松嫩平原盐碱化草地丛枝菌根真菌资源及其生态作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
退化草地生态系统的恢复和重建是世界各国的热点问题。吉林省西部草地盐碱化环境严重,其植被恢复面临巨大困难,有必要依靠其他技术手段辅助、促进植被的恢复进程,而菌根技术即是实现这一目标的重要手段。因此本研究开展了吉林西部盐碱化草地羊草根际土壤的AM真菌资源调查,AM真菌化羊草的耐盐性的室内和室外实验,以期能为应用丛枝菌根真菌技术恢复和重建盐碱化羊草草地提供理论依据和技术支持。主要研究结果如下:
     主要研究结果如下:
     1.吉林省盐碱化草地中羊草AM真菌资源分布研究表明,从吉林省西部草原优势种羊草根围采集的45个土样中分离出AM真菌4属11种。其中Glomus属8种,占总种数的72.42%,Acaulospora属1种, Paraglomus属1种,Scutellospora属1种。AM菌对羊草根系的侵染频度为30-76%,侵染程度为4-36%,,羊草根系土壤中(20g)孢子密度为6-280个。土壤pH与侵染频度、程度和种丰度之间存在负相关关系。
     2.群落生物多样性与AM真菌对羊草根系的侵频度和侵染强度负相关,但与星星草或寸草苔根系侵染情况无关。AM真菌对植物群落多样性的影响可能与其对强竞争力物种的侵染状况有关。群落生物量随AM真菌对群落根系侵染能力的增加而增加。充分证明了AM真菌-植物共生体促进了干物质积累,改善了植物的生长状况。这种生物量增加效应主要体现在AM-羊草共生体上。随盐碱程度的不断加深,菌种丰度不断下降,由纯羊草草地的5个AM菌种,减少到重度盐碱化群落中的G. mosseae和G. geosporum两个菌种。但广布菌种G. mosseae始终是各个群落的优势菌种。土壤营养元素和有机质的增加提高了AM真菌物种丰度、孢子密度和侵染能力,但土壤pH值和电离率的增加降低了AM真菌物种丰度、孢子密度和侵染能力。AM真菌的侵染能力表现出显著的季节动态变化,除了与气候因素相关外,还可能与雨季中过高的土壤水分有关。
     3.当羊草植株面临较高的盐胁迫时,菌根效应显著存在;AM真菌-羊草共生体显著降低了羊草的盐胁迫效应,充分证明了AM真菌-植物共生体对植物在逆境中生存的重要性。无论有无盐胁迫,AM真菌极大改变了植物生物量的地上地下分配比例。菌根羊草将更多的光合产物分配到根系,相对增加的根系将比无菌根羊草植株具有更强的水分和营养元素吸收和传输能力,从而能为菌根植株拓展更为广阔的资源空间和生存机会。与AM真菌共生后,羊草体内一直维持较高的N、P浓度,但随着盐胁迫的加大,该优势逐渐减少。菌根羊草Ca~(2+)离子含量在低盐条件下高于非菌根羊草。K~+离子含量在中高盐条件下高于非菌根羊草。接种AM真菌后,菌根羊草一直维持着较低的Na~+和Cl~-离子含量。菌根羊草P/Na~+比在低盐条件下高于非菌根羊草;而K~+/Na~+比在中高盐条件下高于非菌根羊草。随着盐胁迫的增加,菌根羊草对磷的依赖性逐渐转换为对钾的依赖性。
     4.土壤磷水平、盐胁迫和接种AM真菌对羊草生物量和离子含量产生复杂影响,也影响着AM真菌与羊草之间的共生关系或寄生关系。增加土壤P营养水平,显著降低了非菌根羊草根系的Na~+含量,提高了羊草地上部分的P/Na比,降低了NaCl对非菌根羊草的盐胁迫效应。土壤磷营养水平影响AM真菌能否改善羊草生长。无盐胁迫低磷土壤中羊草的菌根生长效应接近于零。随土壤磷营养水平的增加,AM真菌对羊草生长的促进作用增强,对P的依赖性降低。受盐胁迫的AM真菌-羊草共生体关系随着土壤磷水平的增加,由互惠共生关系逐渐转变为寄生关系。
     5.AM真菌G. mosseae和G. geosporum能够在重度盐碱土中侵染羊草根系,并且该共生体改善了移栽苗的存活率、生长和分蘖。将植物-AM真菌共同体重新引入后,能够促进裸碱斑的植被恢复,驱动该恢复向初始物种群落演替。在重度盐碱土壤中,AM真菌能够显著减少羊草Na~+和Cl~-离子含量,促进N、P、Ca~(2+)和K~+吸收。AM真菌加强了植物对营养元素的选择性吸收,从而降低盐碱胁迫对生长的影响。在三年的实验中,菌根化植物一直保护较高的根茎比。菌根化植株重新分配的根茎比可能是保证重度盐碱化土地上植被成功恢复的一个重要因素。室内盆栽实验和野外移栽实验均表现出AM真菌成功侵染羊草根系,表明裸碱斑中非菌根羊草的自然侵染率较低是由于土壤中缺乏AM真菌繁殖体。
Vegetation restoration is one of the most common and effective ways to combat soil degradation and prevent adjacent areas from further encroachment in many of the degraded regions. However, the poor water availability and nutrient supply are stressful for seed germination and/or seedling establishment in severely damaged areas. Successful revegetation with AM fungi has been reported in many degraded regions. To assess the role of AM fungi in vegetation restoration on saline-alkaline grassland, and provide theoretical and technological surpports, we conducted several researches with Leymus chinensis (Trin.) Tzvel, which included the investigation on the AM fungi resources surrounding roots of L. chinensis in saline-alkaline grassland, the indoor and outdoor experiments on the influence of AM fungi on saline-alkaline resistance of L. chinensis. The main results showed as below:
     1. From the 45 samples of saline-alkaline agrassland in western Jilin Province, we collected and identified 11 AMF species belonging to 4 genera. There were 8 species of Glomus, 72.42% of all speices, 1 species of Acaulospora, 1 species of Paraglomus, and 1 speices of Scutellospora. The AM colonization rates were between 30-60%, infection intensities were between 4-36%, and the spore densities were in 6-280 spores per 20 g soil surrounding roots of L. chinensis. There were negative relationships between pH of soil and colonization rate, infection intensity or species aboundance.
     2. There were negative relationships between species diversities and colonization rate and infection intensity of AM fungi to L. chinensis roots, but no relationship to CR and II of AM fungi to roots of Puccinellia tenuiflora or Carex duriuscula. These results showed that the influence of AMF to community diversity might be intermediated by their effects on species with high competitive ability. The community biomass increased by the increasing of AMF coloniation to roots, which suggested that the AMF-plant symbiosis impoved the accumulation of dry matter, and plant growth. This improvement of biomass mainly performed by AMF- L. chinensis symbiosis. As the saline-alkaline condition became intensive, the AMF species richness decreased, which from 5 species in pure L. chinensis community to 2 (G. mosseae and G. geosporum) in seriously saline-alkaline communities. However, the G. mosseae was always the dominant species in all communities. The AM fungi species number and spore density significantly increased with the increasing of nutrient concentration and organic matter content of soil, but decreased with the increasing of pH and electric conductivity of soil. There were significantly seasonal changes of colonization ability of AM fungi, which might resulted by the climate or soil moisture.
     3. The mycorrhizal growth response (MGR) was high when plants of L. chinensis were under intensive salt stress. The salinity response (SR) was significantly dereased by AMF- L. chinensis symbiosis. Therefore, the AMF- L. chinensis symbiosis was important for plant survival under salt stress. The biomass allocated to aboveground and belowground was changed by AMF wherever under salt or non salt environments. Mycorrihal L. chinensis allocated more biomass to roots, which enhanced the ability of absorbing and transfering water and nutrients. After colonized by AMF, the L. chinensis maintained higher N and P concentration, however, this advantage decreased by the increasing salt stress. There were higher Ca~(2+) concentration under low salt stress, and higher K~+ concentration under middle and high salt stress in mycorrihal L. chinensis. The concentrations of Na~+和Cl~- were both lower in mycorrihal L. chinensis. Under high salt condition, the K~+/Na~+ of mycorrihal plant was higher than that of non-mycorrihal plants, however, under lower and non salt conditions, it was P/Na~+ of mycorrihal plant that higher than that of non-mycorrihal plants. The results indicated that the saline-resistant ability of mycorrihal plants was increased by mycorrhizal P response (MPR) under lower salt stress, but by mycorrhizal K response (MKR) under high salt stress.
     4. The effects of P, salt stress and AM inoculation on biomass and ion contents of L. chinensis were complicated, which also influence the transformation of mutualism and parasitism of AMF- L. chinensis symbiosis. With the increase of P, the Na~+ content of non-mycorrihal plants significantly decreased, and P/Na increased. As a result, the salinity response (SR) dereased for the non-mycorrihal plants. Under the salt stress condition, the mycorrihal growth response increased with the increasing P concentration, but decreased with the increasing P concentration without salt stress. The relationship between AMF and L. chinensis changed from mutualism to parasitism when the P supply of soil increased.
     5. The G. mosseae and G. geosporum could inoculate the L. chinensis in bare saline-alkaline soil. The improvement of survival, growth and asexual reproduction of inoculated plants indicated that the plant-AM fungi mutualism could improve the reestablishment of vegetation in bare saline-alkaline soil, drive the vegetation restoration to a community dominated by original species. Association with AM fungi increased the absorption of N, P, K~+, Ca~(2+), but decreased Na~+ and Cl~- uptake under saline-alkaline stress. The AMF enhanced the ability of plant to absorb nutriets from soil, which helped reduce the negative effect of salt stress on plant growth. Plants inoculated with AM fungi accumulated significantly higher root/shoot ratio than non-inoculated plants, which suggested that the significant higher root/shoot ratios of inoculated plants growing in three years might be a more important contributor for the successful establishment of plants under severe salt stress. The successful colonization by AM fungi under same severe saline-alkaline soil in both pot and field experiments implicated that the low natural colonization of non-inoculated plants in bare saline-alkaline land was resulted from the absence of propagules of AM fungi.
引文
[1]戎郁萍,赵萌莉,韩国栋.草地资源可持续利用原理与技术[M].北京:中国农业出版社, 2000: .
    [2]裘善文,张柏,王志春.吉林省西部土地荒漠化现状、特征与治理途径研究[J].地理科学, 2003, 23(2):188-192.
    [3] Bever J D,Schultz P A,Pringle A,et al. Arbuscular mycorrhizal fungi: More diverse than meets the eye, and the ecological tale of why [J]. BioScience, 2001, 51(11):923-932.
    [4]刘润进,李晓林.丛枝菌根及其应用[M].北京:科学出版社, 2000: .
    [5]郭秀珍,毕国昌.林木菌根及其应用[M].北京:中国林业出版社, 1989: .
    [6]李晓林,冯固.丛枝菌根生态生理[M].北京:华文出版社, 2001: .
    [7] Smith S E,Read D J. Mycorrhizal Symbiosis [M]. London: Academic Press, 1997: .
    [8] Gerdemann J W,Trappe J M. Endogonaceae in the Pacific Northwest [J]. Mycologia Memoir, 1974, 5( ):l-76.
    [9] Walker C,Sanders F E. Taxonomic concepts in the Endogonaceae. I. The seperation of Scutellospora gen nov from Gigaspora Gerd and Trappe [J]. Mycotaxon, 1986, 27( ):169-182.
    [10] Morton J B. Revised classification of arbuscular mycorrhiza fungi (Zygomycetes): a new ordered Glomales, two new suborders, Glomineae and Gigasporaceae, and two new families, Acaulosporaceae and Gigasporaceae, with a emendation of Glomaceae [J]. Mycotaxon, 1990, 37( ):471-491.
    [11] Redcker D,Morton J B,Bruns T B. Molecular phylogeny of the arbuscular mycorrhizar gungi Glomus sinuosum and Sclerocystis coremioides [J]. Mycologia Memoir, 2000, 92(2):282-285.
    [12] Morton J B,Redecker D. Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters [J]. Mycologia Memoir, 2001, 93(1):181-195.
    [13] Walker C,Schü?ler A. Nomenclatural clarifications and new taxa in the Glomeromycota [J]. Mycological Research, 2004, 108(9):981-982.
    [14] Schenck N C,Péréz Y. Manual for Identification of Vesicular Arbuscular Mycorrhizal Fungi [M]. Gainesville, USA: University of Florida, 1988: .
    [15]张美庆,王幼珊. VA真菌球囊霉属种的简表[J].微生物学通报, 1991, 18(6):367-371.
    [16] Wright S F,Morton J B,Sworobuk J E. Indentification of a vesicular-arbuscular mycorrhizal fungus by using monoclonal antibodies in an enzymelinked immunosorbent assay [J]. Appllied and Environmental Microbiology, 1987, 53( ):2222-2225.
    [17]刘永俊,冯虎元.丛枝菌根真菌系统分类及群落研究技术进展[J].应用生态学报, 2010, 21(6):1573-1580.
    [18]董秀丽,赵斌.嵌套多重PCR-研究田间植物部分丛枝菌根真菌和微生物区系的一个可行技术[J].中国科学C辑:生命科学, 2006, 36(1):59-65.
    [19] Simon L,Lalonde M,Bruns T D. Specific amplific of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing root [J]. Applied and Environmental Microbiology, 1992, 58( ):291-295.
    [20] Renker C,Heinrichs J,Kaldorf M,et al. Combining nested PCR and restriction digest of the internal transcribed spacer region to characterize arbuscular mycorrhizal fungi on roots from the field [J]. Mycorrhiza, 2003, 13(4):191-198.
    [21] Lanfranco L,Perotto S,Bonfante P C. Applifications of PCR for studying the biodiverdity ofmycorrhizal of fungi In:P. D. Bridge, D. K. Arora, C. A. Reddy and R. P. Elander eds, Application of PCR in Mycology [M]. CAB International Walling ford, 1998: .
    [22] Walker C M. Systematics and taxonomy of the arbuscular endomycorrhizal fungi (Glomales) - a possible way forward [J]. Agronomie, 1992, 12( ):887-897.
    [23] Douds D D,Millner P D. Biodiversity of arbuscular mycorrhizal fungi in agroecosystems [J]. Agriculture, Ecosystems and Environment, 1999, 74(1-3):77-93.
    [24] Andrade A C S,Queiroz M H,Hermes R A L,et al. Mycorrhizal status of some plants of the Araucaria forest and the Atlantic rainforest in Santa Catarina, Brazil [J]. Mycorrhiza, 2000, 10(3):131-136.
    [25] Husband R,Herre E A,Turner S L,et al. Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest [J]. Molecular Ecology, 2002, 11(12):2669-2678.
    [26] Chaudhry M S,Batool Z,Khan A G. Preliminary assessment of plant community structure and arbuscular mycorrhizas in rangeland habitats of Cholistan desert, Pakistan [J]. Mycorrhiza, 2005, 15(8):606-611.
    [27]刘润进,王发园,孟祥霞.渤海湾岛屿的丛枝菌根真菌[J].菌物系统, 2002, 21(4):525-532.
    [28]唐明,黄艳辉,盛敏,等.内蒙古盐碱土中AM真菌的多样性与分布[J].土壤学报, 2007, 44(6):1104-1110.
    [29]王发园,刘润进.黄河三角洲盐碱地的丛枝菌根真菌[J].菌物系统, 2002, 21(2):196-202.
    [30]王曙光,刁晓君,冯兆忠.湿地植物的丛枝菌根[J].生态学报, 2008, 28(10):5075-5083.
    [31]王发园,林先贵.丛枝菌根真菌对污染土壤中农产品质量安全的影响[J].土壤学报, 2008, 45(6):1142-1147.
    [32]王红新,郭绍义.矿区复垦土壤接种丛枝菌根对玉米生长及营养吸收的影响[J].中国农学通报, 2007, 23(1)132-136.
    [33] Weissenhorn I,Leyval C,Berthelin J. Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy-metal polluted soils [J]. Plant and Soil, 1993, 157(2):247-256.
    [34] Mason E. Note on the presence of mycorrhiza in the roots of salt marsh plants [J]. New Phytologist, 1928, 27(3):193-195.
    [35]盛敏,唐明,迪丽努尔,等.西北盐碱土主要植物丛枝菌根研究[J].西北农林科技大学学报(自然科学版), 2007, 196(2):74-78.
    [36]张伟溪,王洪峰,赵昕,等.松嫩盐碱草地植物丛枝菌根的初步调查[J].土壤通报, 2010, 41(6):1380-1385.
    [37] Hildebrandt U,Janetta K,Ouziad F,et al. Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes [J]. Mycorrhiza, 2001, 10(4):175-183.
    [38]刘润进,刘鹏起,徐坤,等.中国盐碱土壤中am菌的生态分布[J].应用生态学报, 1999, 10(6):721-724.
    [39]王发园,刘润进.黄河三角洲盐碱土壤中am真菌的初步调查[J].生物多样性, 2001, 9(4):389-392.
    [40] Carvalho L M,Ca?ador I,Martins-Lou??o M. Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus estuary (Portugal) [J]. Mycorrhiza, 2001, 11(6):303-309.
    [41]宋会兴,钟章成.两种土壤类型草本植物根系丛枝菌根真菌多样性[J].应用生态学报, 2009, 20(8):1857-1862.
    [42]杨玉海,陈亚宁,李卫红.荒漠河岸林植物丛枝菌根真菌侵染及环境影响因子——以塔里木河下游为例[J].菌物学报, 2008, 18(4):397-405.
    [43] Peason J N,Simth S E,Smith F A. Effect of photon irradiance on the development and activity of VA mycorrhizal infection in Allium porrum [J]. Mycological Research, 1991, 101(3):1063-1071.
    [44] Rasmussen H,Anderson T F,Johansen B. Temperature sensitivity of in vitro germination and seeding development of Dectylorhiza majalis (orchiclaceae) with and without mycorrhizal fungus [J]. Plant Cell and Encironment, 1990, 13(2):171-177.
    [45]彭生斌,沈崇尧.北京地区大葱和玉米根际VA菌根的季节变化及其与环境因子之间的关系[J].植物学报, 1990, 132(2):141-145.
    [46]蔡晓布,盖京苹,钱成,等.西藏高原天然长芒草地丛枝菌根真菌接种效应[J].应用生态学报, 2006, 17(11):2121-2126.
    [47]王少峰,贺学礼,陈铁山.树莓和黑莓根际AM真菌的空间分布研究[J].西北农业学报, 2007, 16(3):219-223, 231.
    [48]彭岳林,杨敏娜,蔡晓布.西藏高原针茅草地土壤因子对丛枝菌根真菌物种多样性的影响[J].应用生态学报, 2010, 21(5):1258-1263.
    [49]彭岳林,钱成,蔡晓布,等.藏北高原AM真菌种群多样性及生态分布特征[J].中国农学通报, 2006, 21(8):507-510.
    [50]王幼珊,张美庆,张弛,等. VA菌根真菌抗盐碱菌株的筛选[J].土壤学报, 1994, 31( ):79-83.
    [51] Juniper S,Abbott L K. Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi [J]. Mycorrhiza, 2006, 16(5):371-379.
    [52] Carvalho L M,Correia P M,Ca?ador I,et al. Effects of salinity and flooding on the infectivity of salt marsh arbuscular mycorrhizal fungi in Aster tripolium L [J]. Biology and Fertility of Soils, 2003, 38(3):137-143.
    [53] Estaun M V. Effect of sodium chloride and mannitol on germination and hyphal growth of the vesicular-arbuscular mycorrhizal fungus Glomus mosseae [J]. Agriculture, Ecosystems and Environment, 1990, 29(1-4):123-129.
    [54] Cooke M A,Widden P,O'Halloran I. Development of vesicular-arbuscular mycorrhizae in sugar maple (Acer saccharum) and effects of base-cation ammendment on vesicle and arbuscule formation [J]. Canadian Journal of Botany, 1993, 71(11):1421-1426.
    [55] Aliasgharzadeh N,Saleh Rastin N,Towfighi H,et al. Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil [J]. Mycorrhiza, 2001, 11(3):119-122.
    [56] Al-Karaki G N. Salt stress response of salt-sensitive and tolerant durum wheat cultivars inoculated with mycorrhizal fungi [J]. Acta Agronomica Hungarica, 2001, 49( ):25-34.
    [57]胡志宏,黄晶心,杜书佳,等.盐胁迫下丛枝菌根对植物幼苗生长和营养元素吸收的影响[J].上海师范大学学报(自然科学版), 2010, 39(1):309-314.
    [58]冯固,白灯莎,杨茂秋,等.盐胁迫对VA菌根形成及接种VAM真菌对植物耐盐性的效应[J].应用生态学报, 1999, 10( ):79-82.
    [59]张美庆,王幼珊,刑礼军.环境因子和AM真菌分布的关系[J].菌物系统, 1999, 18(2):145-148.
    [60]张美庆,王幼珊,张弛.我国北部VA菌根真菌某些属和种的生态分布[J].真菌学报, 1994, 13(3):166-172.
    [61]山宝琴,贺学礼,白春明,等.荒漠油蒿(Artemisia ordosica)根围AM真菌分布与土壤酶活性[J].生态学报, 2009, 29(6):3044-3051.
    [62]方菲,贺学礼.旱生条件下柠条锦鸡儿AM真菌生态学研究[J].干旱地区农业研究, 2007, 100(2):201-205.
    [63]侯晓飞,贺学礼.荒漠植物羊柴根际AM真菌时空分布研究[J].河北农业大学学报, 2007, 133(4):50-54.
    [64] Tawaraya K,Saito M,Morioka M. Effect of phosphate application to arbuscular mycorrhizal onion on the development and succinat dehydrogenase activity of internal hyphae [J]. Soil Science and PlantNutrition, 1994, 40(4):667-673.
    [65] Nagahashi G,Douds Jr D D,Abney G D. Phosphorus amendment inhibits hyphal branching of the VAM fungus Gigaspora margarita directly and indirectly through its effect on root exudation [J]. Mycorrhiza, 1996, 6(5):403-408.
    [66]申连英,毛永民,鹿金颖,等.丛枝菌根对酸枣实生苗耐盐性的影响[J].土壤学报, 2004, 41(3):426-433.
    [67]李敏,辛华,郭绍霞,等. AM真菌对盐渍土壤中番茄、辣椒生长和矿质养分吸收的影响[J].莱阳农学院学报, 2005, 22(1):38-41.
    [68]冯固,李晓林,张福锁,等.盐胁迫下丛枝菌根真菌对玉米水分和养分状况的影响[J].应用生态学报, 2000, 11(4):595-598.
    [69] Gupta R,Krishnamurthy K V. Response of mycorrhizal and nonmycorrhizal Arachis hypogaea to NaCl and acid stress [J]. Mycorrhiza, 1996, 6(2):145-149.
    [70]冯固,白灯莎,杨茂秋,等.盐胁迫下AM真菌对玉米生长及耐盐生理指标的影响[J].作物学报, 2000, 26(6):743-750.
    [71]冯固,张福锁.丛枝菌根真菌对棉花耐盐性的影响研究[J].中国生态农业学报, 2003, 11(2):27-30.
    [72] AugéR M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis [J]. Mycorrhiza, 2001, 11(1):3-42.
    [73] Allen M F. Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis Lag ex Steud [J]. New Phytologist, 1982, 91( ):191-196.
    [74] Ruiz-Lozano J M,Azcón R. Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in lettuce plants [J]. Agriculture, Ecosystems and Environment, 1996, 60(2-3):175-181.
    [75] Giri B,Mukerji K G. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: Evidence for reduced sodium and improved magnesium uptake [J]. Mycorrhiza, 2004, 14(5):307-312.
    [76] Rabie G H. Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater [J]. Mycorrhiza, 2005, 15(3):225-230.
    [77] Copeman R H,Martin C A,Stutz J C. Tomato growth in response to salinity and mycorrhizal fungi from saline or nonsaline soils [J]. HortScience, 1996, 31(3):341-344.
    [78] Sengupta A,Chaudhuri S. Vesicular arbuscular mycorrhiza (VAM) in pioneer salt marsh plants of the Ganges river delta in West Bengal (India) [J]. Plant and Soil, 1990, 122(1):111-113.
    [79] Pond E C,Menge J A. Improved growth of tomato in salinized soil by vesicular-arbuscular mycorrhizal fungi collected from saline soils [J]. Mycologia 1984, 76( ):74~84.
    [80] Pfeiffer C M,Bloss H E. Growth and nutrition of guayule (Parthenium argentatum) in a saline soil as influenced by vesicular-arbuscular mycorrhiza and phosphorus fertilization [J]. New Phytologist, 1988, 108( ):315~321.
    [81] Awad A S,Edwards D G,Campbell L C. Phosphorus enhancement of salt tolerance of tomato [J]. Corp Science, 1990, 30( ):123~128.
    [82] Mor R P,Manchanda H. Influence of phosphorus on the tolerance of table pea to chloride and sulphur salinity in a sandy soil [J]. Arid Soil Research and Rehabitation, 1992, 6(1):41~52.
    [83]宋勇春,冯固,李晓林.泡囊丛枝菌根对红三叶草根际土壤磷酸酶活性的影响[J].应用与环境生物学报, 2000, 6(2):171-175.
    [84] Juniper S,Abbott L. Vesicular-arbuscular mycorrhizas and soil salinity [J]. Mycorrhiza, 1993, 4(2):45-58.
    [85] Al-Karaki G N,Hammad R,Rusan M. Response of two tomato cultivars differing in salt tolerance toinoculation with mycorrhizal fungi under salt stress [J]. Mycorrhiza, 2001, 11( ):43-47.
    [86] Allen E B,Cunningham G L. Effect of vesicular-arbuscular mycorrhizal on Distichlis spicata under three salinity levels [J]. New Phytologist, 1983, 93( ):227~236.
    [87]冯固,杨茂秋,白灯莎.盐胁迫下VA菌根真菌对无芒雀麦体内矿质元素含量组成的影响[J].草业学报, 1998, 7(3):21-28.
    [88] Feng G,Zhang F S,Li X L,et al. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots [J]. Mycorrhiza, 2002, 12(4):185-190.
    [89] Jindal V,Atwala A,Sekhon B S,et al. Effect of vesicular-arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity [J]. Plant Physiology and Biochemistry, 1993, 31( ):475~481.
    [90] Duke E R,Johnson C R,Koch K E. Accumulation of phosphorus, dry matter and betaine during NaCl stress of split-root citrus seedlings colonized with vesicular-arbuscular mycorrhizal fungi on zero, one or two halves [J]. New Phytologist, 1986, 104( ):583-590.
    [91] Porcel R,Barea J M,Ruiz-Lozano J M. Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence [J]. New Phytologist, 2003, 157(1):135-143.
    [92]于建新,李辉,郭绍霞,等.丛枝菌根真菌对番茄植株内源激素含量的影响[J].青岛农业大学学报(自然科学版), 2010, 27(2):100-104.
    [93] Koide R T,Mosse B. A history of research on arbuscular mycorrhiza [J]. Mycorrhiza, 2004, 14(3):145-163.
    [94] Wang M Y,Diao Z K,Liang M X,et al. Advances in the study of AM fungal diversity in agroecosystems [J]. Acta Ecologica Sinica, 2005, 25(10):2744-2749.
    [95] Mangan S A,Eom A H,Adler G H,et al. Diversity of arbuscular mycorrhizal fungi across a fragmented forest in Panama: Insular spore communities differ from mainland communities [J]. Oecologia, 2004, 141(4):687-700.
    [96] Jansa J,Mozafar A,Anken T,et al. Diversity and structure of AMF communities as affected by tillage in a temperate soil [J]. Mycorrhiza, 2002, 12(5):225-234.
    [97] Lugo M A,Cabello M N. Native arbuscular mycorrhizal fungi (AMF) from mountain grassland (Córdoba, Argentina) I. Seasonal variation of fungal spore diversity [J]. Mycologia, 2002, 94(4):579-586.
    [98] Entry J A,Fuhrmann J J,Sojka R E,et al. Influence of irrigated agriculture on soil carbon and microbial community structure [J]. Environmental Management, 2004, 33(Suppl.1 ):S363-S373.
    [99]蔡邦平,陈俊愉,张启翔,等.梅根际丛枝菌根真菌三个中国新记录种[J].菌物学报, 2008, 27(4):538-542.
    [100]蔡邦平,张英,陈俊愉,等.藏东南野梅根际丛枝菌根真菌三个我国新记录种[J].菌物学报, 2007, 26(1):36-39.
    [101]张英,高清明,郭良栋.中国丛枝菌根真菌七个新记录种[J].菌物学报, 2007, 26(2):174-178.
    [102]赵丹丹,李凌飞,赵之伟.中国丛枝菌根真菌的三个新记录种[J].菌物学报, 2006, 25(1):142-144.
    [103]王发园,林先贵,周健民.中国AM真菌的生物多样性[J].生态学杂志, 2004, 23(6):149-154.
    [104] Christie P,Li X,Chen B. Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc [J]. Plant and Soil, 2004, 261(1-2):209-217.
    [105] Vogel-Miku? K,Drobne D,Regvar M. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia [J]. Environmental Pollution, 2005, 133(2):233-242.
    [106] Wu C H,Chen X,Wang Z Q. Lead absorption by weeds from lead-polluted soil [J]. Chinese Journalof Applied Ecology, 2004, 15(8):1451-1454.
    [107] Greipsson S,El-Mayas H. Arbuscular mycorrhizae of Leymus arenarius on coastal sands and reclamation sites in Iceland and response to inoculation [J]. Restoration Ecology, 2000, 8(2):144-150.
    [108] McHugh J M,Dighton J. Influence of mycorrhizal inoculation, inundation period, salinity, and phosphorus availability on the growth of two salt marsh grasses, Spartina alterniflora Lois. and Spartina cynosuroides (L.) Roth., in nursery systems [J]. Restoration Ecology, 2004, 12(4):533-545.
    [109] Richter B S,Stutz J C. Mycorrhizal inoculation of big sacaton: Implications for grassland restoration of abandoned agricultural fields [J]. Restoration Ecology, 2002, 10(4):607-616.
    [110] Cordoba A S,De Mendonca M M,Stuermer S L,et al. Diversity of arbuscular mycorrhizal fungi along a sand dune stabilization gradient: A case study at Praia da Joaquina, Ilha de Santa Catarina, South Brazil [J]. Mycoscience, 2001, 42(4):379-387.
    [111] Kiers E T,Lovelock C E,Krueger E L,et al. Differential effects of tropical arbuscular mycorrhizal fungal inocula on root colonization and tree seedling growth: Implications for tropical forest diversity [J]. Ecology Letters, 2000, 3(2):106-113.
    [112] Miller S P. Arbuscular mycorrhizal colonization of semi-aquatic grasses along a wide hydrologic gradient [J]. New Phytologist, 2000, 145(1):145-155.
    [113] Nilsson L O,Giesler R,B??th E,et al. Growth and biomass of mycorrhizal mycelia in coniferous forests along short natural nutrient gradients [J]. New Phytologist, 2005, 165(2):613-622.
    [114] Phillings J M,Hayman D S. Improves procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection [J]. Transactions of the Brisish Mycological Society, 1970, 55( ):158-160.
    [115] Giovannetti M , Mosse B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots [J]. New Phytologist, 1980, 84(3):489-500.
    [116] Daniels B A,Skipper H D. Methods for the recovery and quantitative of mycorrhizal research eds, Methods and principles of mycorrhizal research [M]. St. Paul: The American Photopathology Society, 1982: .
    [117]张美庆,王幼珊,邢礼军.我国东南沿海地区AM真菌群落生态分布研究[J].菌物系统, 1998, 17(3):274-277.
    [118]盛敏,唐明,张峰峰,等.土壤因子对甘肃、宁夏和内蒙古盐碱土中AM真菌的影响[J].生物多样性, 2011, 19( ):85-92.
    [119]毛树春,邢金松,宋美珍,等.棉花对两种VA菌根真菌的反应[J].棉花学报, 1994, 6( ):237-242.
    [120] Sanders I R,Fitter A H. Evidence for differential responses between host-fungus combinations of vesicular-arbuscular mycorrhizas from a grassland [J]. Mycologist Resarch, 1992, 96(6):415-419.
    [121] Smith F A,Smith S E. Multalism and parasitism: Diversity in function and structure in the arbuscular (VA) mycorrhizal symbiosis [J]. Advances in Botanical Research, 1996, 22( ):1-43.
    [122]盖京苹,刘润进.土壤因子对野生植物Am真菌的影响[J].应用生态学报, 2003, 14(3):470-472.
    [123]张英,郭良栋,刘润进.都江堰地区丛枝菌根真菌多样性与生态研究[J].植物生态学报, 2003, 27(4):537-544.
    [124]张美庆,王幼珊,刑礼军. AM真菌在我国东南沿海地区各土壤气候带的分布[J].菌物系统, 1999, 18(2):145-148.
    [125]王幼珊,张美庆,邢礼军,等.我国东南沿海地区的VA菌根真菌I:四种硬囊霉[J].真菌学报, 1996, 15(3):161-165.
    [126]杨允菲,郑慧莹.松嫩平原碱斑进展演替实验群落的比较分析[J].植物生态学报, 1998, 22( ):214-221.
    [127]杨允菲,李建东.松嫩平原碱化草甸三种多年生盐碱禾草群落生产特征的分析[J].草业科学,1994, 11(3):34-35.
    [128]姜世成,周道玮,靳英华.松嫩平原盐碱化草地消融期土壤水盐运移特征[J].东北师大学报(自然科学版), 2006, 38(4):124-128.
    [129] Johnson D,Vandenkoornhuyse P J,Leake J R,et al. Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms [J]. New Phytologist, 2004, 161(2):503-515.
    [130] Oehl F,Sieverding E,Ineichen K,et al. Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems [J]. New Phytologist, 2005, 165(1):273-283.
    [131] Blanke V,Renker C,Wagner M,et al. Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site [J]. New Phytologist, 2005, 166(3):981-992.
    [132] Wolfe B E,Weishampel P A,Klironomos J N. Arbuscular mycorrhizal fungi and water table affect wetland plant community composition [J]. Journal of Ecology, 2006, 94( ):905-914.
    [133] Vogelsang K M,Reynolds H L,Bever J D. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system [J]. New Phytologist, 2006, 172(3):554-562.
    [134] Karanika E D,Mamolos A P,Alifragis D A,et al. Arbuscular mycorrhizas contribution to nutrition, productivity, structure and diversity of plant community in mountainous herbaceous grassland of northern Greece [J]. Plant Ecology, 2008, 199(2):225-234.
    [135] Adriano-Anaya M L,Solis-Domínguez F,Gavito-Pardo M E,et al. Agronomical and environmental factors influence root colonization, sporulation and diversity of arbuscular mycorrhizal fungi at a specific phenological stage of banana trees [J]. Journal of Agronomy, 2006, 5(1):11-15.
    [136] Likar M,Regvar M,Mandic-Mulec I,et al. Diversity and seasonal variations of mycorrhiza and rhizosphere bacteria in three common plant species at the Slovenian Ljubljana Marsh [J]. Biology and Fertility of Soils, 2009, 45(6):573-583.
    [137] Connell J H. Diversity in tropical rain forests and coral reefs [J]. Science, 1978, 199(4335 ):1302-1310.
    [138] Yano-Melo A M,Saggin Jr O J,Maia L C. Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress [J]. Agriculture, Ecosystems and Environment, 2003, 95(1):343-348.
    [139] Tian C Y,Feng G,Li X L,et al. Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants [J]. Applied Soil Ecology, 2004, 26(2):143-148.
    [140] Barni E,Siniscalco C. Vegetation dynamics and arbuscular mycorrhiza in old-field successions of the western Italian Alps [J]. Mycorrhiza, 2000, 10(2):63-72.
    [141] Fujiyoshi M,Kagawa A,Nakatsubo T,et al. Successional changes in mycorrhizal type in the pioneer plant communities of a subalpine volcanic desert on Mt. Fuji, Japan [J]. Polar Bioscience, 2005, 18( ):60-72.
    [142]李凌飞,杨安娜,赵之伟.丛枝菌根真菌种群的孢子季相动态研究[J].生态学杂志, 2005, 24(10):1155-1158.
    [143]王发园,刘润进.环境因子对AM真菌多样性的影响[J].生物多样性, 2001, 9(3):301-305.
    [144]李文建,朱天辉,张远彬,等.温室效应对红桦泡囊丛枝菌根侵染率和侵染强度的影响[J].四川林业科技, 2005, 26(6):50-52.
    [145]山宝琴,姜在民.沙漠生境白沙蒿(Artemisia sphaerocephala)根围丛枝菌根真菌多样性[J].生态学杂志, 2010, 29( ):1729-1735.
    [146]李涛,刘润进,陈敏,等.盐渍条件下AM真菌对大豆生长和离子含量的影响[J].菌物学报, 2009, 28(3):410-414.
    [147] Asghari H R. Vesicular-arbuscular (VA) mycorrhizae improve salinity tolerance in pre-inoculationsubterranean clover (Trifolium subterraneum) seedlings [J]. International Journal of Plant Production, 2008, 2(3):243-256.
    [148] Colla G,Rouphael Y,Cardarelli M,et al. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration [J]. Biology and Fertility of Soils, 2008, 44(3):501-509.
    [149] Evelin H,Kapoor R,Giri B. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review [J]. Annals of Botany, 2009, 104(7):1263-1280.
    [150]江龙,王茂胜,黄建国,等.丛枝菌根真菌对烟苗吸收基质养分的影响[J].贵州农业科学, 2010, 38(6):50-54.
    [151] Giri B,Kapoor R,Mukerji K G. Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues [J]. Microbial Ecology, 2007, 54(4):753-760.
    [152]贺忠群,贺超兴,张志斌,等.丛枝菌根真菌提高植物耐盐性的作用机制[J].西北植物学报, 2007, 27(2):414-420.
    [153]冯固,李晓林,张福锁,等.施磷和接种AM真菌对玉米耐盐性的影响[J].植物资源与环境学报, 2000, 9(2):22-26.
    [154]张贵启,王晓娟,孙向伟,等. AM真菌与植物种内竞争的互作效应[J].草业科学, 2009, 26( ):115-121.
    [155] Jiang S C,He N P,Wu L,et al. Vegetation restoration of secondary bare saline-alkali patches in the Songnen plain, China [J]. Applied Vegetation Science, 2010, 13(1):47-55.
    [156] Smith M R,Charvat I,Jacobson R L. Arbuscular mycorrhizae promote establishment of prairie species in a tallgrass prairie restoration [J]. Canadian Journal of Botany, 1998, 76( ):1947-1954.
    [157] Sánchez-Coronado M E,Coates R,Castro-Colina L,et al. Improving seed germination and seedling growth of Omphalea oleifera (Euphorbiaceae) for restoration projects in tropical rain forests [J]. Forest Ecology and Management, 2007, 243(1):144-155.
    [158] Wu L,Zhou D. Seed movement of bare alkali-saline patches and their potential role in the ecological restoration in Songnen grassland, China [J]. Journal of Forestry Research, 2005, 16(4):270-274.
    [159] Guan B,Zhou D,Zhang H,et al. Germination responses of Medicago ruthenica seeds to salinity, alkalinity, and temperature [J]. Journal of Arid Environments, 2009, 73(1):135-138.
    [160] Rengasamy P. World salinization with emphasis on Australia [J]. Journal of Experimental Botany, 2006, 57( ):1017-1023.
    [161] Johnson-Green P,Kenkel N C,Booth T. Soil salinity and arbuscular mycorrhizal colonization of Puccinellia nuttalliana [J]. Mycological Research, 2001, 105( ):1094-1100.
    [162] Thrall P H,Broadhurst L M,Hoque M S,et al. Diversity and salt tolerance of native Acacia rhizobia isolated from saline and non-saline soils [J]. Austral Ecology, 2009, 34(8):950-963.
    [163] Wang Z,Song K,Zhang B,et al. Shrinkage and fragmentation of grasslands in the West Songnen Plain, China [J]. Agriculture Ecosystems and Environment, 2009, 129( ):315-324.
    [164] Smith S E,Facelli E,Pope S,et al. Plant performance in stressful environments: Interpreting new and established knowledge of the roles of arbuscular mycorrhizas [J]. Plant and Soil, 2010, 326(1):3-20.
    [165] Younginger B,Barnouti J,Moon D C. Interactive effects of mycorrhizal fungi, salt stress, and competition on the herbivores of Baccharis halimifolia [J]. Ecological Entomology, 2009, 34(5):580-587.
    [166] Garg N,Manchanda G. Role of arbuscular mycorrhizae in the alleviation of Ionic, osmotic and oxidative stresses induced by salinity in cajanus cajan (L.) Millsp (pigeonpea) [J]. Journal of Agronomy and Crop Science, 2009, 195(2):110-123.
    [167] Porras-Soriano A,Soriano-Martín M L,Porras-Piedra A,et al. Arbuscular mycorrhizal fungiincreased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions [J]. Journal of Plant Physiology, 2009, 166(13):1350-1359.
    [168] Sharifi M,Ghorbanli M,Ebrahimzadeh H. Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi [J]. Journal of Plant Physiology, 2007, 164(9):1144-1151.
    [169] Shokri S,Maadi B. Effects of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrinum plants under salinity stress [J]. Journal of Agronomy, 2009, 8(2):79-83.
    [170] Daei G,Ardekani M R,Rejali F,et al. Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions [J]. Journal of Plant Physiology, 2009, 166(6):617-625.
    [171] Zuccarini P. Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation [J]. Plant Soil and Environment, 2007, 53(7):283-289.
    [172] Friese C F,Allen M F. The spread of VA mycorrihizal fungal hyphae in the soil: Inoculum types and external hyphal architecture [J]. Mycologia, 1991, 83( ):409-418.
    [173] Rosales J,Cuenca G,Ramirez N,et al. Native colonizing species and degraded land restoration in La Gran Sabana, Venezuela [J]. Restoration Ecology, 1997, 5( ):147-155.
    [174] Cuenca G,De Andrade Z,Escalante G. Arbuscular mycorrhizae in the rehabilitation of fragile degraded tropical lands [J]. Biology and Fertility of Soils, 1997, 26(2):107-111.
    [175] Johnson N C,Graham J H,Smith F A. Functioning of mycorrhizal associations along the mutualism-parasitism continuum [J]. New Phytologist 1997, 135( ):575-586.
    [176] Karst J,Marczak L,Jones M D,et al. The mutualism-parasitism continuum in ectomycorrhizas: A quantitative assessment using meta-analysis [J]. Ecology, 2008, 89(4):1032-1042.
    [177] Juniper S,Abbott L K. A change in the concentration of NaCl in soil alters the rate of hyphal extension of some arbuscular mycorrhizal fungi [J]. Canadian Journal of Botany, 2004, 82(8):1235-1242.
    [178] Dodd J C,Thomson B D. The screening and selection of inoculant arbuscular-mycorrhizal and ectomycorrhizal fungi [J]. Plant and Soil, 1994, 159(1):149-158.
    [179] Sannazzaro A I,Ruiz O A,AlbertóE O,et al. Alleviation of salt stress in Lotus glaber by Glomus intraradices [J]. Plant and Soil, 2006, 285(1-2):279-287.
    [180] Davenport R,James R A,Zakrisson-Plogander A,et al. Control of sodium transport in durum wheat [J]. Plant Physiology, 2005, 137(3):807-818.
    [181] He Z,He C,Zhang Z,et al. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress [J]. Colloids and Surfaces B: Biointerfaces, 2007, 59( ):128-133.
    [182] Kaya C,Ashraf M,Sonmez O,et al. The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity [J]. Scientia Horticulturae, 2009, 121(1):1-6.
    [183] Sheng M,Tang M,Chen H,et al. Influence of arbuscular mycorrhizae on the root system of maize plants under salt stress [J]. Canadian Journal of Microbiology, 2009, 55(7):879-886.
    [184] Müller I,Schmid B,Weiner J. The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants [J]. Perspectives in Plant Ecology, Evolution and Systematics, 2000, 3(2):115-127.
    [185] Eissenstat D M,Graham J H,Syvertsen J P,et al. Carbon economy of sour orange in relation to mycorrhizal colonization and phosphorus status [J]. Annals of Botany, 1993, 71(1):1-10.
    [186] Johnson D,Leake J R,Ostle N,et al. In situ 13 CO2 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil [J]. New Phytologist, 2002,153(2):327-334.
    [187] Craine J. Competition for Nutrients and Optimal Root Allocation [J]. Plant and Soil, 2006, 285( ):171-185.
    [188] Bellgard S E. The topsoil as the major store of propagules of vesicular-arbuscular mycorrhizal fungi in southeast Australian sandstone soils [J]. Mycorrhiza, 1993, 3( ):19-24.
    [189] Schwab S,Reeves F B. The role of endomycorrhizae in revegetation practices in the semiarid west. III. Vertical distribution of Vesicular-arbuscular (VA) mycorrhiza inoculum potential [J]. American Journal of Botany, 1981, 68( ):1293-1297.
    [190] Brundrett M C. Coevolution of roots and mycorrhizas of land plants [J]. New Phytologist, 2002, 154( ):275-304.
    [191] Allen E B,Cunningham G L. Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels [J]. New Phytologist, 1983, 93(2):227-236.
    [192] Tian H,Gai J P,Zhang J L,et al. Arbuscular mycorrhizal fungi in degraded typical steppe of inner Mongolia [J]. Land Degradation and Development, 2009, 20( ):41-54.
    [193] Wang F Y,Liu R J,Lin X G,et al. Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta [J]. Mycorrhiza, 2004, 14(2):133-137.
    [194] Wilde P,Manal A,Stodden M,et al. Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes [J]. Environmental Microbiology, 2009, 11(6):1548-1561.
    [195] Landwehr M,Hildebrandt U,Wilde P,et al. The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils [J]. Mycorrhiza, 2002, 12(4):199-211.
    [196] Liu R J,Liu P Q,Xu K,et al. Ecological distribution of arbuscular mycorrhizal fungi in saline-alkaline soils of China [J]. Chinese Journal of Applied Ecology, 1999, 10(6):721-724.
    [197] Thrall P H,Bever J D,Slattery J F. Rhizobial mediation of Acacia adaptation to soil salinity: Evidence of underlying trade-offs and tests of expected patterns [J]. Journal of Ecology, 2008, 96(4):746-755.
    [198] Beauchamp V B,Stromberg J C,Stutz J C. Interactions between Tamarix ramosissima (saltcedar), Populus fremontii (cottonwood), and mycorrhizal fungi: Effects on seedling growth and plant species coexistence [J]. Plant and Soil, 2005, 275(1):221-231.
    [199] Jeffries P,Gianinazzi S,Perotto S,et al. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility [J]. Biology and Fertility of Soils, 2003, 37(1):1-16.
    [200] Sengupta A,Chaudhuri S. Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India [J]. Mycorrhiza, 2002, 12(4):169-174.
    [201] van der Heijden M G A,Bardgett R D,van Straalen N M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems [J]. Ecology Letters, 2008, 11(3):296-310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700