利用二水石膏制备粉刷石膏的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国每年排放化学石膏1亿吨以上,绝大多数都堆积弃用,不仅占用了大量的土地,而且污染环境。因此综合利用工业副产石膏对生态环境保护有着十分重要的意义。在目前工业固体废弃物综合利用中,建材行业占90%以上,在建设节约型社会中有其特殊地位,是发展循环经济中的重要一环。利用化学石膏生产石膏建材是资源综合利用的有效途径之一,而且石膏建材同其他水泥建材相比,具有节能、环保、保温隔热的优势,显著提升了建筑物的质量和功能,是一种生态环保建材。
     从工业废石膏的资源化利用和建筑节能出发,本文提出两种新的制备粉刷石膏的制备方法,即以二水石膏掺矿渣、水泥、外加剂等制备二水石膏型粉刷石膏,以及二水石膏—无水石膏混合相掺矿渣、水泥、外加剂等制备二水石膏-无水石膏混合相型粉刷石膏。打破了传统二水石膏必须经煅烧脱水成半水石膏或无水石膏才能做粉刷石膏的老思路,开辟了一条二水石膏无需煅烧,直接利用的新途径。系统研究了各种硫铝酸盐水泥、复合促凝剂、保水剂等外加剂以及石膏的预处理等因素对石膏基复合胶凝材料和粉刷石膏性能的影响,并在此基础上探讨石膏、矿渣、水泥等的水化机理。
     本文通过实验,获得了一些重要结果,结果表明:
     (1)磷石膏因含有游离酸,须经过石灰中和处理。处理后的陈化时间对复合材料的性能也产生较大的影响,陈化时间最好要大于7天。
     (2)硫铝酸盐水泥、复合促凝剂掺量对二水磷石膏粉刷料的凝结时间有很大影响,对早期强度影响也较大。随着硫铝酸盐水泥、复合促凝剂掺量的增加,凝结时间逐渐缩短,早期强度和后期强度也得到提升,但是当硫铝酸盐水泥、复合促凝剂掺量过大时,材料的强度又呈现下降趋势。
     (3)用磷石膏制备粉刷石膏的配比为,磷石膏:矿渣:水泥(质量百分比)=60:30:10,其他外加剂外掺计量,当硫铝酸盐水泥掺量为10%,石灰掺量为1.5%,复合促凝剂掺量为2.5%,MC掺量为0.1%,PVA掺量为0.5%时,粉刷石膏的性能最优,3d抗折达3.1 MPa,抗压强度达12.7MPa,28d粘结强度为1.0 MPa,抗折强度达到粉刷石膏标准要求,粘结强度、抗压强度远高于标准要求。
     (4)用脱硫石膏-氟石膏混合相石膏制备粉刷石膏的最佳配比为脱硫石膏:氟石膏:矿渣:普通硅酸盐水泥(质量百分比)=35:35:20:10,其他添加剂外掺计量,硫铝酸盐水泥掺量为5%,石灰掺量为2%,促凝剂掺量为2%,MC掺量为0.1%,PVA掺量为0.3%时粉刷石膏的性能最优。3d抗折强度为3.6 MPa,抗压强度为12.2 MPa,28d粘结强度为1.1 MPa。
Most of China’s emissions of chemical gypsum, estimated higher than 100,000,000 tons annualy, are stacked and abandoned. Thus not only occupies vast land, also pollutes the enviroment seriously. Therefore, comprehensive utilization of industrial by-product gypsum is of great significance for the protection of ecological environment. In the current recycling of the industrial solid waste, the field of building materials accounts for more than 90% , which therefore enjoys a special status to build a conservation-oriented society and develop sustainable economy. Utilization of chemical gypsum to produce gypsum-based building materials has proved to be effective. In addition, compared with cement-based building materials, the gypsum-based building materials are charactrized by energy-saving, enviormentally friendness and good thermal insulation. Due to the considerable improvement of both quality and fuction of buildings by the use of gypsum-based building materials, it is a type of eco-friendly building materials.
     For the purpose of utilization of the wasted industrial gypsum and energy reduction, two innovative methods to make wall plaster were put forward in this thesis. Dihydrate gypsum and dihydrate–anhydrite composite, were blended with a certain amount of blast slag,ordinary cement,addtives to make wall plaster,respectively. This is beyond the traditional method of production of wall plaster, which always experiences a process of calcining of dihydrate gypsum to obtain anhydrate or hemihydrate gypsum. Systematic investigation on influence of sulphoaluminate cement,composite setting accelerator,water-retaining agent(etc.) and pretreatment of gypsum on properties of wall plaster were conducted. The hydration mechanism of gypsum,blast slag and cement were also discussed.
     Based on the experimental results, some important findings were obtained and showed in the following:
     (1) Phosphogypsum must be neutralized with lime prior to use due to the existence of free acid. The slaking time affects the properties of the manufatured composite wall plaster radically and at least seven days of slaking proved to be needed.
     (2) The dosage of sulphoaluminate cement and composite setting accelerator influences the setting time and early strength of the wall plaster considerably. The setting time reduces and the strength improves with the increase of the dosage of sulphoaluminate cement and composite setting accelerator. However, the strength decreases if excessive sulphoaluminate cement and composite setting accelerator were added.
     (3) When phosphogypsum is involved to make wall plaster,the optimum mix proportion can be expressed as phosphogypsum: slag: ordinary cement (mass percent)= 60:30:10. In addition, 10% sulphoaluminate cement,1.5% lime,2.5% composite setting accelerator, 0.1%methyl cellulose(MC),0.5% polyvinyl alcohol(PVA) were added. The flexural ,compressive strength at the age of 3 days and the bonding strength at the age of 28 days achieved 3.1MPa,12.7MPa,and 1.0MPa,respectively. The flexural strength can meet the technical requirement specified in the gypsum specification. The bonding strength and compressive strength is considerably higher than the indexes required.
     (4) When desulfogypsum-fluorogypsum is involved to make wall plaster,the optimum mix proportion can be expressed as desulfogypsum:fluorogypsum slag: ordinary cement(mass percent) = 35:35:20:10. In addition, 5% sulphoaluminate cement,2% lime,2% composite setting accelerator, 0.1% MC, 0.3% PVA were added. The flexural ,compressive strength at the age of 3 days and the bonding strength at the age of 28 days achieved 3.6MPa,12.2MPa,and 1.1MPa,respectively.
引文
[1]彭汉礼.国际上建筑石膏及其制品的研究与生产.国外建材科技, 1999, 20(1): 62-64
    [2]朱瀛波,张高科.石膏工业对发展我国新型建材的作用.中国非金属矿工业导刊, 1999, (6): 8-10
    [3]周富涛.工业副产石膏资源化处理及其应用研究: [湖南大学硕士学位论文].长沙:湖南大学, 2007, 5-7
    [4]黄孙恺.用烟气脱硫石膏制备建筑石膏的工艺技术.新型建筑材料, 2005, (1): 27-28
    [5] H.-J.Engert et al. The new gypsum binder alpha 2000-production technology and products. ZKG international, 1998, (4): 229-237
    [6]林方辉.以粉煤灰为改性组分的石膏粉煤灰胶结材研究.粉煤综合利用, 1997, (3): 27-32
    [7] T Mallon. FGD gypsum technicala spectso fasecondaryraw material, part 1, ZKG international, 1998, (4): 220-228
    [8]丛钢.脱硫石膏性能研究.新型建筑材料, 1997, (12): 10-12
    [9]彭志辉,季建新,林芳辉,等.烟气脱硫石膏及其建材资源化研究.重庆环境科学, 2000, 22(6): 26-32
    [10]李彦,衣怀峰,赵博等.燃煤烟气脱硫石膏在新疆盐碱土壤改良中的应用研究.生态环境学报, 2010, 19(7): 1682-1685
    [11]林少敏,黄利榆,陈少瑾.氯离子对脱硫石膏结晶性能的影响.广东化工, 2010, 37(7): 17-23
    [12]杜谦,马春元,董勇等.石灰石-石膏湿法烟气脱硫过程的试验研究.热能动力工程, 2007, 22(2): 216-220
    [13]史培阳,邓志银,袁义义等.利用脱硫石膏水热合成硫酸钙晶须.东北大学学报(自然科学版), 2010, 31(1): 76-79
    [14]丛钢,邢世健,张沪.脱硫石膏性能研究.建筑石膏与胶凝材料, 1997, (12): 10-12
    [15]彭志辉,季建新,林芳辉,等.烟气脱硫石膏及其建材资源化研究.重庆环境科学, 2006, 22(6): 26-32
    [16] M Hulusi Ozkul. Utilization of citro- and desulphogypsum as set retarders in Portland cement. Cement and Concrete Research, 2000, 30(11): 1755-1758
    [17] Mingjie Hua, Baotian Wang, Liming Chen,et al. Verification of lime and water glass stabilized FGD gypsum as road sub-base.Fuel, 2009, 11(29): 543-548
    [18]杨斌.水热法处理磷石膏过程研究: [硕士学位论文].昆明:昆明理工大学应用化学, 2006
    [19]张克华.化工磷石膏制备石膏胶凝材料研究及应用: [南京理工大学硕士论文].南京:南京理工大学, 2008, 2-3
    [20]韩敏芳,王军伟,刘泽.世界性的研究课题:磷石膏特性及其开发前景.国外建材科技, 2003, (6): 15-17
    [21]付兴华,高天广,李国忠.磷石膏转化为建筑石膏可能性研究.山东建材学院学报, 2000, 14(3): 199-202
    [22]彭家惠等.磷石膏预处理工艺研究.重庆建筑大学学报, 2000, 22(5): 74-77
    [23]李国忠,李建权,张锦峰等.表面活性剂对磷石膏形成过程及性能的影响研究.中北大学学报(自然科学版), 2007, 28(5): 448-452
    [24]彭家惠,万体智,汤玲等.磷石膏中的有机物、共晶磷及其对性能的影响.建筑材料学报, 2003, 6(3): 221-226
    [25]沈卫国,周明凯,赵林青.粉煤灰磷石膏高早强路面基层材料的研究.粉煤灰综合利用, 2001, (2): 31-32
    [26]桂苗苗,丛钢.利用磷石膏制造建筑石膏的研究.重庆建筑大学学报, 2000, 22(4): 33-36
    [27] M Singh, M Garg. Making of anhydrite cement from waste gypsum. Cemment Concrete Research, 2000, (30): 571–577
    [28] Manjit Singh, Mridul Garg. Phosphogypsum-fly ash cementitious binders -its hydration and strength development. Cement and Concrete Research, 1995, 25(4): 752-758
    [29] Nurhayat Degirmenci. Utilization of phosphogypsum as raw and calcined materialin manufacturing of building products. Construction and Building Materials, 2008, (8): 1857–1862
    [30]杨新亚,牟善彬,王锦华.氟石膏改性及作水泥缓凝剂的研究.中国水泥. 2006, (6): 52-54
    [31]刘家祥,吴华夏.氟石膏分解特性的实验研究.北京化工大学学报, 2003, 30(6): 3, 36-40
    [32]李汝奕,王佩建,成晓光,等.氟石膏废渣改性生产粉刷石膏研究.环境科学与技术, 2007, 30(7): 79-82
    [33]杨新亚,牟善彬,钱进夫.无水氟石膏砖的研究.建筑石膏与胶凝材料, 44
    [34]丁铁福,苏利红,贺爱国.氟石膏的综合利用.有机氟工业, 2006, (1): 35-39
    [35]李汝奕,李丽,曹作刚,等.氟石膏基自流平地面材料的研制.建筑科学, 2007, 23(6): 84-87
    [36]张锦峰,谢红波,周敏等.氟石膏/粉煤灰复合保温墙板研究.混凝土与水泥制品, 2005, (6): 47-50
    [37] Peiyu Yan, Wenyan Yang, Xiao Qin, et al. Microstructure and properties of the binder of fly ash-fluorogypsum-Portland cement. Cement and Concrete Research. 1999, (29): 349-354
    [38] P E Fraire-Luna, J I Escalante-Garcia, A Gorokhovsky. Composite systems fluorgypsum blastfurnance slag–metakaolin, strength and microstructures. Cement and Concrete Research, 2006, (36): 1048–1055
    [39] P Yan,Y You. Studies on the binder of fly ash-fluorgpysum-cement. Cement and Concrete Research, 1998, 28(1): 135-140
    [40]徐风广,李玉华.利用锰石膏做水泥缓凝剂的研究.新型建筑材料, 2001, (8): 23-25
    [41]彭志辉,刘巧玲,彭家惠等.钛石膏作水泥缓凝剂研究.重庆建筑大学学报, 2004, 26(1): 93-96
    [42]瞿德业,汪君.钛石膏轻质墙体材料的研制硅.硅酸盐通报, 2009, 28(5): 1064-1070
    [43] Y.Erdogan等著,赵山泉译.硼石膏在水泥工业中的利用.国外建材科技, 1994, 15(2): 52-54
    [44]张吉平,高庆功,冯永固等.硼石膏作水泥缓凝剂的试验与应用.新世纪水泥导报, 2003, (4): 23-24
    [45] Iffect Yakar Elbeyli, Sabriye pikin. Kinetic study of the thermal dehydration of borogypsum. Journal of Hazardous Materials, 2004, 116(12): 111-117
    [46]董秀芹,赵建华,王文忠.利用柠檬酸石膏液相法生产高强度α-石膏的研究.中国非金属矿工业导刊, 2010, (5): 10-13
    [47]王立明,董文亮.柠檬酸废渣粉刷石膏的研制.新型建筑材料, 2000, (2): 42-43
    [48]马铭杰,朱丽.利用废渣盐石膏制作轻型墙体材料.环境工程, 2006, 24(5): 53-55
    [49]王胜春,周会珠,田永淑等.盐石膏作硅酸盐水泥添加剂的研究.无机盐工业, 2007, 39(6): 44-46
    [50]高章韵.工业副产石膏资源化处理及用于干粉涂料制备的研究: [湖南大学硕士学位论文].长沙:湖南大学, 2010
    [51]陈兴福,谢恩良.利用磷石膏生产粉刷石膏的试验研究.石油化工应用,2008, 27(1): 17-20
    [52]王波.磷石膏基粉刷石膏的绿色工艺设计.新型建筑材料, 2005, (10): 22-24
    [53]刘成楼.耐水高强粉刷石膏的研制.上海涂料, 2008, 46(9): 4-7
    [54]赵立群,张鑫.脱硫粉刷石膏的研制科学研究.粉煤灰.2006(3): 22-23
    [55]杨新亚,王锦华,李祥飞.硬石膏基粉刷石膏应用研究.非金属矿, 2006, 29(2): 18-20
    [56]李祥飞,周欢,许月明.氟石膏制备粉刷石膏技术研究.再生利用, 2009, 2(9): 32-34
    [57]陈燕,岳文海,董若兰.石膏建筑材料.北京:中国建材工业出版社, 2003, 22-54
    [58]岳文海,赵青南.硬石膏水化硬化过程中的热力学研究.武汉工业大学学报, 1988, 10(3): 283-289
    [59]彭家惠,张桂红,白冷等.硫酸盐激发与矿渣改性硬石膏胶结材.硅酸盐通报, 2008, 27(4): 837-842
    [60]彭家惠,张建新,瞿金东等. Na2SO4对硬石膏水化进程及其水化产物形貌的影响.硅酸盐学报, 2008, 36(10): 1356-1361
    [61]袁润章.胶凝材料学.武汉:武汉工业大学出版社, 1989, 120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700