肿瘤微环境中巨噬细胞、肥大细胞活化机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤微环境是肿瘤发生发展过程中所处的内环境,肿瘤微环境中各种成分之间的相互作用是肿瘤发生发展的决定因素。因此在进行肿瘤研究时,对于肿瘤微环境的探讨尤为重要。越来越多的证据表明,浸润到肿瘤微环境中的髓源细胞对肿瘤的生长和转移起到重要作用,其中包括巨噬细胞和肥大细胞。但其在肿瘤微环境中功能变化的机制尚不清楚。本研究旨在探讨巨噬细胞、肥大细胞在肿瘤发生发展中的作用,并初步探讨其机制。本研究分四部分,分别研究巨噬细胞和肥大细胞在肿瘤微环境中的功能变化:
     第一、二部分:肿瘤微环境对巨噬细胞的影响。我们采用H22细胞和骨髓F4/80+细胞,即Gr-1+CD11b+F4/80+骨髓来源单核细胞(Bone marrow-derived monocytes, BMDMs)混合接种小鼠,或瘤内注射骨髓F4/80+细胞的方法,发现骨髓F4/80+细胞在肿瘤微环境中产生促瘤生长功能。因此我们采用了反复冻融法制备坏死肿瘤细胞释放物(molecules from necrotic tumor cells, NTC-Ms)模拟肿瘤微环境,发现NTC-Ms能促进肿瘤生长;且NTC-Ms诱导骨髓F4/80+细胞具有了MDSC表型,能抑制T细胞增殖。由于NTC-Ms中含有大量的内源性Toll样受体配体,我们采用肌肉内转染sTLR4表达载体的方法,观察是否TLR4参与了NTC-Ms对骨髓F4/80+细胞的诱导作用。结果显示:sTLR4能显著抑制肿瘤生长;当刚出现可触及肿瘤时(7d),sTLR4能使肿瘤组织内F4/80+细胞Argl基因转录水平下降,而Nos2和IL-12基因转录水平升高。我们进一步观察了肿瘤组织和肿瘤免疫治疗组织中F4/80+细胞的表型,发现均为Gr-1+CD11b+4/80+,而sTLR4同样也能增加肿瘤免疫治疗组织中F4/80+细胞Nos2和IL-12转录水平,增强4-1BBL/sPD-1肿瘤抑制作用;且更进一步降低了肿瘤免疫治疗组织中F4/80+细胞诱导T细胞凋亡的能力。以上结果表明;在肿瘤微环境中,NTC-Ms通过TLR4途径诱导巨噬细胞产生促瘤生长功能;肿瘤免疫治疗过程中,肿瘤细胞的破坏也可通过TLR4影响巨噬细胞。
     第三、四部分:肿瘤微环境对肥大细胞的影响。我们采用骨髓来源肥大细胞(bone marrow-derived mast cells, BMMCs)和H22细胞混合接种或瘤内注射BMMCs的方法,发现BMMCs在肿瘤微环境中产生促瘤生长功能。由于SCF是肥大细胞分化成熟的重要因子,因此我们观察了SCF对BMMCs的作用,结果发现SCF预处理的BMMCs抑瘤作用减弱。接下来我们用NTC-Ms、TI-Ms模拟肿瘤微环境,发现NTC-Ms、TI-Ms预处理的BMMCs能促进肿瘤生长,而resveratrol、QNZ减弱了NTC-Ms的作用,提示TLR4和SCF可能参与了NTC-Ms对BMMCs的诱导作用。因此,我们首先证明了NTC-Ms和TI-Ms中含有功能性SCF,然后用SCF和TLR4的特异性配体LPS协同刺激BMMCs,发现BMMCs产生了促瘤生长功能;而在瘤内注射BMMCs的模型中,肌肉内转染sTLR4表达载体,则减弱了肥大细胞的促瘤功能,进一步说明SCF和TLR4配体增强了肥大细胞促瘤生长潜能。为了明确SCF和TLR4配体发挥作用的机制,我们观察了不同处理条件下,BMMCs脱颗粒、IL-10表达和对肿瘤生长的影响。结果显示,SCF/LPS、NTC-Ms和TI-Ms均能抑制肥大细胞自发脱颗粒,但不影响VEGF和PDGF的表达;且SCF/LPS、NTC-Ms和TI-Ms均能刺激BMMCs表达IL-10; resveratrol、wortmannin和QNZ可抑制NTC-Ms的作用。进一步研究发现,SCF和TLR4配体抑制肥大细胞脱颗粒和产生IL-10的功能涉及Tyr216-GSK3β磷酸化,其磷酸化抑制剂LiCl抑制肿瘤生长,消除了NTC-Ms、SCF/LPS对BMMCs自发性脱颗粒的抑制作用,且减弱了NTC-Ms、SCF/LPS诱导的BMMCs IL-10表达水平。以上结果表明,肿瘤微环境中的SCF和TLR4配体共同作用于肥大细胞,通过调节PI3K、NF-κB和Tyr216-GSK3β的磷酸化,调控肥大细胞脱颗粒和细胞因子释放,增强其促瘤生长功能。
     综上所述,本研究探讨了肿瘤微环境对巨噬细胞和肥大细胞功能的影响,并初步探讨了其机制,为肿瘤的靶向治疗提供了理论依据。
The tumor growth is regulated by a precise balance between pro-and anti-tumorigenic effects, stimulated by the tumor cells themselves and their microenvironment. The role of the tumor microenvironment during the study of carcinogenesis is now realized to be important. There is a growing acceptance that bone marrow-derived myeloid cells infiltrating into the tumor microenvironment, including macrophages and mast cells, can play an important role in tumor growth. But the true role of them in tumor remains to be elucidated. This study aims to reveal the effect of macrophages or mast cells on tumor growth. This experiment is subdivided into four parts:
     PartⅠ,ⅡEffect of macrophages on tumor growth. To observe the effect of Gr-1+CDllb+F4/80+ BMDMs on tumor growth, Gr-1+CDllb+F4/80+ BMDMs prepared from bone marrow cells of naive mice were co-inoculated with H22 cells (co), or injected into palpable tumor (in). The coinoculation of BMDMs with tumor cells suppressed tumor growth, whereas the injection of BMDMs into palpable tumor promoted the growth of tumor. Tumor growth could be significantly promoted by continuous i.p. injection of NTC-Ms starting 10d before tumor inoculation. F4/80+ myeloid cells induced by continuous i.p. injection of NTC-Ms reduced the T cell proliferation. The effect of sTLR4 on tumor growth was observed. In palpable tumor, sTLR4 decreased the transcription of Argl gene and increased the transcription of the IL-12 gene. And sTLR4 significantly suppressed the growth of tumors. F4/80+ cells in tumor immunotherapy microenvironment were mainly Gr-1+CDllb+. The sTLR4 increased transcription levels of Nos2 and IL-12 relative to those of Argl and IL-10 in F4/80+cells in the microenvironment of tumor immunotherapy, further reduced the apoptosis inducing capacity of F4/80+ cells and enhanced the suppressive effect of 4-BBL/sPD-1 on tumor growth.
     PartⅢ,ⅣEffect of mast cells on tumor growth. To observe the effect of mast cells on tumor growth, BMMCs prepared from bone marrow cells of naive mice were co-inoculated with H22 cells (co), or injected into palpable tumor (in). The coinoculation of BMMCs with tumor cells suppressed tumor growth, whereas the injection of BMMCs into palpable tumor promoted the growth of tumor. In co-inoculation test, the suppress effect of BMMCs on tumor growth was attenuated by SCF, and BMMCs pre-treated with NTC-Ms or TI-Ms promoted tumor growth, which can be suppressed by resveratrol or QNZ. Functional SCF in NTC-Ms or TI-Ms were detected. In intra-tumor injection test, sTLR4 reduced tumor-promoting effect of BMMCs. NTC-Ms, TI-Ms or SCF/LPS could suppress spontaneous degranulation of mast cells but not secretion of VEGF and PDGF. And SCF/LPS, NTC-Ms or TI-Ms treatment increased the expression of IL-10 in BMMCs, but resveratrol, wortmannin or QNZ suppressed the effect of SCF/LPS, NTC-Ms and TI-Ms on BMMCs. Inhibition effect of SCF/LPS, NTC-Ms or TI-Ms on BMMCs degranulation were eliminated by LiCl. IL-10 expression in BMMCs was suppressed by LiCl. Tumor growth could be suppressed if mice received i.p. injection of LiCl. In co-inoculation test, when BMMCs were pre-treated with LiCl,.the percentage of CD8+ T cells in tumor increased, IL-10 expression in the tissues at inoculation sites decreased, tumor growth were suppressed.
     In summary, we investigate the influence of tumor microenvironment on macrophages and mast cells, and explore the mechanism of functional switch. This study would provide scientific rational for the next step of target immune therapy.
引文
[1]Seth BC, Russell H, Claire EL. Tumor-associated macrophages:Effectors of angiogenesis and tumor progression. BBA-Rev Cancer.2009,1796:11-18.
    [2]Mills CD, Shearer J, Evans R, et al. Macrophage arginine metabolism and the inhibition or stimulation of cancer. J Immunol.1992; 149:2709-2714.
    [3]Mantovani A, Bottazzi B, Colotta F, et al.. The origin and function of tumor-associated macrophages. Immunol Today 1992; 13:265-270.
    [4]Coussens LM, Werb Z. Inflammation and cancer. Nature.2002; 420:860-867.
    [5]Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005; 7:211-217.
    [6]Pollard JW. Tumor-educated macrophages promote tumor progression and metastasis. Nat Rev Cancer 2004; 4:71-78.
    [7]Bingle L, Brown NJ, Lewis CE. The role of tumor-associated macrophages in tumor progression:implications for new anticancer therapies. J Pathol 2002; 196:254-265.
    [8]Gordon S. Alternative activation of macrophages. Nat Rev Immunol.2003; 3: 23-35.
    [9]Mantovani A, Sica A, Sozzani S, et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol.2004; 25:677-686.
    [10]Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5:953-964.
    [11]Mantovani A, Sica A, Locati M. Macrophage polarization comes of age. Immunity 2005; 23:344-346.
    [12]Sung SY, Hsieh CL, Wu D, et al. Tumor microenvironment promotes cancer progression, metastasis, and therapeutic resistance. Curr Probl Cancer.2007; 31: 36-100.
    [13]Albini, Adriana.S, Michael B. The tumor microenvironment as a target for chemoprevention. Nature Reviews. Cancer.2007; 7:139-47.
    [14]Bell CW, Jiang W, Reich CF, et al. The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol,2006,291:C1318-1325.
    [15]Hede K. Environmental protection:studies highlight importance of tumor microenvironment. J Natl Cancer Inst,2004,96:1120.
    [16]Laconi E. The evolving concept of tumor microenvironments. Bioessays,2007, 29:738.
    [17]Syed AA, Young DJ, Wenbiao L, et al. The role of the microenvironment and intercellular cross-talk in tumor angiogenesis. Cancer Biol,2002,12:105-112.
    [18]Chinni SR, Sivalogan S, Dong Z. CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells:the role of bone microenvironment-associated CXCL12. Prostate.2006; 66:32-48.
    [19]Pratap J, Languino LR, Javed A, et al. The Runxosteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol.2005; 25:8581-8591.
    [20]Albini A, Sporn MB. The tumor microenvironment as a target for chemoprevention. Nat Rev Cancer.2007; 7:139.
    [21]Coussens LM, Werb Z. Inflammation and cancer. Nature.2002; 420:860-867.
    [22]Jassar AS, Suzuk E, Kapoor V, et al. Activation of tumor-associated macrophages by the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid induces an effective CD8+T-cell-mediated antitumor immune response in murine models of lung cancer and mesothelioma. Cancer Res.2005; 65: 11752-11761.
    [23]Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization. Front Biosci.2008; 13:453-461.
    [24]Guiducci C, Vicari AP, Sangaleti S, et al. Redirecting in vivo elicited tumor in filtrating macrophages and dendritic-cells towards tumor rejection.. Cancer Res. 2005; 65:3437-3446.
    [1]Gordon S. Alternative activation of macrophages. Nat Rev Immunol.2003; 3: 23-35.
    [2]Mantovani A, Sozzani S, Sica A, et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol.2004; 25:677-686.
    [3]Mosser DM. The many faces of macrophage activation. J Leukoc Biol.2003; 73: 209-212.
    [4]Mantovani A, Sica A, Locati M. Macrophage polarization comes of age. Immunity 2005; 23:344-346.
    [5]Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization. Front Biosci.2008; 13:453-461.
    [6]Ellerman JE, Brown CK, Vera M, et al. Masquerader:High mobility group box-1 and cancer. Clin Cancer Rea.2007; 13:2836.
    [7]Sato Y, Goto Y, Narita N, et al. Cancer cells expressing Toll-like receptors and the tumor microenvironment. Cancer Microenviron.2009,2:205-214.
    [8]Lotze MT, Rubartelli A, Zeh HJ, et al. The graeful dead:damage-aassociated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev.2007; 220:60.
    [9]Gribar SC, Sodhi CP, Richardson WM, et al. No longer an innocent bystander: Epithelial toll-like receptor signaling in the development of mucosal inflammation. Mol Med.2008; 14:645.
    [10]Huang B, Zhao J, Li H, et al Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res.2005; 65:5009-5014.
    [11]Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nat Immunol.2010; 11:373-384.
    [12]Bell CW, Jiang W, Reich CF, et al. The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol,2006,291:C1318-1325.
    [13]Yang H, Zhou H, Feng P, et al Reduced expression of Toll-like receptor 4 inhibits human breast cancer cells proliferation and inflammatory cytokines secretion. J Exp Clin Cancer Res.2010; 10:92.
    [14]Cho HYEK, Choi SW, Lee KO, et al. Programmed death-1 receptor negatively regulates LPS-mediated IL-12 production and differentiation of murine macrophage RAW264.7 cells. Immunol. Lett.2009; 127:39-47.
    [15]Ma XJ. TNF-α and IL-12:a balancing act in macrophage functioning. Microb Infect.2001; 3:121-129.
    [16]Xin ZC, Sriram S. Vasoactive intestinal peptide inhibits IL-12 and nitric oxide production in murine macrophages. J Neuroimmuno.1998; 89:206-212.
    [17]Duluc DM, Corvaisier S, Blanchard L, et al. Interferon-y reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages. Int J Cancer.2009; 125:367-373.
    [18]Woo EY, Yeh H, Chu CS, et al. Cutting edge:Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol.3002; 168:4272-4276.
    [19]Cannons JL, Lau P, Ghumman B, et al.4-1BB ligand induces cell division, sustains survival, and enhances effector function of CD4 and CD8 T cells with similar efficacy. J Immunol.2001; 167:1313-1324.
    [20]Xiao HB, Huang Y, Yuan D, et al. Soluble PD-1 facilitates 4-1BBL-triggered antitumor immunity against murine H22 hepatocarcinoma in vivo. Clin Cancer Res.2007; 13:1823-1830.
    [21]Tang XY, Zhu YQ, Wei B, et al. Expression and functional research of TLR4 in human colon carcinoma. Am J Med Sci.2010; 339:319-326.
    [22]Apetoh LF, Ghiringhelli A, Tesniere A, et al. The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol. Rev.2007; 220:47-59.
    [23]Apetoh LF, Ghiringhelli A, Tesniere M, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med.2007; 13:1050-1059.
    [24]Wilcox RAAI, Chapoval KS, Gorski M, et al. Cutting edge:expression of functional CD137 receptor by dendritic cells. J Immunol.2002; 168:4262-4267.
    [25]Kim YJ, Li G, Broxmeyer.HE.4-1BB ligand stimulation enhances myeloid dendritic cell maturation from human umbilical cord blood CD34+ progenitor cells. J Hematother Stem Cell Res.2002; 11:895-903.
    [1]Maltby S, Khazaie K, McNagny KM. Mast cells in tumor growth:Angiogenesis, tissue remodeling and immune-modulation. BBA Rev Cancer.2009; 1796:19-26.
    [2]Westphal E, Uber mastzellen, in. P. Ehrlich(Ed.), Ferbenanlytische Untersuchungen Zur Histologie Und Klinik Des Blutes, Hirschwald, Berlin,1891, p.17.
    [3]Och C, Muthana M, Coffelt SB, et al.. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer,2008,8618-8631.
    [4]Ehrlich P. Beitrage zur kenntnis der anilinfarbungen und ihrer verwendung in der mikroskopischen technik. Arch Mikr Anat 1877; 13:263.
    [5]Vyas H, Krishnaswamy G. Paul. Ehrlich's "Mastzellen"—from aniline dyes to DNA chip arrays:a historical review of developments in mast cell research. Methods Mol Biol.2006; 315:3-11.
    [6]Galli SJ. New insights into "the riddle of the mast cells":microenvironmental regulation of mast cell development and phenotypic heterogeneity. Lab Invest. 1990; 62:5-33.
    [7]Galli SJ, Nakae S, Tsai M. Mast cells in the development of adaptive immune responses. Nat Immunol,2005; 6:135-142.
    [8]Wasiuk A, Vries VC, Hartmann K, et al. Mast cells as regulators of adaptive immunity to tumours. Clinical and Experimental Immunology.2008; 155: 140-146
    [9]Sayed BA, Christy A, Quirion MR, et al. The master switch:the role of mast cells in autoimmunity and tolerance. Annu Rev Immunol.2008; 26:705-739.
    [10]Suto H, Nakae S, Kakurai M, et al. Mast cell-associated TNF promotes dendritic cell migration. J Immunol.2006; 176:4102-4112.
    [11]Nelson KC, Zhao M, Schroeder PR, et al. Role of different pathways of the complement cascade in experimental bullous pemphigoid. J Clin Invest.2006; 116:2892-2900.
    [12]Grimbaldeston MA, Nakae S, Kalesnikoff J, et al. Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol.2007; 8:1095-1104.
    [13]Lu LF, Lind EF, Gondek DC, et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature.2006; 442:997-1002.
    [14]Galli SJ, Tsai M, Wershil BK, et al. Regulation of mouse and human mast cell development, survival and function by stem cell factor, the ligand for the c-kit receptor. Int Arch Allergy Immunol.1995; 107:51-53.
    [15]Edelson BT, Stricker TP, Li Z, et al. Novel collectin/C1q receptor mediates mast cell activation and innate immunity. Blood.2006; 107(1):143-150.
    [16]Matsushima H, Yamada N, Matsue H, et al. TLR3-, TLR7, and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells. J Immunol.2004; 173(1):531-41.
    [17]Krishnaswamy G. Mast cells:methods and protocols. New York:Humana Press, 2005.
    [18]Christy AL, Brown MA. The multitasking mast cell:positive and negative roles in the progression of autoimmunity. J Immunol.2007; 179:2673-2679.
    [19]Weller K, Foitzik K, Paus R, et al. Mast cells are required for normal healing of skin wounds in mice. FASEB J 2006; 20:2366-2368.
    [20]Murdoch C,Muthana M, Coffelt SB, et al. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 2008; 8:618-631.
    [21]Theoharides TC, Conti P. Mast cells:the Jekyll and Hyde of tumor growth. Trends Immunol.2004; 25:235-241.
    [22]Fisher ER, Sass R, Watkins G, et al. Tissue mast cells in breast cancer. Breast Cancer Res Treat.1985; 5:285-291.
    [23]Theoharides TC. Neuroimmunology of tumor growth:the role of mast cells. Int J Immunopath Pharmacol.1988; 1:89-98.
    [24]Poole T.J, Zetter B.R. Stimulation of rat peritoneal mast cell migration by tumor derived peptides. Cancer Res.1983; 43:5857-5861.\
    [25]Huang B, Lei Z, Zhang GM, et al. SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood.2008; 112:1269-1279.
    [26]Zhang W, Stoica G, Tasca SI, et al. Modulation of tumor angiogenesis by stem cell factor. Cancer Res.2000; 60:6757-6762.
    [27]Gilfillan AM, Tkaczyk C. Integrated signalling pathways for mast cell activation. Nat Rev Immunol.2006; 6:218-230.
    [28]Echtenacher B, Mannel DN, Hultner L. Critical protective role of mast cells in a model of acute septic peritonitis. Nature.1996; 381:75-77.
    [29]Malaviya R, Ikeda T, Ross E, et al. Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-a. Nature.1996; 381:77-80.
    [30]Marshall JS. Mast-cell responses to pathogens. Nat Rev. Immunol.2004; 4:787-799.
    [31]Olynych TJ, Jakeman DL, Marshall JS. Fungal zymosan induces leukotriene production by human mast cells through a dectin-1-dependent mechanism. J. Allergy Clin Immunol.2006; 118:837-843.
    [32]Ellerman JE, Brown CK, Vera M, et al. Masquerader:High mobility group box-1 and cancer. Clin Cancer Rea.2007; 13:2836.
    [1]Stevens RL, Austen KF. Recent advances in the cellular and molecular biology of mast cells. Immunol Today.1989; 10:381.
    [2]Sayed BA, Christy A, Quirion MR, et al. The master switch:the role of mast cells in autoimmunity and tolerance. Annu Rev Immunol.2008; 26:705-739.
    [3]Abbas AK, Lichtman AH. Cellular and molecular immunology,5th edn. Philadelphia, PA:Saunders,2003.
    [4]Nakayama T, Yao L, Tosato G. Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors. J Clin Invest.2004; 114:1317-1325.
    [5]Gounaris E, Erdman S, Restaino C, et al. Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci USA.2007; 104:19977-19982.
    [6]Coussens LM, Raymond WW, Bergers G, et al. Inflammatory cells up-regualate angiogenesis during squamous epithelial carcinogenesis. Genes Dev.1999; 13:1382-1397.\
    [7]Huang B, Lei Z, Zhang GM, et al. SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood.2008; 112:1269-1279.
    [8]Samoszuk M, Kanakubo E, Chan JK. Degranulating mast cells in fibrotic regions of human tumors and evidence that mast cell heparin interferes with the growth of tumor cells through a mechanism involving fibroblasts. BMC Cancer.2005; 5:121.
    [9]Grimbaldeston MA, Nakae S, Kalesnikoff J, et al. Mast cell-derived interleukin-10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immuno.2007; 8:1095-1104
    [10]Taylor A, Verhagen J, Blaser K, et al. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-β:the role of T regulatory cells. Immunology.2006; 117:433-442
    [11]Groux H, Bigler M, de Vries JE, et al. Inhibitory and stimulatory effects of IL-10 on human CD8+T cells. J Immunol.1998; 160:3188-3193.
    [12]Ma XJ. TNF-α and IL-12:a balancing act in macrophage functioning. Microbes Infect.2001; 3:121-129.
    [13]Berger S, Chandra R, Ballo H., et al. Immune complexes are potent inhibitors of interleukin-12 secretion by human monocytes. Eur J Immunol.1997; 27:2994-3000.
    [14]Tkaczyk C, et al. The phospholipase Cg1-dependent pathway of FceRI-mediated mast cell activation is regulated independently of phosphatidylinositol 3-kinase. J. Biol. Chem.2003; 278:48474-48484.
    [15]Kim MS, et al. Activation and function of the mTORC1 pathway in mast cells. J Immunol.2008; 180:4586-4595.
    [16]Okayama Y, et al. Comparison of FceRI-and FcgRI-mediated degranulation and TNF-a synthesis in human mast cells:selective utilization of phosphatidylinositol-3-kinase for FcgRI-induced degranulation. Eur J Immunol. 2003;33:1450-1459.
    [17]Fruman DA. Phosphoinositide 3-kinase and its targets in B-cell and T-cell signaling. Curr Opin Immunol.2004; 16:314-320.
    [18]Geetha VR, Vamshi KT, Reena S, et al. Glycogen synthase kinase 3:more than a namesake. Brit J Pharmacol.2009; 156:885-898.
    [19]Patel S, Woodgett J. Glycogen synthase kinase-3 and cancer:good cop, bad cop? Cancer cell.2008; 14:351-353.
    [20]Martinez A. Preclinical efficacy on GSK-3 inhibitors:towards a future generation of powerful drugs. Medicinal Research Reviews 2008; 28:773-796.
    [21]Hu XPK, Paik J, Chen A, et al. IFN-g suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins. Immunity. 2006; 24:563-574.
    [22]Doble BW, Woodgett JR. GSK-3:tricks of the trade for a multitasking kinase. J Cell Sci.2003; 116:1175-1186.
    [23]Cohen P, Goedert, M. GSK3 inhibitors:development and therapeutic potential. Nat Rev Drug Discov.2004; 3:479-487.
    [24]Inoki KH, Ouyang T, Zhu C, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006; 126:955-968.
    [25]Frame SP, Cohen, Biondi RM. A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol. Cell.2001; 7:1321-1327.
    [26]Radinger M, Kuehn HS, Kim MS, et al. Glycogen synthase kinase 30 activation is a prerequisite signal for cytokine production and chemotaxis in hunman mast cells. J Immunol.2010; 184:564-572.
    [1]Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy:moving beyond current vaccines. Nat Med.2004; 10:909-915.
    [2]Finn OJ. Cancer immunology. N Engl J Med.2008; 358:2704-2715.
    [3]Coussens LM., Werb Z. Inflammation and cancer. Nature.2002; 420:860-867.
    [4]Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol.2009; 9:162-174.
    [5]Ostrand RS, Sinha P. Myeloid derived suppressor cells:linking inflammation and cancer. J Immunol.2009; 182:4499-4506.
    [6]Pages F, Berger A, Camus M, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med.2005; 353:2654-2666.
    [7]Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting:from immunosurveillance to tumor escape. Nat Immunol.2002; 3:991-998.
    [8]Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer.2009; 9:239-252.
    [9]Demetri GD, Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med.2002; 347:472-80.
    [10]Ilkovitch D, Lopez DM. The liver is a site for tumor-induced myeloid-derived suppressor cell accumulation and immunosuppression. Cancer Res.2009; 69: 5514-5521.
    [11]Gabrilovich D, Ishida T, Oyama T, et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the ifferentiation of multiple hematopoietic lineages in vivo. Blood.1998; 92:4150-4166.
    [12]Bunt SK, Sinha P, Clements VK, et al. Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol.2006; 176:284-290.
    [13]Varga G, Ehrchen J, Tsianakas A, et al. Glucocorticoids induce an activated anti-inflammatory monocyte subset in mice that resembles myeloid-derived suppressor cells. J Leukoc Biol.2008; 84:644-650.
    [14]Oyama T, Ran S, Ishida T, et al. Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor kappa-B activation in hemopoietic progenitor cells. J Immunol.1998; 160:1224-1232.
    [15]Sinha P, Okoro C, Foell D, et al. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol.2008; 181: 4666-4675.
    [16]Marigo I, Dolcetti L, Serafini P, et al. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev.2008; 222:162-179.
    [17]Movahedi K, Guilliams M, Vanden BJ, et al. Identification of discrete tumor induced myeloid derived suppressor cell subpopulation swith distinct T cell suppressive activity. Blood.2008; 111:4233-4244.
    [18]Dolcetti L, Marigo I, Mantelli B, et al. Myeloid-derived suppressor cell role in tumor-related inflammation. Cancer Lett.2008; 267:216-225.
    [19]Ribechini E, Leenen P.J, Lutz MB. Gr-1 antibody induces STAT signaling, macrophage marker expression and abrogation of myeloid-derived suppressor cell activity in BM cells. Eur J Immunol.2009; 39:3538-3551.
    [20]Schmielau J, Finn OJ. Activated granulocytes and granulocyte derived hydrogen peroxide are the underlying mechanism of suppression of T cell function in advanced cancer patients [J]. Cancer Res.2001; 61:4756-4760.
    [21]Sica A, Bronte V. Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest.2007; 117:1155-1166.
    [22]Song X, Krelin Y, Dvorkin T, et al. CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-lb-secreting cells. J Immunol.2005; 175:8200-8208.
    [23]Bunt SK, Yang L, Sinha P, et al. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res.2007; 67:10019-10026.
    [24]Rodriguez PC, Hernandez CP, Dubinett SM, et al. Arginase 1 in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med.2005; 202:931-939.
    [25]Cheng PY, Corzo CA, Luetteke N, et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med.2008; 205:2235-2249.
    [26]Sawanobori Y, Ueha S, Kurachi M, et al. Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood.2008; 111:5457-5466.
    [27]Pan PY, Wang GX, Yin B, et al. Reversion of immunotolerance in advanced malignancy:modulation of myeloid-derived suppressor cell development by blockade of stem cell factor function. Blood.2008; 111:219-228.
    [28]Hanson EM, Clement VK, Sinha P,et al. Myeloidderived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J Immunol. 2009; 183:937-944.
    [29]Ilkovitch D, Lopez DM. Urokinase-mediated recruitment of myeloid-derived uppressor cells and their suppressive mechanisms are blocked by MUC/sec. Blood 2009; 113:4729-4739.
    [30]Du R, Lu KV, Petritsch C, et al. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell.2008; 13:206-220.
    [31]Bosco MC, Puppo M, Blengio F, et al. Monocytes and dendritic cells in a hypoxic environment:spotlights on chemotaxis and migration. Immunobiology. 2008;.213:733-749.
    [32]Yang L, Huang J, Ren X, et al. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell.2008; 13:23-35.
    [33]Melani C, Chiodoni C, Forni G, Colombo MP. Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood.2003; 102:2138-4215.
    [34]Miller K, Wang M, Gralow J, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med.2007; 357:2666-2676..
    [35]DeNardo DG, Barreto JB, Andreu P, et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell.2009; 16:91-102.
    [36]Yang Z, Zhang B, Li D, et al. Mast cells mobilize myeloid-derived suppressor cells and Treg cells in tumor microenvironment via IL-17 pathway in murine hepatocarcinoma model. PLoS One.2010; 5:e8922.
    [37]Rivoltini L, Carrabba M, Huber V, et al. Immunity to cancer:attack and escape in T lymphocyte-tumor cell interaction. Immunol Rev.2002; 188:97-113.
    [38]Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol.2004; 4:941-952.
    [39]Rodriguez PC, Quiceno DG, Zab leta J, et al Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T cell receptor express ion and antigen specific Tcell responses. Cancer Res 2004; 64:5839-5849.
    [40]Zea AH, Rod riguez PC, Atkins MB, et al Arginase producing myeloid suppressor cells in renal cell carcinoma patients:a mechanism of tumor evasion. Cancer Res.2005; 65:3044-3048.
    [41]Sinha P, Clements VK, Bunt SK, et al. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol.2007; 179:977-983.
    [42]Sinha P, Clenents VK, Fulton AM, et al. Prostagland in E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Rse.2007; 67:4507-4513.
    [43]VanGinderachter JA, Meerschaut S, Liu Y, et al Peroxisome proliferator activated receptor gamma ligands reverse CTL suppression by alternatively activated (M 2) macrophages in cancer. Blood.2006; 108:525-535.
    [44]Maloy KJ, Powrie F. Regulatory T cells in the control of immune pathology. Nat Immunol.2001; 2:816-822.
    [45]Sakaguchi S. Regulatory T cells:key controllers of immunologic self-tolerance. Cell.2000; 10:455-458.
    [46]Pan PY, Ozao J, Zhou Z, et al. Advancements in immune tolerance. Adv Drug Deliv Rev.2008; 60:91-105.
    [47]Yang R, Cai A, Zhang Y, et al. CD80 in immune suppression by mouse ovarian carcinoma associated Gr-1+ CDllb+ myeloid cells. Cancer Res.2006; 66:6807-6815.
    [48]Huang B, Pan PY, Li Q, et al. Grl+CD11b+ immature myeloid suppressor cells mediate the development of tumor induced T regulatory cells and T cell anergy in tumor bearing host. Cancer Res.2006; 66:1123-1131.
    [49]Serafini P, Mgebroff S, Noonan K, et al. Myeloid derived suppressor cells promote cross-tolerance in B cell lymphoma by expanding regulatory T cells. Cancer Res.2008; 68:5439-5449.
    [50]Terabe M, Matsui S, Park JM, et al. Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med.2003; 198:1741-1752.
    [51]Li H, Han Y, Guo Q, Zhang M, et al. Cancerexpanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol.2009; 182:240-249.
    [52]Nausch N, Galani E, Schlecker E, et al. Mononuclear myeloid-derived suppressor cells erpress RAE-1 and activate natural killer cells. Blood.2008; 112:4080-4089.
    [53]Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer.2005; 5:263-274.
    [54]Prendergast GC. Immune escape as a fundamental trait of cancer:focus on IDO. Oncogene.2008; 27:3889-3900.
    [55]Pekarek LA, Starr BA, Toledano AY, et al. Inhibition of tumor growth by elimination of granulocytes. J Exp Med.1995; 181:435-440.
    [56]Diaz-Montero CM, Salem ML, Nishimura MI, et al. Increasing circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-ciclophosphamide chemotherapy. Cancer Immunol Immunother.2009; 58:49-59.
    [57]Rodriguez PC, Hernandez CP, Quiceno D, et al. Arginase 1 in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med.2005; 202:931-939.
    [58]Melani C, Sangaletti S, Barazzetta FM, et al. Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res.2007; 67:11438-11446.
    [59]Kuanartsev S, Euslanov E, Kubler H, et al. Oxidative stress regulates expression of VEGFR1 in myeloid cells link to tumor induced immune suppression in renal cell carcinoma. J Immunol.2008; 181:346-353.
    [60]Pan P, Wang G, Yin B, et al. Reversion of immune tolerance in advanced malignancy modulation of myeloid-derived wuppress or cell development by blockade of stem-cell factor function. Blood.2008; 111:219-228.
    [61]Nefedove Y, Fishman M, Sherman S, et al. Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res.2003; 63:4441-4449.
    [62]Almand B, Clark JI, Nikitina E, et al. Increased production of immature myeloid cells in cancer patients:a mechanism of immunosuppression in cancer. J Immunol. 2001; 166:678-689.
    [63]Pak AS, Ip G, Wright MA, et al. Treating tumor-bearing mice with low-dose IFN-y plus TNF-a to diminish immune suppressive granulocyte macrophage progenitor cells increases responsiveness to interleukin 2 immunotherapy. Cancer Res.1995; 55:885-890.
    [64]Young MR, Lozano Y, Ihn J, et al. Vitamin D3 treatment of tumor bearers can stimulate immune competence and reduce tumor growth when treatment coincides with a heightened presence of natural suppressor cells. Cancer Lett.1996; 104:153-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700