子的增塑作用。因水分子的增塑作用,135℃和150℃时蒸汽牵伸的纤维强度大于干热牵伸时的强度。蒸汽介质中,135℃,15%拉伸比时,得到的原丝综合性能最好,强度为1.023GPa,是初始原丝强度的1.39倍,直径为10.813μm,并且丝束比较均匀,纤维表面良好。
To enhance mechanical properties of PAN precursor using domesticgeneral carbon fiber, the PAN precursor fiber was treated again by processingssuch as boiling water stretching, water-washing and drying densification, andhigh-temperature and high-pressure steam stretching. The experimental resultsshowed as follows:
     1. Under conditions of the laboratory equipments, boiling waterstretching, drying densification and high-temperature high-pressure steamstretching process, could make the strength of initial precursor fibermaximally increase by31.25%,35.6%and39%. This showed that, the qualityof precursor fiber of domestic general carbon fiber could be improved throughsecond process.
     2. In the boiling water stretching, with the stretch ratio increased, theelongation at break and the diameter of fiber had a downward trend, and thestrength and crystallinity degree of fiber first increased and then decreased.The turning point was between12%-14%, and then over stretching occured.The residence time at80s was appropriate, and at stretch ratio11.59%, the initial precursor fiber strength increased by31.25%, and crystallinity degreewas70.08%, and the fiber diameter was10.982μm, elongation at break was9.4%.
     3. The water-washing, which played opposite effects against densificationbecause of toughening fiber, went against the mechanical properties upgradingof precursor fiber. Under different temperatures, the strength of fiber increasedfirst and then decreased with the increase of densification time, and the fiberstrength reached maximum at55s. When the densification time was55s, fiberstrength reached maximum0.998GPa at the140-150℃temperature gradient,and the strength of initial precursor fiber increased by about35.6%. Increasingtemperature range can make the strength and crystallinity degree of fiber arehigher, and crystallization size increase not so much, and this is beneficial tothe production of high quality silk.
     4. Fiber under steam medium could bear larger stretch ratio than the oneunder dry heat because of the plasticizing effect of water molecules. Due tothe plasticizing effect of water molecules, the fiber strength by steamstretching was greater than the one by dry heat stretching at135℃and150℃.In the steam medium,135℃,15%stretch ratio, the fiber of the best overallperformance could be obtained, and the fiber strength was1.023GPa,diameter was10.813μm, and the fiber tow was relatively uniform, surfacewas good.
引文
[1]顾超英.国内外高性能纤维的发展与前景分析[J].化工文摘,2007(4):20-22
    [2]贺福.高性能碳纤维原丝于干喷湿纺川[J].高科技纤维与应用,2004(8):6-12
    [3]刘国昌,徐淑琼.聚丙烯腈基碳纤维及其应用[J].机械制造与自动化,2004,33(4):41-43
    [4]吴刚,唐春红.聚丙烯腈原丝及预氧丝的结构与性能研究[D].北京:北京化工大学,2004:12-15
    [5]张子鹏.国内外聚丙烯腈基碳纤维市场分析[D].化工技术经济,2005,23(2):24-27
    [6]陈惠芳,唐乃杰.非溶剂添加剂对PAN/DMSO纺丝溶液性质和原丝结构性能的影响[D].上海:东华大学,2006:15-18
    [7]徐梁华.突破原丝瓶颈效应加速我国PAN碳纤维技术的发展[D].炭素科技,2001,11(3):3-5
    [8]李常清,袁姗,刘晖,童元建,徐樑华.金属离子对PAN基碳纤维结构和性能的影响[J].北京化工大学学报,2009,36(1):40-43
    [9] L. Laffont, M. Monthioux, V. Serin, R.B. Mathur, C. Guimon, M.F. Guimon.An EELSstudy of the structural and chemical transformation of PAN polymer to solid carbon[J].Carbon,2004,42(12/13):2485-2494
    [10]徐仲榆,刘洪波,张洪波等. PAN基高模量碳纤维的制备及其性能的研究[J].炭素科技,1995,(1):1-9
    [11]日本东丽公司.碳纤维以及其制造方法[P].日本专利,特开平l1-152626.1999-06-08
    [12]李青山,沈新元.腈纶生产工学[M].北京:中国纺织出版社,2000:7
    [13]金日光,华幼卿.高分子物理[M].北京:化学工业出版社,2006:11
    [14]陈娟,王成国. PAN湿法纺丝中凝固成纤过程的研究进展[J].材料导报,2006,20(9):26-28.
    [15]林凤崎,徐樑华,李常清,姚红.凝固条件对PAN初生纤维微孔结构形成的影响[J].合成纤维工业,2006,29(1):17-19
    [16]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004.
    [17] Ashok Kumar Yadav, Nishkam, Kasturiya, et al. Manufacturing Process of Acrylic Fibreby Wet Spinning[J]. Man-Made Textiles,2000,(25):421-426.
    [18] S. H. Bahrami, P. Bajaj, K. Sen. Effect of Coagulation Conditions on Properties ofPoly(acrylonitrile-carboxylic acid) Fibers[J]. Journal of Applied Polymer Science,2003,(89):1825-1837.
    [19]董兴广,王成国,曹伟伟,陈娟.凝固浴条件对PAN纤维结构及性能的影响[J].高分子材料科学与工程,2007,23(2):170-178
    [20]日本东丽公司.碳纤维用前驱体以及碳纤维的制造方法[P].日本专利:特开平ll-36143,1999-02-09:
    [21]贺福,杨永岗,王润娥.用SEM研究PAN原丝的表面缺陷[J].高科技纤维与应用,2002,27(5):28-32
    [22]于淑娟,姜立军.碳纤维用聚丙烯腈原丝制备技术的研究进展[J].高科技纤维与应用,2003,28(6):15-18
    [23]日本东丽公司.聚丙烯腈原丝束[P].日本专利:特开昭58-214518,1983-12-13:
    [24]日本东丽公司.碳纤维用前驱体纤维束以及碳纤维的制造方法[P].日本专利:特开平13-181925,2001-07-03:
    [25]日本东丽公司.聚丙烯腈基原丝以及聚丙烯腈基原丝的蒸汽拉伸方法以及装置以及碳纤维[P].日本专利:特开平11-12874,1999-01-19:
    [26]日本东丽公司.碳纤维以及碳纤维用前驱体的制造方法[P].日本专利:特开平12-160436,2000-06-l3:
    [27]日本东丽公司.碳纤维用前驱体原丝的制造方法[P].日本专利:特开昭58-214520,1983-12-13:
    [28]日本东丽公司.碳纤维用聚丙烯腈原丝以及碳纤维的制造方法[P].日本专利:特开平8-27619, l996-0l-30:
    [29]日本东丽公司.碳纤维及碳纤维用前驱体以及其制造方法[P].日本专利:特开平10-130963,1998-05-19:
    [30]王延相,王成国,朱波.丙烯酸甲酯对聚丙烯腈原丝及预氧丝结构和性能的影响[J].化工科技,2002,10(6):5-8
    [31] Craig J P, Holland V F. Characterization of acrylic fiber structure[D]. Textile ResearchJournal,1962,32(6):435-448
    [32]琴志全,周霞.二甲基亚砜法聚丙烯腈原丝干湿纺与湿纺成形工艺的比较[D].高科技纤维与应用,2006,31(3):15-18
    [33]黄平.高强高模聚乙烯醇纤维的研究进展[J].合成纤维工业,2001,24(5):26-30.
    [34] Ly oo W S,K imJ P.Low temperature suspension polymerization of vinyl acetate using2,2’-azobis (2,4-dimethylvaleronitrile) for the preparation of high molecular weightpoly(vinyl alcohol) with high yield[J]. Colloid and Polymer Science,1998,276(11):951-959.
    [35]黄玉东. PBO超级纤维研究进展及其表面处理[J].高科技纤维与应用,2001,26(1):11-15.
    [36]陈自力,刘兆峰.高强高模聚乙烯纤维及其在复合材料中的应用(上)[J].产业用纺织品,1998,16(4):7-10.
    [37] Keshav V D. PAN fibre variants[J]. Synthetic Fibres,1997,(10):5-12
    [38]齐志军,宋威,林树波. PAN原丝生产过程对碳纤维强度的影响因素[J].高科技纤维与应用,2001,26(5):17-20.
    [39] Gupta A K, Paliwal D K, Bajaj P.Acrylic precurs ors for carbon fibers[J]. JM-REVMacromol. Chem. Phys.,1991, C31(1):1-89.
    [40] Jinshy Tsai, Chunghua Lin. The effect of molecular weight on the cross section andproperties of PAN precurs or and resuting carbon fiber [J].Journal of Applied PolymerScience,1991,(42):3045-3050.
    [41]贺福,杨永岗,孙微.我国碳纤维工业驶入发展的快车道[D].新材料产业,2002(1):30-32
    [42] Hinriehsen G. Structural changes of drawn Polyacrylonitrile during annealing [J]. Journalof Polymer Science, PartC, PolymerSymPosia,1972,(38):303-314.
    [43]莫志深,张宏放.晶态聚合物结构和X射线衍射[M].北京:科学出版社,2003
    [44]贾存龙.高分子量聚丙烯腈湿法纺丝工艺研究[D].北京:北京化工大学,2011:55-56
    [45]三菱粘胶公司.聚丙烯腈原丝制法[P].日本专利:特开平-5-339813,1993-12-21:
    [46]日本东丽公司.聚丙烯腈原丝束[P].日本专利:特开昭-58-214518,1983-12-13:
    [47] Jahn A K. Finish for acrylic fiber [P].美国专利:4072617,1978:
    [48]日本东丽公司.聚丙烯腈基原丝以及聚丙烯腈基原丝的蒸汽拉伸方法以及装置以及碳纤维[P].日本专利:特开平11-12874,1999-01-19:
    [49]姚玉英.化工原理.天津:天津科学技术出版社,1999:56-70

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700