丙烯酸酯可再分散乳胶粉的制备及再分散稳定机理与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现有的建筑乳胶涂料含有消泡剂、流平剂、防腐剂、增稠剂等十多种助剂,是建筑涂料带来环境污染物VOC(有机挥发性化合物)的主要来源。随着环保要求的日趋严苛,涂料正向水性化、高固体份和粉末涂料方向发展。可再分散乳胶粉是一种可以在水中重新分散成稳定的分散液,并保持原聚合物乳液性能的聚合物粉末,它的出现为建筑涂料的干粉化提供了物质基础。开展可再分散乳胶粉的制备与性能研究,并与其他粉体材料结合使用开发干粉涂料,在理论和应用上都具有重要的意义。
     本研究根据喷雾干燥制备乳胶粉及乳胶粉应用要求,首先设计并制备具有“软核硬壳”粒子结构的丙烯酸酯乳液,再采用喷雾干燥法制得丙烯酸酯可再分散乳胶粉,建立喷雾干燥模型,探讨乳胶粉的再分散性影响因素及乳胶粉再分散液稳定机理。以此乳胶粉为主要成膜物质,开发干粉建筑涂料。应用核壳乳液聚合技术制备了具有核壳结构的磁性Fe_3O_4/PMAA(聚甲基丙烯酸)聚合物复合微球。具体研究工作如下:
     为制备可再分散乳胶粉,合成具有“软核硬壳”粒子结构的丙烯酸酯乳液。通过探讨乳胶粒子核壳层聚合物玻璃化温度(T_g)和核壳层单体质量比对乳胶粉外观和分散性的影响,确定了乳胶粒子的核壳结构参数。通过考察乳液聚合过程中聚合工艺、乳化剂、引发剂、种子单体、功能单体等用量对乳液凝胶率、固含量、粘度、粒径及其分布的影响,确定了最优合成工艺及配方。采用傅立叶红外光谱(FTIR)、透射电镜(TEM)、差示扫描量热仪(DSC)和扫描电镜(SEM)等分析表明,制备的丙烯酸酯乳液,乳胶粒具有清晰的核壳结构,核壳层聚合物T_g分别为-25℃和45℃,乳液具有良好的成膜性能。
     采用喷雾干燥法制备可再分散乳胶粉。通过探讨乳液粘度、固含量、干燥助剂硅溶胶及保护胶体聚乙烯醇(PVA)用量对乳胶粉再分散性、含水率、滤渣率等因素的影响,确定了干燥预处理工艺参数。考察喷雾干燥温度、雾化盘转速对乳胶粉含水率、滤渣率、再分散性及再分散液成膜性的影响,得到最优喷雾干燥工艺参数。通过FTIR、SEM、TEM、DSC、UVSP(紫外分光光度计)等分析显示,与原乳液相比,乳胶粉主要分子结构未发生明显改变,再分散液粒子呈球形且大小分布均匀,粒径略有增加。再分散液胶膜有两个T_g(?25℃和50℃),再分散液稳定性好。所有分析表明,制得的乳胶粉再分散后能较好的回复原乳液形态。通过引入动态质量控制方程和动态能量控制方程,建立乳胶粉喷雾干燥动态模型。将两方程关联起来,通过计算机Matlab程序计算,可模拟干燥过程中雾化液滴温度和水分随时间的动态变化过程。
     探讨了乳胶粉再分散液的稳定机理。为使乳胶粉及再分散液获得好的再分散性和稳定性,功能单体甲基丙烯酸(MAA)添加量占合成单体总质量的4%~5%,调节乳液pH至9.0以上,乳胶粒表面羧基转化为羧酸离子,亲水性基团在喷雾干燥时得到保护,避免乳胶粒子表面羧基之间发生缩聚反应,再分散液粒子表面具有多的羧基离子和高的Zeta电位,粒子间有强的静电斥力。同时粒子之间存在由静电作用产生的水合作用力。PVA用作保护胶体,乳胶粉再分散后,PVA包覆在乳胶粒子表面。其羟基伸向水中,庞大的聚乙烯长链基团则呈卷曲态吸附在乳胶粒子表面,为乳胶粒子提供了大的空间位阻,避免乳胶粒子之间发生碰撞,提高了再分散液的稳定性。这种空间位阻与粒子间的静电斥力、水合作用力一起,维持着再分散液乳胶粒子的稳定。
     以乳胶粉为主要成膜物质,重质碳酸钙、高岭土、滑石粉、纤维素醚等原料开发干粉涂料。乳胶粉用量对干粉涂料成膜性、耐水性和耐洗刷性有重要影响。纤维素醚可改善涂料施工性并调整干燥时间。较好的配方是:乳胶粉用量为30%,纤维素醚用量为0.6%,干粉涂料具有较好的施工性、耐水性和耐洗刷性能。
     应用制备具有核壳粒子结构聚合物技术,以油酸修饰的Fe_3O_4为核,采用细乳液聚合法,在超声作用下,制备Fe_3O_4/PMAA复合微球。通过考察超声功率对细乳液液滴粒径及其分散粒度的影响,确定了反应超声功率,同时考察乳化剂量对复合微球粒径的影响。乳化剂浓度低于或接近临界胶束浓度(CMC)时,单体液滴易发生团聚,磁性复合微球粒径分布变宽;乳化剂浓度远大于CMC浓度时,乳化剂会形成大量胶束,MAA会在乳化剂形成的胶束内成核,导致Fe_3O_4裸露形成空白粒子。合适的乳化剂浓度是大于CMC,聚合后复合物微球分散性好,粒径在100 nm左右。
Modern architectural coatings consist of many additives, including the defoaming agent, viscosity-increasing agent, etc. These additives are the source of volatile organic compounds (VOCs) produced from coatings. As environmental policy becomes stricter, these coatings are developing toward waterborne, high solid content and powder based coatings. Redispersible latex powder, a type of polymer powder, provides large improvements in the prepation of dry powdered coatings. When redispersible latex powder is dispersed in water, it is stable and has the same properties as the original latex. Research on preparing redispersible latex powder and developing dry powdered coatings combined with other powder materials shows great significance both in theory and practice.
     Based on the requirements of redispersible latex powder on spray drying and coating on application, firstly acrylate latex was synthesized with the configuration of a―soft core and hard shell‖, nextly the redispersible latex powder was prepared using the spray drying method. A spray drying model was established, and influencing factors on the powder’s redispersibility and stabilization mechanism of reconstituted latex were investigated. Dry powdered coating was developed in which the latex powder serves as the major constituent of the film forming material. Using emulsion polymerization technology on the core shell configuration, the magnetic composite microsphere (Fe3O4/PMAA) was prepared. The following describes the main focus of this work.
     Acrylate latex with the“soft core and hard shell”configuration was synthesized to prepare redispersible latex powder. Through investigation of the effect of the glass transition temperature (T_g) of the core and shell layer on the appearance and redispersibility of powder, the configuration parameters of the latex particles were determined. Furthermore, by investigation on the effect of the polymerization process, emulsifier, initiator, seed monomer and functional monomer on coagulation rate, solid content, viscosity, particle size and distribution, the optimized polymerization process was established. By Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM), it was determined that the latex particles have a clear core-shell configuration and two T_g s (-25℃and 45℃). In addition, the acrylate has good film forming properties.
     The redispersible latex powder was prepared by spray drying. Through investigation on the effects of latex viscosity, solid content, silicon sol and protective colloid (PVA) amount on redispersibility, water content, and residual content of the powder, the pretreatment parameters were determined. Moreover, by investigating the effect of drying temperature and atomizer speed on water content, residual content, redispersibility and film forming ability, the optimized spray drying parameters were established. By FTIR, SEM, TEM, DSC and UV-visible spectrometer, and comparison with the original latex, it was determined that the molecular configuration of redispersible powders does not change, while the particles have a spherical shape of uniform size slightly larger than original particle. The reconstituted latex is stable and the film has T_gs (-25℃and 50℃). All of the analyses show that after the powder is dispersed in water, it can return to its orginal conditions. The dynamic governing equations of mass and energy were utilized to establish a spray drying model for redispersible latex powder. By coupling the two equations and running a code developed in Matlab, the dynamic change of temperature and water content in the water droplet can be obtained.
     The stabilization mechanism of the reconstituted latex was also investigated. 4%~5% (of total monomers) MAA was added during polymerization, and the acrylate latex was neutralized to a pH above 9.0. The carboxyl group distributed on the surface of the particles was transformed into carboxylic ions in order to protect these groups during spray drying. In this way, the powder has good redispersiblity and the reconstituted latex has good stability. The particle also has a high zeta potential as much of the carboxylic ions were distributed on the particle surface. The particles also demonstrated a strong electrostatic repulsion force as well as hydration force caused by the interparticle electrostatic effect. PVA served as a protective colloid for the particles. After the powder was dispersed in the water, the particles were surrounded by PVA whose hydroxyl group bonded with the water and long chain poly-ethylene groups were absorbed on the surface of particles. These poly-ethylene groups provide enormous steric force and help to prevent particles aggregation. The electrostatic force, hydration force and steric force together stabilized the particles in the reconstituted latex.
     Based on redispersible latex powder, a dry powdered coating was developed using other inorganic materials and cellulose ether. The redispersible powder has a large influence on film forming ability, water resistance and abrasive resistance of the coating. Cellulose improves the working ability of the coating. Taking the formula amount of dry-powdered coating as follows, redispersible latex powder is 30% (mass percentage of total powder), cellulose ether is 0.6% (mass percentage of total powder), the dry-powdered coating possesses good film forming ability, good water and abrasive resistance, and good workability.
     Considering polymer technology with core shell configuration, based on Fe_3O_4 modified by oleic acid, the Fe_3O_4/PMAA composite microsphere was prepared by miniemulsion under sonication. The sonication power was determined by investigations on the effect of sonication power on droplet size and poly dispersing index (PDI). The effect of emulsifier amount on microsphere size was also investigated. When the emulsifier concentration was below or close to its critical micelle concentration (CMC), the monomer droplets easily aggregate with each other and the composite microsphere has a wide size distribution. When the emulsifier concentration was much higher than CMC, a large amount of micelle was formed. MAA will form cores inside the micelle and cause the magnetite particles to be exposed. The suitable emulsifier concentration is slightly higher than its CMC resulting in a composite microsphere with good dispersibiliy and a size of about 100 nm.
引文
[1] Chattopadhyay D. K, Raju K. Structural engineering of polyurethane coatings for high performance applications [J]. Progress in polymer science, 2007, 32(3):352~418
    [2]肖新颜,夏正斌,陈焕钦,等.环境友好涂料的研究新进展[J],化工学报,2003,54(4):531~537
    [3] Afridi M.U.K, Ohama Y, Demura K, et al. Development of polymer films by the coalescence of polymer particles in powdered and aqueous polymer-modified mortars [J]. Cement and Concrete Research, 2003, 33(11):1715~1721
    [4] Schulze J, Killermann O. Long-term performance of redispersible powders in mortars [J]. Cement and Concrete Research, 2001, 31(3): 357~362
    [5] Kim J.H, Robertson R.E. Prevention of air void formation in polymer-modified cement mortar by pre-wetting [J]. Cement and Concrete Research, 1997, 27(2):171~176
    [6] Walter J, Bray Jr. Spray drying of resin emulsions and products obtained thereby [P]. US3104234, 1963-09-17
    [7] Du Chesne A, Bojkova A, Gapinski J, et al. Film formation and redispersion of waterborne latex coatings [J], Journal of Colloid and Interface Science, 2000, 224: 91~98
    [8] Richard J, Bett W. Water redispersible powders of film-forming polymers with a“core/shell”structure [P]. US 6224981, 2001-05-01
    [9] Oku F, Sugishima M, Ogawa T, et al. Powder-form coating material for coating films, contains hydrazine type compound and redispersible powder containing emulsion formed from carbonyl-containing monomer and unsaturated monomers in presence of protective colloid [P]. JP 2006143857-A,2006-06-08
    [10] Weitzel H, Schorm A, Killat S, et al. Preparing cationically stabilized and water redispersible polymer powder composition, useful e.g. in glue and coating, comprises radically polymerizing ethylnically unsaturated monomer optionally in presence of e.g. emulsifier and drying [P]. US 2009030168-A1, 2009-01-29
    [11] Pak-harvey H, Mao C. Redispersible acrylic polymer powder for cementitious compositions [P]. US 5519084, 1996-05-21
    [12] Bright R, Vassallo J. Redispersible polymer powder using polyvinyl pyrrolidone as a dispersing aid [P]. US 5252704, 1993-10-12
    [13] Bett W, Castaing J, Dallest J. Surface chemistry modified latex and redispersible powders, production and use thereof. [P]. US7012114,2006-03-14
    [14] Willimann H, Koelliker R. Redispersible powder and its aqueous dispersion, preparation process and use. [P]. US 20060211805,2006-09-12
    [15] Beckerle, W, Dersch R, Franzmann G, et al. Polymer powders which are Re-dispersible in water and can be prepared by atomizing aqueous polymer dispersions and their use as additives in hydraulic binders [P]. US:5225478, 1993-07-06
    [16] Schulze J, Herold H, Hinterwinkler J. Re-dispersible powder composition [P]. US:5117751, 1992-06-02
    [17] Rauch H, Klesse W, Lehmann K, et al. Method for making Re-dispersible synthetic resin powders [P]. US: 4816558, 1989-03-28
    [18] Eck H, Roth M. Aqueous Re-dispersible powders which contain a water-soluble polymer and at least one organic silicon compound and a process for preparing the same [P]. US: 4704416, 1987-11-03
    [19] Zeller T, Bright R, Phillips M. Re-dispersible polymer powders by redistribution of polyvinyl alcohol dispersant [P]. US:5473013, 1995-12-05
    [20] Saija L.M, Uminski M. Water-redispersible low-Tg acrylic powders for the modification of hydraulic binder compositions. Journal of Applied Polymer Science, 1999, 71: 1781~1787
    [21] Peter B, Herbert E. Crosslinkable powder composition which is redispersible in water. US 6063865, 2000-05-16
    [22] Sauer T. Dispersible powder binder [P]. US 5703156, 1997-12-30.
    [23]林劲冬,陈焕钦. PVA-SH保护胶体对MMA /BA聚合物乳液及乳胶粉性能的影响[J].华南理工大学学报:自然科学版, 2006, 34(8):41~45
    [24]张杰.可再分散乳胶粉对外墙外保温及饰面系统性能的影响[J].新型建筑材料, 2001, (8):4~6
    [25]王茹,王培铭.丁苯乳液和乳胶粉对水泥水化产物形成的影响[J].硅酸盐学报, 2008, 36(7):912~919
    [26]仲前昌人,真木秀树,城裕和等.使用特殊聚乙烯醇作为保护胶体和喷雾助剂的高性能可再分散乳胶粉[J].新型建筑材料, 2008, (5):51~54
    [27]陈立斌,姜其斌,陆文雄.喷雾干燥法制备可再分散乳胶粉[J],涂料工业, 2008,(2):30~33
    [28]管学茂,罗树琼,杨雷.聚合物干粉对加气混凝土用抹灰砂浆性能的影响[J].建筑材料学报, 2007, 10 (3):302~306
    [29]乔渊,李运北,李春亮.可再分散聚合物乳胶粉对水泥砂浆微结构性能作用的研究[J].新型建筑材料, 2006, (7):4~8
    [30]马文石,黄胜,姜素琴,等.可再分散聚合物乳胶粉疏水/耐水性研究[J].化学建材, 2006, 22(1):33~35
    [31]马晶晶.可再分散乳胶粉的制备[D],大连,大连理工大学,2007
    [32]裴勇兵,张心亚,陈焕钦,等.干燥预处理对EVA可再分散乳胶粉性能的影响[J],江苏大学学报:自然科学版,2010, 31(1):93~97
    [33] Okubo M, Yamada A, Matsumoto T. Estimation of morphology of composite polymer emulsion particles by the soap titration method [J]. Journal of Polymer Science, 1980, 18: 3219~3228.
    [34] Santos A M, Elaissari A, Martinho J M G, et al. Synthesis of cationic poly(methyl methacrylate)-poly(N-iso-propyl acrylamide) core-shell latexes via two-stage emulsion copolymerization [J]. Polymer, 2005, 46: 1181~1192
    [35] Guyot A. Recent progress in reactive surfactants in emulsion polymerization. Macromolecular Symposia, 2002, 179: 105~132.
    [36] Christensen, K.L, Pedersen G.P, Kristensen H.G. Preparation of redispersible emulsion by spray drying [J], International Journal of Pharmaceutics, 2001, 212:187~194.
    [37] Robert K, Harald B. Composition containing a styrene/methacrylate polymer [P]. US 5959029, 1999-09-28
    [38]刘庆,陆文雄,赵美丽,等.可再分散乳胶粉的制备研究[J].化学建材, 2004,(12):12~13
    [39] Dollo G, Le Corre P, Guerin A, et al. Spray-dried Re-dispersible oil-in-water emulsion to improve oral bioavailability of poorly soluble drugs [J]. European Journal of pharmaceutical science, 2003, 19(4):273~280
    [40] Schawingan. Redispersible acrylic emulsion powder and its production [P], JP, 11292906. 1999-10-26
    [41] Cui F, Wang Y, Wang J, et al. Preparation of redispersible dry emulsion using Eudragit E100 as both solid carrier and unique emulsifier [J]. Colloids and Surfaces A: Physicochem, Eng. Aspects, 2007, 307:137~141
    [42]谢德龙,张心亚,陈焕钦,等.干燥进出口温度对EVA可再分散乳胶粉的影响[J].华南理工大学学报:自然科学版,2007, 35(7): 88~92
    [43]张心亚,江煜灵,陈焕钦,等.干燥温度对丙烯酸酯可再分散乳胶粉性能的影响[J],建筑材料学报, 2009,12(6):689-69
    [44]邱聪,董炎明,汪剑炜,等.可再分散聚合物粉末研究进展[J],化工进展,2004,23(11):1184~1187
    [45]邱聪.可再分散乳胶粉的制备及其改性效率研究[J],新型建筑材料,2006,(3):28
    [46]秦少雄,王娟,陈焕钦,等.乳液聚合中保护胶体的研究进展[J],中国胶粘剂,2005,14(10):47~50
    [47] Gilmore C. M, Poehlein G. W, Sschork F. J. Modeling poly (vinyl alcohol)-stabilized vinyl acetate emulsion polymerization theory [J]. Journal of Polymer Science.1993, 48(8):1449-1460
    [48] Hara K, Shibutani M, Kitamura K. Redispersible synthetic resin powder and use thereof [P], JP, 6602937, 2003-08-05
    [49] Yuki K, Nakamae M, Sato M, et al. Physical properties of copolymer colloid in comparison with those using surfactants [J]. Polymer International, 2000, 49(12):1629~1635
    [50]杜涛,裴梅山,段景宽,等.可再分散聚合物粉末的制备研究[J],胶体与聚合物,2006,24(2):12~15
    [51] Craig D.H, Del H. Hydrophobically modified hydroxyethyl cellulose in aqueous polymerization dispersions [P].US 4684704, 1987-08-04
    [52] Davide B. Process for the preparation of protective colloid-stabilized aqueous dispersions [P].US 6780918, 2004-08-24
    [53]张心亚,蓝仁华,陈焕钦.可再分散聚合物乳胶粉与建筑腻子粉[J].混凝土与水泥制品, 2001, (1):48~50
    [54]张义顺,朱伶俐.聚合物改性防水干混砂浆的试验研究[J].混凝土, 2006, (10): 85~88
    [55]张心亚,黄洪,陈焕钦,等.可再分散聚合物乳胶粉的性能及其应用[J].涂料工业, 2006, 36(10):43~46
    [56] Magat P.S, Limbachiya M.K. Repair material properties which influence long-term performance of concrete structures [J]. Concrete and Building materials, 1995, 9(2):81~90
    [57] Ohama Y. Polymer-based admixtures. Cement and Concrete Composite 1998, (20):189~212
    [58] Roger Zurbriggen,张量译,ELOTEX可再分散胶粉对瓷砖粘结砂浆性能的影响[J],化学建材,2003, (8):24~27
    [59]王子明,王亚丽.可再分散乳胶粉的制备与应用[J],商品混凝土,2005,(1):60
    [60]刘志勇,聚合物水泥基材料研究综述[J],新型建筑材料,2000,(1):26~28
    [61]肖力光,周建成.可再分散乳胶粉对建筑砂浆性能的影响[J],吉林建筑工程学院学报,2002,19(4):19~24
    [62]鞠丽艳,张雄.干粉砂浆的组分及其应用机理[J],混凝土,2002,(1):50~53
    [63]乔渊,李运北,李春亮.可再分散聚合物乳胶粉对水泥砂浆微结构性能作用的研究[J],新型建筑材料,2006,(7):5~7
    [64] Colic M, Fuerstenau D.W. The Influence of Surfactant Impurities on Colloid Stability and Dispersion of Powders in Aqueous Suspensions [J]. Powder Technology, 1998, 97: 129~138
    [65] Gallardo V, Morales M. E, Ruiz M. A, et al. An experimental investigation of the stability of ethylcellulose latex correlation between zeta potential and sedimentation [J]. European Journal of Pharmaceutical Science, 2005, 26: 170~175
    [66] Seville P.C, Learoyd T.P, Li H.Y, et al. Amino acid-modified spray-dried powders with enhanced aerosolisation properties for pulmonary drug delivery [J], Powder Technology, 2007, 178:40~50
    [67] Desset S, Spalla O, Cabane B. Redispersion of alumina particles in water [J]. Langmuir, 2000, 16(26): 10495~10508
    [68] Gunther L, Peukert W. Control of coating properties by tailored particle interactions: relation between suspension rheology and film structure [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 225:49~61.
    [69] Gunther L, Peukert W. The relevance of particle interactions in nanoparticulate systems - Application to particulate thin films [J], Particle and Particle Systems Characterization. 2002, 19 (5): 312~320.
    [70] Peukert W, Schwarzer H.C, Gotzinger, M et al, Control of particle interfaces - the critical issue in nanoparticle technology [J], Advanced Powder Technology, 2003, 14(4), 411~42
    [71] Bostrom M, Deniz V, Frank G. V. et al. Extended DLVO theory: Electrostatic and non-electrostatic forces in oxide suspensions [J]. Advances in Colloid and Interface Science 2006, 123, 5~15.
    [72] Manciu M, Ruckenstein E. Specific ion effects via ion hydration: I. Surface tension [J]. Advances in Colloid and Interface Science, 2003, 105, 63~101.
    [73] Ninham B. W, Yaminsky V. Ion binding and ion specificity: The Hofmeister effect and Onsager and Lifshitz theories. Langmuir 1997, 13 (7): 2097~2108.
    [74] Ruckenstein E, Manciu M. Specific ion effects via ion hydration: II. Double layer interaction [J]. Advances in Colloid and Interface Science 2003, 105, 177~200.
    [75]谢德龙,聚合物胶体颗粒的剪切团聚和凝胶行为[D].广州:华南理工大学,2010。
    [76] Romero-Cano M. S, Puertas A. M, De las Nieves F. J. Colloidal aggregation under steric interactions: Simulation and experiments [J]. Journal of Chemical Physics 2000, 112 (19): 8654-8659.
    [77] Vincent B, Edwards J, Emmett S. et al. Depletion flocculation in dispersions of sterically-stabilized particles (soft spheres) [J]. Colloids and Surfaces 1986, 18 (2-4): 261~281.
    [78] Cowell C, Liinon R, Vincent B. Reversible flocculation of sterically-stabilized dispersions [J]. Journal of the chemical society-faraday transactions I, 1978, 74, 337-347.
    [79] Vincent B, Luckham P. F, Waite F. A. The Effect of free polymer on the stability of sterically stabilized dispersions [J]. Journal of colloid and interface science, 1980, 73 (2): 508~521.
    [80]李启厚,黄异龄,王红军,等.粒径≤2μm的超细粉体颗粒分散方式探讨[J].粉末冶金材料科学与工程, 2007,12(5):284~289
    [81] Klotz S, Steinle-Neumann T, Strassle T, et al. Magnetism and the Verwey transition in Fe_3O_4 under pressure [J]. Physical review B, 2008, 77(1):1~4
    [82] Teja A.S, Koh P. Synthesis, properties and applications of magnetic iron oxide nanoparticles [J]. Progress Crystal Growth Characerizationt of Materials. 2009, 55: 22~45
    [83] Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles [J]. Journal of American Chemical Society, 2002, 124: 8204~8205
    [84] Ozkaya T, Toprak M.S, Baykal A, et al. Synthesis of Fe_3O_4 nanoparticles at 100 degrees C and its magnetic characterization [J]. Journal of alloys compdounds, 2009, 472: 18~23
    [85] Mizukoshi Y, Shuto T, Masahashi N, et al. Preparation of superparamagnetic magnetite nanoparticles by reverse precipitation method: Contribution of sonochemically generated oxidants [J]. Ultrasonic. Sonochemistry. 2009, 16: 525–531
    [86] Valenzuela R, Fuentes M.C, Parra C, et al. Influence of stirring velocity on the synthesis of magnetite nanoparticles (Fe_3O_4) by the co-precipitation method. Journal of alloys compdounds. 2009, 488: 227~231
    [87] Gnanaprakash G, Philip J, Jayakumar T, et al. Effect of digestion time and alkali addition rate on physical properties of magnetite nanoparticles [J]. Journal of physical Chemistry B: 2007, 111: 7978~7986.
    [88] Gnanaprakash G, Mahadevan S, Jayakumar, T, et al. Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles [J]. Materials Chemistry Physics. 2007, 103: 168~175
    [89] Hu D, Wang Y, Song Q. Weakly magnetic field-assisted synthesis of magnetite nano-particles in oxidative co-precipitation [J]. Particuology. 2009, 7: 363~367
    [90] Vereda F, de Vicente J, Hidalgo-Alvarez R. Influence of a magnetic field on the formation of magnetite particles via two precipitation methods [J]. Langmuir. 2007, 23: 3581~3589
    [91] Pardoe H, Chua-anusorn W, Pierre T.G.S et al. Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol [J]. Journal of magnetism and magnetic materials, 2001, 225: 41~46
    [92] Nedkov I, Merodiiska T, Slavov L, et al. Surface oxidation, size and shape of nano-sized magnetite obtained by co-precipitation [J]. Journal of magnetism and magnetic materials, 2006, 300: 358~367
    [93] Bandhu A, Mukherjee S, Acharya S, et al. Dynamic magnetic behaviour and Mossbauer effect measurements of magnetite nanoparticles prepared by a new technique in the co-precipitation method [J]. Solid State Communication. 2009, 149: 1790~1794
    [94] Qu S, Yang H, Ren D, et al. Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions [J]. Journal of colloid and interface Science. 1999, 215: 190–192
    [95] Dang F, Enomoto N, Hojo, J. et al. Synthesis of momodispersed cubic magnetite particles through the addition of small amount of Fe3+ into Fe(OH)2 suspension [J], Journal of crystal growth, 2010, 312, 1736~1740
    [96] Peng S, Wang C, Xie, J, et al. Synthesis and stabilization of monodisperse Fe nanoparticles [J]. Journal of American Chemical Society, 2006, 128: 10676~10677.
    [97] Ge J, Hu Y, Biasini M, et al. One-step synthesis of highly water-soluble magnetite colloidal nanocrystals [J]. Chemistry European Journal. 2007, 13: 7153~7161
    [98] Lu X, Niu M, Qiao R, et al. Superdispersible PVP-Coated Fe_3O_4 Nanocrystals Prepared by a "One-Pot" Reaction [J]. Journal of physical chemistry B, 2008, 112: 14390~14394.
    [99] Li Z, Chen H, Bao H, et al. One-pot reaction to synthesize water-soluble magnetite nanocrystals [J]. Chemistry of Materials. 2004, 16: 1391~1393.
    [100] Vargas J.M, Zysler R.D. Tailoring the size in colloidal iron oxide magnetic nanoparticles [J]. Nanotechnology. 2005, 16: 1474~1476
    [101] Zhao S, Asuha S. One-pot synthesis of magnetite nanopowder and their magnetic properties [J]. Powder Technology. 2010, 197: 295~297
    [102]崔陇兰,单分散Fe_3O_4/PS复合微球的制备研究[D],上海:上海交通大学,2008
    [103] Wormuth K. Superparamagnetic latex via inverse emulsion polymerization [J], Journal of colloid and interface science, 2001, 241, 366~377
    [104] Wang P.C, Chiu W.Y, Lee C.F, et al., Synthesis of iron oxide/poly(methyl methacrylate) composite latex particles: nucleation mechanism and morphology [J], Journal of polymer science: PartA: polymer chemistry, 2004, 42, 5695~5705
    [105] Deng Y, Wang L, Yang W, et al. Preparation of magnetic polymeric particles via inverse microemulsion polymerization process, Journal of Magnetism and Magnetic Materials [J], 2003, 257, 69~78
    [1] Schulze J, Killermann O. Long-term performance of redispersible powders in mortars [J]. Cement and Concrete Research, 2001, 31(3): 357~362
    [2] Richard J, Bett W. Water-redispersible powders of film-forming polymers with a "core/shell" structure [P]. US 6224981, 2001-5-1
    [3] Oku F, Sugishima M, Ogawa T et al. Powder- form coating material for coating films, contains hydrazine type compound and redispersible powder containing emulsion formed from carbonyl-containing monomer and unsaturated monomers in presence of protective colloid [P]. JP: 2006, 143, 857-A, 2006-06-08.
    [4] Saija L.M, Uminski M. Water-redispersible low-Tg acrylic powders for the modification of hydraulic binder compositions. Journal of Applied Polymer Science, 1999, 71: 1781~1787
    [5] Guyot A. Recent progress in reactive surfactants in emulsion polymerization. Macromolecular Symposia, 2002, 179: 105~132
    [6] Peter B, Herbert E. Crosslinkable powder composition which is redispersible in water. US 6063865, 2000-05-16
    [7] Christensen, K.L, Pedersen G.P, Kristensen H.G. Preparation of redispersible emulsion by spray drying [J], International Journal of Pharmaceutics, 2001, 212:187~194
    [8] Robert K, Harald B. Composition containing a styrene/methacrylate polymer [P]. US 5959029, 1999-09-28
    [9] Okubo M, Yamada A, Matsumoto T. Estimation of morphology of composite polymer emulsion particles by the soap titration method [J]. Journal of Polymer Science, 1980, 18: 3219~3228.
    [10] Santos A. M, Elaissari A, Martinho J. M. G, et al. Synthesis of cationic poly(methyl methacrylate)-poly(N-iso-propyl acrylamide) core-shell latexes via two-stage emulsion copolymerization [J]. Polymer, 2005, 46: 1181~1192.
    [11]管蓉,李建宗,艾照全,等.丙烯酸酯乳液共聚物胶粘剂的合成、性能和应用[J].中国胶粘剂, 1994, 3( 2): 43~47
    [12]杨玉昆.压敏胶粘剂[M].北京:科学出版社, 1991, 151
    [13]大森英三.功能性丙烯酸酯[M].第2版.张育川,朱传肇.北京:化学工业出版社,1986
    [14]张心亚,何艳萍,陈焕钦,等.羟基单体对丙烯酸聚合物乳液及其乳胶粉性能的影响[J],华南理工大学学报:自然科学版,2010, 38(8):23~28
    [15]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用(第二版)[M].北京:化学工业出版社, 2007
    [16]张心亚,蓝仁华,陈焕钦.含功能性单体的苯/丙乳液聚合稳定性[J].华南理工大学学报(自然科学版), 2004, 32(3): 15~19
    [17]陈立军.丙烯酸酯类聚合物乳液的制备及其相关应用的研究[D].广州:华南理工大学,2006
    [1] Dollo G, Le Corre P, Guerin A, et al. Spray-dried Re-dispersible oil-in-water emulsion to improve oral bioavailability of poorly soluble drugs [J]. European Journal of pharmaceutical science, 2003, (19):273~280
    [2] Schawingan. Redispersible acrylic emulsion powder and its production: JP, 11292906 [P]. 1999-10-26
    [3]黄胜,马文石.可再分散聚合物乳胶粉的制备方法及应用[J],化学与黏合,2006,(2):115~116
    [4] Harvey P. Redispersible acrylic polymer powder for cementitious composition[P]. US 5519084, 1996-5-21
    [5] Wacker-Chemie Cmbh Co.保护胶体稳定的聚合物组合物[P]. CN 1245816A, 2000-03-01
    [6] Gilmore C. M, Poehlein G. W, Sschork F. J. Modeling poly(vinyl alcohol)-stabilized vinyl acetate emulsion polymerization theory [J]. Journal of Polymer Science.1993, 48(8):1449~1460
    [7]谢德龙,张心亚,陈焕钦.等.干燥进出口温度对EVA可再分散乳胶粉的影响[J].华南理工大学学报:自然科学版,2007, 35(7): 88~92.
    [8]邱聪.可再分散乳胶粉的制备及其改性效率研究[J].新型建筑材料, 2006, (3):27~31
    [9]杜涛,裴梅山,段景宽.等.可再分散性聚合物粉末的制备研究[J].胶体与聚合物, 2006, 24(2):12~15
    [10]张心亚,江煜灵,陈焕钦.等.干燥温度对丙烯酸酯可再分散乳胶粉性能的影响[J],建筑材料学报, 2009,12(6):689~692
    [11]江煜灵,张心亚,陈焕钦.等.雾化盘转速对制备可再分散丙烯酸酯乳胶粉的影响[J],新型建筑材, 2009,36(11):20~24
    [12]江煜灵.可再分散丙烯酸酯乳胶粉的制备和再分散机理研究[D].广州:华南理工大学,2010
    [13]张心亚,沈慧芳,陈焕钦等.含羧基苯/丙乳液乳胶粒径及其碱增稠特性[J].华南理工大学学报:自然科学版, 2005, 33(10):98~102
    [14] Gunther L, Peukert W. Control of coating properties by tailored particle interactions: relation between suspension rheology and film structure [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 225:49~61
    [15] Gunther L, Peukert W. The relevance of particle interactions in nanoparticulate systems - Application to particulate thin films [J], Particle and Particle Systems Characterization. 2002,19 (5): 312~320
    [16] Peukert W, Schwarzer H.C, Gotzinger, M et al, Control of particle interfaces - the critical issue in nanoparticle technology [J], Advanced Powder Technology, 2003, 14(4) :411~426
    [17] Su Y, Li G, Xue Y, et al. Tunable physical properties of CaWO4 nanocrystals via particle size control [J]. Journal of Physical Chemistry. C, 2007, 111 (18):6684~6689
    [18] Visschers M, Laven J, German A L. Current Understanding of the Deformation of Latex Particles During Film Formation [J]. Progress in Organic Coatings.1997, (30):39~49
    [19]王喜忠,于才渊,周才君.喷雾干燥[M].北京:化学工业出版社, 2003
    [20]孙海云,方文军,郭永胜.等.抗氧化剂对燃料NNJ-150热氧化安定性的影响[J].高校化学工程学报, 2006, 20(3):455~459.
    [21] Gallardo V, Morales M.E, Ruiz M. A. et al. An experimental investigation of the stability of ethylcellulose latex correlation between zeta potential and sedimentation [J]. European Journal of Pharmaceutical Science, 2005, 26: 170~175
    [22] Langrish T.A.G, Kockel T.K. The assessment of a characteristic dyring curve for milk powder for use in computational fulid dynamics modeling [J], Chemical Engineering Journal, 2001, 84:69~74
    [1] Schulze J, Killermann O. Long-term performance of redispersible powders in mortars [J]. Cement and Concrete Research, 2001, 31(3): 357~362
    [2] Stefan D, Joachim P, Mario S, et al. Cement compositions comprising Re-dispersible polymer powders [P]. US:6489381, 2002-12-03
    [3] Randall B, Jayson V. Re-dispersible polymer powders using polyvinyl pyrrolidone as a dispersing aid [P]. US:5252704, 1993-10-12
    [4] Davide B. Process for the preparation of protective colloid-stabilized aqueous dispersions [P]. US:6780918, 2004-8-24
    [5] Guyot A. Recent progress in reactive surfactants in emulsion polymerization. Macromolecular Symposia, 2002, 179: 105~132
    [6] Colic M, Fuerstenau D.W. The Influence of Surfactant Impurities on Colloid Stability and Dispersion of Powders in Aqueous Suspensions [J]. Powder Technology, 1998, 97: 129~138.
    [7] Gallardo V, Morales M. E, Ruiz M. A, et al. An experimental investigation of the stability of ethylcellulose latex correlation between zeta potential and sedimentation [J]. European Journal of Pharmaceutical Science, 2005, 26: 170~175
    [8] Seville P.C, Learoyd T.P, Li, H.Y, Williamson, I.J, et al, Amino acid-modified spray-dried powders with enhanced aerosolisation properties for pulmonary drug delivery [J], Powder Technology, 2007, 178:40~50.
    [9] Desset S, Spalla O, Cabane B. Redispersion of alumina particles in water [J]. Langmuir, 2000, 16(26): 10495~10508
    [10] Saija L. M. Uminski M. Water-redispersible low-T-g acrylic powders for the modification of hydraulic binder compositions [J].Journal of Applied Polymer Science. 1999, 71(11):1781-1787
    [11] Herbert B, Herbert B. Reiner F. Crosslinkable powder composition which is redispersible in water. US 6197863, 2001-03-06
    [12] Harvey P. Redispersible acrylic polymer powder for cementitious composition [P]. US 5519084, 1996-5-21
    [13] Helen P. H, Chung L. M. Re-dispersible acrylic polymer powder for cementitious compositions [P]. US:5519084, 1996-05-21
    [14]江煜灵.可再分散丙烯酸酯乳胶粉的制备和再分散机理研究[D].广州:华南理工大学,2010
    [15]张心亚,沈慧芳,陈焕钦,等.含羧基苯/丙乳液乳胶粒径及其碱增稠特性[J].华南理工大学学报:自然科学版, 2005, 33(10):98~102
    [1]肖新颜,夏正斌,张旭东,等.环境友好涂料的研究新进展[J],化工学报,2003,54(4):531~537
    [2] Robert K, Harald B. Composition containing a styrene/methacrylate polymer [P]. US: 5 959 029, 1999-09-28
    [3] Ci X, Richard A.D, Foster M R. Water-dispersible powder composition for water-resistant coatings [P]. US: 5 908 877, 1999-06-01
    [4]林宣益.乳胶漆[M],北京:化学工业出版社,2004
    [5]涂伟萍.水性涂料[M],北京:化学工业出版社,2006:106~107
    [1] Nishio K, Ikeda M, Gokon N, et al. Preparation of size-controlled (30-100 nm) magnetite nanoparticles for biomedical applications [J]. Journal of magnetism and magnetic materials, 2007, 310: 2408–2410.
    [2] Sudimack J.B.A, Lee R.J. Targeted drug delivery via the folate receptor [J]. Advanced drug delivery review, 2000, 41:147~162.
    [3] Jordan A, Scholz R, Maier-hauff K, et al. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. Preparation of size-controlled (30-100 nm) magnetite nanoparticles for biomedical applications [J]. Journal of magnetism and magnetic materials, 2001, 225:118~126.
    [4] Hu F, Wei L, Zhou Z, et al. Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer [J]. Advanced Materials, 2006, 18: 2553~2556.
    [5] Song H, Choi J, Huh, Y, et al. Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling [J]. Journal of American Chemical Society, 2005, 127: 9992~9993.
    [6] Sun, S, Zeng H. Size-controlled synthesis of magnetite nanoparticies [J]. Journal of American Chemical Society, 2002, 124: 8204~8205.
    [7] Teo B.M, Chen F, Hatton T.A, et al. Novel One-Pot Synthesis of Magnetite Latex Nanoparticles by Ultrasound Irradiation [J]. Langmuir. 2009, 25: 2593~2595.
    [8] Teja A.S, Koh P. Synthesis, properties, and applications of magnetic iron oxide nanoparticles [J]. Progress Crystal Growth Characerizationt of Materials. 2009, 55: 22~45.
    [9] Peng S, Wang C, Xie, J, et al. (2006). Synthesis and stabilization of monodisperse Fe nanoparticles [J]. Journal of American Chemical Society, 2006, 128: 10676~10677.
    [10] Ge J, Hu Y, Biasini M, et al. (2007). One-step synthesis of highly water-soluble magnetite colloidal nanocrystals [J]. Chemistry European Journal. 2007, 13: 7153~7161.
    [11] Lu X, Niu M, Qiao R, et al. Superdispersible PVP-Coated Fe_3O_4 Nanocrystals Prepared by a "One-Pot" Reaction [J]. Journal of physical chemistry B, 2008, 112: 14390~14394.
    [12] Li Z, Chen H, Bao H, et al. One-pot reaction to synthesize water-soluble magnetite nanocrystals [J]. Chemistry of Materials. 2004, 16: 1391~1393.
    [13] Vargas J.M, Zysler R.D. Tailoring the size in colloidal iron oxide magnetic nanoparticles [J]. Nanotechnology. 2005, 16: 1474~1476.
    [14] Hu D, Wang Y, Song Q. Weakly magnetic field-assisted synthesis of magnetite nano-particles in oxidative co-precipitation [J]. Particuology. 2009, 7: 363~367.
    [15] Mizukoshi Y, Shuto T, Masahashi N, et al. Preparation of superparamagnetic magnetite nanoparticles by reverse precipitation method: Contribution of sonochemically generated oxidants [J]. Ultrasonic. Sonochemistry. 2009, 16: 525–531.
    [16] Nedkov I, Merodiiska T, Slavov L, et al. Surface oxidation, size and shape of nano-sized magnetite obtained by co-precipitation [J]. Journal of magnetism and magnetic materials, 2006, 300: 358–367
    [17] Qu S, Yang H, Ren D, et al. Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions [J]. Journal of colloid and interface Science. 1999, 215: 190–192.
    [18] Pardoe H, Chua-anusorn W, Pierre T.G.S et al. Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol [J]. Journal of magnetism and magnetic materials, 2001, 225: 41~46.
    [19] Bandhu A, Mukherjee S, Acharya S, et al. Dynamic magnetic behaviour and Mossbauer effect measurements of magnetite nanoparticles prepared by a new technique in the co-precipitation method [J]. Solid State Communication. 2009, 149: 1790~1794.
    [20] Ozkaya T, Toprak M.S, Baykal A, et al. Synthesis of Fe_3O_4 nanoparticles at 100 degrees C and its magnetic characterization [J]. Journal of alloys compdounds, 2009, 472: 18~23.
    [21] Zhao S, Asuha S. One-pot synthesis of magnetite nanopowder and their magnetic properties [J]. Powder Technology. 2010, 197: 295~297.
    [22] Valenzuela R, Fuentes M.C, Parra C, et al. Influence of stirring velocity on the synthesis of magnetite nanoparticles (Fe_3O_4) by the co-precipitation method. Journal of alloys compdounds. 2009, 488: 227~231.
    [23] Gnanaprakash G, Philip J, Jayakumar T, et al. Effect of digestion time and alkali addition rate on physical properties of magnetite nanoparticles [J]. Journal of physical Chemistry B: 2007, 111: 7978~7986.
    [24] Gnanaprakash G, Mahadevan S, Jayakumar, T, et al. Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles [J]. Materials Chemistry Physics. 2007, 103: 168~175.
    [25] Vereda F, de Vicente J, Hidalgo-Alvarez R. Influence of a magnetic field on the formation of magnetite particles via two precipitation methods [J]. Langmuir. 2007, 23: 3581~3589.
    [26] Kang N. Perron M, Prud’homme R.E, et al, Sterocomplex block copolymer micelles: core-shell nanostructures with enhanced stability [J], Nano letters, 2005, 5(2):315~319
    [27] Caruntu D,Cartuntu G, Chen Y, et al, Synthesis of variable-sized nanocryastals of Fe_3O_4 with high surface reactivity [J], Chemistry of Materials, 2004,16(25):5527~5534
    [28]崔陇兰,单分散Fe_3O_4/PS复合微球的制备研究[D],上海:上海交通大学,2008
    [29] Zhang M, O’Connor C.J. Synthesis and characterization of PMMA coated magnetic nanocomposites by emulsion polymerization [J], Materials research society symposium proceedings, 2007, 1032-I14-42
    [30] Zhang L, He R, Gu H.C, Oleic acid coating on the monodisperse magnetite nanoparticles [J], Applied surface science, 2006,253:2611~2617
    [31] Park J.Y, Patel D, Choi E.S, et al. Salt effects on the physical properties of magnetite nanoparticles synthesized at different NaCl concentrations [J]. Colloids and surface A: 2010, 367: 41~46.
    [32] Dunlop D.J. Superparamagnetic and single-domain threshold size in magnetite [J]. Journal of geophysical research. 1973, 78: 1780~1793.
    [33] Ge S, Shi X, Sun K, et al. Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties [J]. Journal of physical chemistry: C. 2009, 113: 13593~13599.
    [34] Lin C, Chen M, Huang H, et al, Capillary electrophoresis study on the micellization and critical micelle concentration of sodium dodecyl sulfate influence of slubulilized solutes [J], Journal of chromatography A, 2001, 924:83~91
    [35] Lu S, Forrcada J. Preparation and characterization of magnetic polymeric composite particles by miniemulsion polymerization [J], Journal of polymer science: Part A: Polymer Chemistry, 2006, 44(13): 4187: 4203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700