城市道路交通智能控制策略的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的不断发展与城市化进程的加快,城市人口和机动车辆日益增加,城市道路交通的拥挤与阻塞已经成为世界大中城市普遍存在的现象,由此带来的交通拥堵、交通事故、能源浪费以及成倍增加的汽车废气排放造成的环境污染等问题,不仅严重地制约着城市和社会经济的可持续发展,同时也严重地影响着城市居民的生活质量。
     智能交通系统是解决现代社会交通需求与供给矛盾的重要途径之一。实施智能交通系统工程不仅有利于提高交通的安全性、生产效率与效益,而且关系到土地资源与能源的合理利用、环境污染与噪声的改善,乃至国民经济的持续发展和社会经济效益的全面提高。
     智能交通系统是一个发展中的交叉学科,涉及到交通运输系统的各个层面。城市交通是交通系统最为重要的组成部分,城市交通智能控制是实施智能交通系统工程的首要任务,也是目前交通控制工程领域研究的热点问题之一。城市道路交通控制是一个复杂的系统工程问题,涉及到交通工程、自动控制、系统工程、优化调度等自然科学和工程技术的众多学科。作为多学科交叉的研究领域,城市交通智能控制技术的发展依赖于自然科学和工程技术的最新研究成果。把自然科学的最新研究成果和工程技术的最新方法引入城市交通智能控制,可以进一步完善城市交通控制的理论体系及应用,解决日益严重的城市交通难题。这对满足社会需求、推动国家和社会的进步以及学科的发展,无疑都具有十分重要的意义。
     城市道路交通是一个有人参与的时变复杂大系统,集成了人、车、路和环境等各种复杂因素,存在高度的复杂性、时变性和不确定性。基于精确数学模型的传统控制方法难以有效解决复杂的现代城市交通问题,基于人工智能的智能控制技术是解决城市交通问题的有效途径。
     本文基于模糊逻辑、混沌优化、人工神经网络、人工免疫系统和粗集
With the increasing development of social economy and urbanization, the urban population and vehicles increase rapidly. Traffic congestion and traffic jam have become prevalent problems for metropolis all over the world. Traffic accident, energy wasting, air pollution caused by exhaust gas and other problems resulted from traffic congestion and traffic jam not only seriously restrict the sustainable development of social economy, but also severely influence the urban living environment.Intelligent transportation system is one of the important ways to solve the antinomy of traffic demand and supply in the modem society. The application of intelligent transportation system will not only improve the transportation safety, production efficiency and revenues, but also connect with land resources and energies exploitation, environment improvement, and national economic and social revenue development.As a developing multidisciplinary subject, intelligent transportation system relates to many facets of the traffic transportation systems. Urban road traffic is the most important part of the traffic transportation systems. Urban traffic intelligent control is the first step to implement the intelligent transportation systems engineering, and also a hot issue in control engineering and traffic engineering fields. Urban road traffic control is a complex systems engineering problem. It involves many subjects of science and technology, such as traffic engineering, automatic control, systems engineering, and optimization scheduling. Urban traffic intelligent control is a multidisciplinary research subject, and the development of urban traffic intelligent control technology depends on the newest research outcomes of science and technology.Applying the newest research of science and technology to urban traffic control systems can consummate traffic control theories and solve increasingly serious urban traffic problems, which is of the most important significance for meeting the social demand, accelerating the progress of
    nation and society, and driving the development of subject.Urban road traffic system, as a time-dependent complex great system into which integrates human, vehicles, roads, environment and other complex factors, is of high complexity, time-dependence and randomicity. It is difficult for traditional control methods based on precise mathematical models to solve complex modern urban traffic problems, and the intelligent control technology based on artificial intelligence is a feasible way to solve urban traffic problems.Based upon fuzzy logical, chaos optimization, artificial annual networks, artificial immune systems, rough sets and other artificial intelligence technologies, this dissertation makes a comprehensive and deep research on urban traffic signal control strategies, dynamic route guidance system and the concerned traffic control technologies. After reviewing the traditional traffic control studies, this dissertation puts forward several advanced traffic control ideas, algorithms and models. The main contents in this dissertation include:1) Reviewing the urban road traffic control technology in detail, and deducing the main research contents after making a discussion on the difficulties and problems in this field.2) The fuzzy control of adjacent intersections is studied. A traffic coordination control algorithm for two adjacent intersections using hierarchical fuzzy logic and the idea of adjusting membership functions automatically using chaos optimization are put forward. The two-stage fuzzy controller with this algorithm is designed and simulation results show that the average delay of vehicles in intersections is less using this algorithm than that using the conventional control strategies.3) Concerning the fact that the span between some natural intersections of urban traffic trunk roads is smaller than usual, this dissertation brings forward a new idea to integrate two or three natural intersections whose span is smaller than usual to a built-up intersection, and the concept of "Big Intersection" as well as the control model and algorithm for it is given. In this research, the traffic coordination control algorithm for two adjacent intersections using hierarchical fuzzy logic and the idea of adjusting
    membership functions automatically using chaos optimization are generalized to urban trunk traffic control systems, and the urban trunk traffic fuzzy control mechanism using "Big Intersection" is established.4) The urban road traffic route guidance algorithm is studied. To improve the performance of Kth shortest route algorithms in dynamitic route guidance systems, this dissertation suggests a practical dynamitic route guidance stagery, in which a new algorithm based on the metaphors of vertebrate immune system and the ideals of intelligent optimization is proposed. Combined the urban traffic network models built via " extended node method" , this dissertation studies the ATth shortest route search problems in urban dynamitic route guidance systems using the artificial immune optimization algorithm, and discusses the interrelated issues of dynamic route guidance systems. The experiment results show that this route guidance stagery is effective and advanced.5) Combined rough sets theory with fuzzy reasoning together, a new method for modeling traffic fuzzy control systems is put forward to meet the needs of designing fuzzy controllers with high performance in intelligent transportation systems. This method extracts the fuzzy control rules from historical traffic data by knowledge reasoning in rough sets theory and solves the bottleneck problems for modeling urban traffic signal fuzzy control systems. A rough fuzzy model of four-phase intersections is constructed using the method given in this dissertation, and the rough fuzzy modeling method of multi-intersections with more practicabilities than isolated intersections is studied.6) To solve the problems of programming traffic intervals automatically for time of day control scheme in urban traffic control systems, an artificial immune data clustering algorithm based on metaphors from the vertebrate immune systems is put forward. This algorithm has been successfully used in making the time of day schemes of urban traffic control systems. It can get over the irrational intervals from manually programming methods and the hierarchical clustering algorithms based on genetic algorithm. This work supplies a new idea for programming time of day intervals and making urban
    traffic control schemes.7) The traffic flow forecasting method based on the artificial neural networks and rough sets is studied. A new forecasting idea with the " similar intervals" is put forward to improve the flow forecasting performance. Combined rough sets with orthogonal wavelet networks together, a new traffic flow forecasting model is put forward, and the model has been successfully used for urban traffic flow forecasting applications. Integrating the excellent performances of wavelet networks and rough networks, combaining with the idea of " similar intervals" , the model can be used for the applications of real time flow accurate forecasting.Finally, we make a conclusion and propose the future research directions in this field.
引文
[1] 刘智勇.智能交通控制理论及其应用[M].北京 科学出版社,2003.8.
    [2] 陈建平,房海蓉,胡准庆.城市交通智能控制系统综述[J].北京汽车,2001,24(4):10-13.
    [3] 杨晓光等.城市道路交通设计指南[M].北京 人民交通出版社,2003.11.
    [4] 史忠科,黄辉先等.交通控制系统导论[M].北京科学出版社,2003.6.
    [5] 李江等.交通工程学[M].北京 人民交通出版社,2002.7.
    [6] Singh M G, Tamura, Modeling and hierarchical optimization for over saturated urban road traffic networks[J]. Int. J. Control, 1974, 26(20): 913-934
    [7] Singh M G, Drew A W, Coalos J F. Comparison of practical hierarchical control methods for interconnected dynamical systems[J]. Automatica, 1975, (11): 331-350.
    [8] Baras J S, et al. Discrete-time point process in urban traffic queue estimation[J]. IEEE Trans. AC-24, 1979: 12-27.
    [9] Baras J S, et al. Estimation of platoon structure from headway statistics[J]. IEEE Trans. AC-24, 1979: 553-559.
    [11] Lin D, et al. Hierarchical techniques in traffic control[A]. Proc. of AC/IFIP/IFORS 3th Int.Sym. [C], IEEE, 1976: 163-171.
    [12] Lim J H, et al. Hierarchical optimal control of oversaturated urban traffic[J]. Int. J. Control, 1981, 33(1): 723-737.
    [12] 刘希,邹左军,城市交通协调控制综述[J].自动化学报,1986,12(4):430-437.
    [13] Messmer A, Papageorgious M. Route diversion control in motorway networks via nonlinear optimization[J]. IEEE Control System Technology, 1995, 3(1): 144-154.
    [14] Kashini H R, Saradis G N. A learning algorithm for adaptation to traffic's dynamic variation[A]. Proc. of 6th IFAC Sym. on Identification and System[C], IEEE, 1982: 719-723.
    [15] Menga G, Patracco P. A decentralized approach[A]. Proc. European Conf. on Applied Information Technology of IFIP[C], 1979: 126-131.
    [16] Mavleod G J, Mc Cartney. Mufti-level control of road traffic networks using microprocessors[J]. IEEE Trends on On-line Computer Control System, 1979: 126-131.
    [17] Asim Al-Khalili. Urban traffic control-A general approach[J]. IEEE Trans. on SMC, 1985, 15(2): 260-271.
    [18] Hong K Lo, Elbert Chang, Yiu Cho Chang. Dynamic network traffic control[J]. Transportation Research, Part A, 2001, (35): 721-744.
    [19] Kashani H R, Saradis G N. Intelligent control for urban traffic systems[J]. Automatica, 1983, 19(2): 191-197.
    [20] Bart De Schuter, Bart De Moor. Optimal traffic light control for a single intersection[J]. European Journal of Control, 1998, 4(3): 270-276.
    [21] 黄辉先,史忠科.城市单交叉路口交通流实时遗传算法优化控制[J].系统工程理论与实践,2001,14(2):102-106.
    [22] 万绪军,陆化普.线控系统中相位差优化模型的研究[J].中国公路学报,2001,22(3):99-102.
    [23] 李立源,曹大铸.道路交通流量最优预测与交叉口最优控制[J].控制理论与应用,1993,10(1):67-72.
    [24] 薛劲松,徐吉万,陈大海.城市交通网络的模型化技术和最优控制[J].信息与控制,1981,61(3):12-18.
    [25] 周鹏,史忠科,陈小锋.城市交通联网控制及其多目标优化实现[J].控制理论与应用,2002,19(2):215-219.
    [26] Chard B M, Lines C J. TRANSYT: The latest developments[J]. Traffic Engineering and Control, 1987, 28(4): 387-390.
    [27] Hunt P B, Robertson D I, Bretherson R D. The scoot on-line traffic signal optimization technique[J]. Traffic Engineering and Control, 1982, 23(2): 190-192.
    [28] Shepherd S P. Review of congestion control[M]. Technical Note 264, Institute for Transport Studies, Leeds-UK, 1990.
    [29] 陶志祥,黄卫.城市交通控制的新发展[J].交通运输系统工程与信息,2002,2(3):15-16.
    [30] 欧海涛,张文渊,张卫东.城市交通控制的新进展[J].信息与控制,2000,29(5):441-453.
    [31] 许伦辉,袁路生,徐建闽.基于神经网络实现的交叉口多相位模糊逻辑控制[J].系统工程理论与实践第,2004,22(7):135-140
    [32] Trabia B, Kaseko S, Andel A. Two stage fuzzy logic controller for traffic signals [J]. Transportation Research Part C, 1999, 7 (6): 353-367.
    [33] Patel M I. An intelligent system architecture for urban traffic control applications[J]. Proc. of 8th IEEE Symp. on Parallel and Distributed Processing[C], IEEE, 1996: 10-17.
    [34] Findler N U. Multi-agent coordination and cooperation in a distributed dynamic environment with limited resources[J]. Artificial Intelligence in Engineering, 1995, (9): 229-238.
    [35] 欧海涛,张卫东,张文渊.基于多智能体技术的城市智能交通控制系统[J].电子学报,2001,16(3):52-55.
    [36] 欧海涛,张卫东,许晓鸣.基于RMM和贝叶斯学习的城市交通多智能体系统[J].控制与决策,2001,16(3):291-295.
    [37] 黄海军.城市交通网络平衡分析原理与实践[M].北京 人民交通出版社,1994.
    [38] Stemven W B. Automated highway systems programs: Progress Report[A]. Proc. of IFAC World Congress[C], USA, 1996: 553-556.
    [39] Papageorgiou M. An integrated control approach for traffic corridors. Transpn. Res. C, 1995, 3(1): 321-330.
    [40] Diakaki C. Simulation studies of integrated corridors control in Glasgow[J]. Transpn. Res.-C, 1997, 5 (3/4): 211-224.
    [41] 李瑞敏,史其信.基于多智能体系统的城市交通控制与诱导集成化研究[J].公路交通科技,2004,21(5):109-112.
    [42] Ruimin Li, Qixin Shi. Study on integration of urban traffic control and route guidance based on multi-agent technology[J]. IEEE on Intelligent Transportation Systems, 1785(2): 1740-1744.
    [43] Xiaoming Wang, Shoufeng Ma, Yanjun Li. The coordination modes between urban traffic control and vehicle route guidance[J]. IEEE on Intelligent Transportation Systems, 1785(2): 1633-1638.
    [44] 王亮,马寿峰,李艳君.对交通控制与诱导结合研究的评述[J].系统工程,2004,22(2):56-62.
    [45] 朱茵,陆化普.城市交通控制控制系统发展趋势[J].综合运输,2003,15(12):48-50.
    [46] 刘智勇,梁渭清.城市交通信号控制的进展[J].公路交通科技,2003,20(6):121-125.
    [47] 杨兆生.城市交通流诱导系统[M].北京 中国铁道出版社,2004.11.
    [48] Paice R, Kruskal C. Parallel algorithms for shortest path problems[J]. IEEE Transactions on Computers C, 1985, 34(1): 14-20.
    [49] 刘迎春.一种实用的最短路径求解方法[J].浙江工业大学学报,2000,28(2):169-173
    [50] Jagadeesh. Heuristic techniques for accelerating hierarchical routing on road networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2002, 13(4): 301-309.
    [51] 景玲,黄席樾,潘娅.基于遗传算法的动态路径诱导[J].重庆大学学报,2002,25(4):68-71.
    [52] Chang Wook Ahn, R. S. Ramakrishna. A genetic algorithm for shortest path routing problem and thesizing of populations[J]. IEEE Trans. on Evolutionary Computation, 2002, 16(6): 566-579.
    [53] Ahn C W, Ramakrishna R S, Kang C G. Shortest path routing using hopfield neural network[J]. Let., 2001, 37(19): 1176-1178.
    [54] Trenton Haines, Medanic J V. A neural network shortest path algorithm[A]. Proc. of IEEE International Symposium on Intelligent Control[C], Columbus USA, 1994: 382-387.
    [55] 邹亮,徐建闽.基于遗传算法的动态网络中最短路径问题算法[J].2005,计算机应用,25(4):742-744.
    [56] Hrvoje Keko, Minea Skok, Davor Skrlec. Solving the distribution network routing problem with artificial immune systems[A]. Proc. of the 12th IEEE Mediterranean[C], Dubrovnik Croatia, 2004, (3): 959-962.
    [57] Iqbal N, Maarof M.A. Potential issues in novel computational research: artificial immune systems[A]. Proc. of 7th International Multi Topic Conference[C], IEEE. 2003: 340-345.
    [58] Chbini I. A new short paths algorithm for discrete dynamic networks[A]. Proc. of 8th IFAC Symposium on Transport systems[C], Salford Elsevier, 1997: 551-556.
    [59] Cbini I. Discrete dynamic shortest path problems in transportation applications: Complexity and algorithms with optimal run time[J]. Transportation Research Records, 1998, 1645(1): 170-175.
    [60] Deo N, Pangc Y. Shortest path algorithms: Taxonomy and annotation[J]. Networks, 1984, (14): 175-323.
    [61] Hall R. The fastest path through a network with random time dependent travel time[J]. Transportation Science, 1986, 20 (3): 182-188.
    [62] Lamt N, Tongc O. A dynamic route guidance system based on historical and current traffic pattern[A]. Proc. of 1992 IEEE Intelligent Vehicles Symposium[C], Detroit, 1992: 365-369.
    [63] SungskK, Jongh L. A study on design of dynamic route guidance system using forecasted t ravel time based on GPS data and modified shortest path algorithm[A]. Proc. of 1999 IEEE/IEEJ/ JSAI International Conference on Intelligent Transportation Systems[C], Tokyo: IEEE, 1999: 44-48.
    [64] Gaetani F, Mincidardi R. Dynamic models and optimal control methods for route guidance in urban traffic networks[A]. Proc. of IEEE 5th International Conference on Intelligent Transportation Systems[C], Singapore: IEEE, 2002: 454-459.
    [65] Koba Yashim A, Shimizu H, Yonezawa Y. Dynamic route search algorithms of a traffic network[A]. Proc. of the 36th SICE Annual Conference International Session Papers[C], Tokushima: IEEE, 1997: 1211-1216.
    [66] 苏永云,晏克非,杨晓光.VNS中动态行程时间与多端动态最短路算法[J].中国公路学报,2001,14(1):97 103.
    [67] Fu L P. An adaptive routing algorithm for in vehicle route guidance systems with real time information[J]. Transportation Research B, 2001, 35 (8): 749-765.
    [68] Sen S, PillaiR, Joshis. A mean variance model for route guidance in advanced traveler information systems[J]. Transportation Science, 2001, 35 (1): 37-49.
    [69] Zil Iaskopoulos. A massively parallel time dependent least time path algorithm for intelligent transportation systems applications[J]. Computer Aided Civil and Infrastructure Engineering, 2001, (16): 337-346.
    [70] Wen Huimin, Yang Zhaosheng. Study on the shortest path algorithm based on fluid neural network of in vehicle traffic flow guidance system[A]. Proc. of the IEEE International Conference on Vehicle Electronics[C], Changchun: IEEE, 1999, (1): 110-113.
    [71] He Guoguang, Ma Shoufeng. AI based dynamic route guidance strategy and its simulation [A]. Proc. of IEEE Intelligent Transportation Systems Conference[C], Oakland: IEEE, 2001: 28-32.
    [72] 李威武,王慧,钱积新.智能交通系统中路径诱导算法研究进展[J].2005,浙江大学学报(工学版),39(6):819-825.
    [73] 李振龙.城市交通诱导策略的探讨[J].交通科技,2003,196(1):1-3.
    [74] 李英,刘豹.交通流时间序列中混沌特性判定的替代数据方法[J].系统工程,2000,18(6):54-58.
    [75] 王东山,贺国光.交通混沌研究综述与展望[J].土木工程学报,2003,36(1):68-74.
    [76] Jiangtao Ren, et al. Research on network-level traffic pattern recognition[A]. Proc. of the 5th IEEE Conference on Intelligent Transportation System[C], Singapore, 2002: 500-504.
    [77] Joseph L. Perspectives on driver preferences for dynamic route guidance systems[J]. Transportation Research Record 1588, Paper No. 970146.
    [78] Adler J L. Investigating the learning effects of route guidance and traffic advisories on route choice behavior[J]. Transportation Research C, 2001, 9(1): 1-14.
    [79] 蒲云,郑雪.城市混合交通流诱导系统的研究[J].科技通报,2000,16(3):176-180.
    [80] Jefrey L Adler, Victor J Blue. Toward the design of the intelligent traveler information systems[J]. Transportation Research C, 1998, 6(3): 157-172.
    [81] Kanoh H, Nakamura N. Route guidance with unspecified staging posts using genetic algorithm for car navigation systems[A]. Proc. of IEEE Intelligent Transportation Systems[C], IEEE, 2000: 119-124.
    [82] Whale J, et al. A dynamic route guidance system based on real traffic data[J]. European Journal of Operational Research, 2001, 131(1): 302-308.
    [83] Jee-Hyong Lee, Hyung Lee-Kwang. Distributed and cooperative fuzzy controllers for traffic intersections group[J]. IEEE Transactions on Systems, Man and Cybernetics, Part C, 1999, 29(2): 263-271.
    [84] Chiu S. Adaptive traffic signal control using fuzzy logic[A]. Proc. of the IEEE on Intelligent Vehicles, Symposium[C], IEEE, 1992: 98-107.
    [85] Wu Wi, Mingjun Wang. Fuzzy-MOGA-based traffic signal control at intersection[A]. Proc. of the Second International Conference on Machine Learning and Cybernetics[C], Xi'an China, 2003, (1): 639-644.
    [86] Yan Li, Xiaoping Fan. Design of signal controllers for urban intersections based on fuzzy logic and weightings[A]. Proc. of IEEE on Intelligent Transportation Systems[C], Singapore, 2003, (1): 867-871.
    [87] Junxia Gao, Jiangeng Li, Xiaohua Zhao. Multiphase fuzzy control under hybrid traffic flow of single intersection[A]. Proc. of IEEE on Intelligent Transportation Systems[C], Singapore, 2003, (2): 1329-1333.
    [88] Guojiang Shen, Tingfang Ma, Youxian Sun. Application of fuzzy control theory in multi-phase traffic control of single intersection[A]. Proc. of the 4th World Congress on Intelligent Control and Automation[C], Shanghai China, 2002, (2): 1017-1022.
    [89] Jee-Hyong Lee, Keon-Myung Lee, Hyung Lee-Kwang. Fuzzy controller for intersection group[A]. Proc. of IEEE/IAS Conference on Industrial Automation and Control: Emerging Technologies[C], Taibei China, 1995: 376-382.
    [90] Hong Wei, Wang Yong, Mu Xuanqin. A cooperative fuzzy control method for traffic lights[A]. Proc. of IEEE on Intelligent Transportation Systems[C], Oakland, CA, 2001: 185-188.
    [91] 李灵犀,高海军,王飞跃.两相邻路口交通信号的协调控制[J].自动化学报,2003,29(6):947-952.
    [92] 徐冬玲,方建安,邵世煌.交通系统的模糊控制及其神经网络实现[J].信息与控制,1992,21(2):74—79.
    [93] Pappis C P, Mamdani E H. A fuzzy logic controller for a traffic junction[J]. IEEE Trans. on systerm, Man, and Cybernetics: SMC-7, 1977, (10): 707-717.
    [94] Jerabek, V, Lachiver, G.. Fuzzy logic-based controller of traffic intersection[A]. Proc. of IEEE on Electrical and Computer Engineering [C], Canadian, 1995, (1): 190-193.
    [95] Haijun Gao, Lingxi Li, Rui Liu. Changeable phases signal control of an isolated intersection[A].IEEE SMC[C], 2002, (5): 435-438.
    [96] Beauchamp-Baez G, Rodriguez-Morales E, Muniz-Marrero E L. A fuzzy logic based phase controller for traffic control[A]. Proc. of the Sixth IEEE International Conference on Fuzzy Systems [C], Barcelona, 1997, (3): 1533-1539.
    [97] 陈森发,陈洪,徐吉谦.城市单路口交通的两级模糊控制及其仿真[J].系统仿真学报,1996,10(2):35-40.
    [98] 陈淑燕,陈森发,吴明赞.单路口交通的多相位实时模糊控制[J].系统工程理论与实践,2003,(1):110-115.
    [99] 李威武,王慧,钱积新.基于遗传算法的城域交叉路口两级模糊控制[J].中南工业大学学报,2003,34(4):373-376.
    [100] Junxia Gao, Jiangeng Li, Xiaohua Zhao. Two-stage fuzzy control of urban isolated intersection signal for complex traffic conditions[A]. Proc. of the 5th World Congress on Intelligent Control and Automation[C], Hongzhou China, 2004, (6): 5287-5291.
    [101] 杨杰,黄欣,杨勇.基于遗传算法的模糊规则自动生成[J].2000,12(2):159-174.
    [102] 王人英,孔祥维,李国平.一种利用遗传算法自动生成模糊规则方法[J],2001,41(2):135-138.
    [103] 王凌,郑大钟,李清生.混沌优化方法的研究进展[J].计算技术与自动化,2001,20(1):1-5.
    [104] 李兵,蒋慰孙,混沌优化方法及其应用[J].控制与决策,1997,14(4):613-615.
    [105] 刘智勇,吴今培,李秀平.城市交通大系统递阶模糊神经网络控制[J].信息与控制,1997,25(6):441-447.
    [106] 沈国江,孙优贤.城市交通干线递阶模糊控制及其神经网络实现[J].系统工程理论与实践,2004,24(4):99-105.
    [107] 刘智勇,吴今培,李秀平.城市交通干线递阶模糊控制[J].公路交通科技,1997,14(3):17-23.
    [108] 陈森发,徐吉谦,陈洪,毛岚.城市主干道交通信号灯模糊线控制的探讨[J].运筹与管理,1998,7(1):35-41.
    [109] 常云涛,彭国雄.基于遗传算法的城市干道协调控制[J].交通运输工程学报, 2003, 3(2): 106-112.
    [110] Vander Zijpp N J, Fiorenzo Catalano S. Path enumeration by finding the constrained K-shortest paths[J]. Transportation Research, 2005, (39): 545-563.
    [111] Chang Wook Ahn, Ramakrishna R S. A genetic algorithm for shortest path routing problem and the sizing of populations[J]. IEEE Trans. on Evolutionary Computation, 2002, 6(6): 566-579.
    [112] 杨兆升,姜桂艳.基于高阶神经网络的城市交通诱导理论模型[J].公路交通科技,1998,15(2):16-19.
    [113] Youshen Xia, Jun Wang. A discrete-time recurrent neural network for shortest-path routing[J]. IEEE Transactions on Automatic Control, 2000, 45(11): 2129-2134.
    [114] Trenton Haines, Medanic J V. A neural network shortest path algorithm[A]. Proc. of IEEE International Symposium on Intelligent Control[C], Columbus USA, 1994: 382-38.
    [115] 肖人彬,王磊.人工免疫系统:原理、模型、分析及展望[J].计算机学报,2002,25(12):1282-1291.
    [116] 焦李成,杜海峰.人工免疫系统进展与展望[J].电子学报,2003,31(10):1540-1547.
    [117] 丁永生,任立红.人工免疫系统:理论与应用[J].模式识别与人工智能,2000,13(1):52-59.
    [118] Chun J S, Kim M K, Jung H K. Shape optimization of electromagnetic devices using immune algorithm[J]. IEEE Trans. on Magnetics, 1997, 33(2): 1876-1879.
    [119] Gibert C J, Routen T W. Associative memory in an immune-based system[A]. Proc. 12th National Conf. on Artificial Intelligence[C], Seattle, 1994: 852-857.
    [120] Mitsumoto N, Fukuda T, Shimojima K, et al. Micro autonomous robotic system and biologically inspired immune swarm strategy as a multi agent robotic system[A]. Proc. 1995 IEEE Int. Conf. on Robotics and Automation[C], Nagoya Japan, 1995, (2): 2187-2192.
    [121] Hunt J E, Cooke D E. An adaptive distributed learning system based on the immune system[A]. Proc. IEEE Int. Conf. Systems, Man and Cybernetics[C], 1995: 2494-2499.
    [122] 王磊,潘进,焦李成.免疫算法[J].电子学报,2000,28(7):74-78.
    [123] Chun J-S, Chi D-H, Kim M K, et al. A study on comparison of optimization performances between immune algorithm and other heuristic algorithms[J]. IEEE Trans. on Magnetics, 1998, 34(5): 2972-2975.
    [124] Yanjun Li, Tiejun Wu. A novel Immune algorithm for complex optimization problems[A]. Proc. of the 5th World Congress on Intelligent Control and Automation[C], Hangzhou China2004, (5): 2279-2283.
    [125] Castro L, Zuben F. An evolutionary immune network for data clustering[A]. Proc. of the Sixth Brazilian Symposium on Neural Networks[C], Janeiro, 2000: 84-89.
    [126] Leandro N de C, Timmis J. An artificial immune network for multi modal function optimization[A]. Proc. of the 2002 International Conference on Evolutionary Computation[C], Honolulu: IEEE, 2002: 699-674.
    [127] 谭国真,高文.时间依赖网络中最小时间路径算法[J].计算机学报,2002,25 (2):165-172.
    [128] 任刚,王炜,邓卫.带转向延误和限制的最短路径问题及其求解方法[J].东南大学学报,2004,34(1);104-108.
    [129] 刘灿齐.车辆在交叉口分流向延误的最短路径及算法[J].同济大学学报,2002,30(1):52-56.
    [130] Easa S M. Traffic assignment in practice: overview and guidelines for users[J]. Journal of Transportation Engineering, 1991, 117(6): 602-623.
    [131] 张国强,晏克非.城市道路网络交通特性仿真模型及最短路径算法[J].交通运输工程学报,2002,2(3):61-63.
    [132] 苏永云,晏克非.车辆导航系统动态最优路径搜索方法的研究[J].系统工程,2002,18(4):2-37.
    [133] Sen A, Thakur Iah P. Estimation of static travel times in a dynamic route guidance systems[J]. Math Compute Modeling, 1995, 22(4): 83-101.
    [134] 李引珍.交叉口有延误的交通网络最短路径算法研究[J].兰州交通大学学报(自然科学版),2004,23(3):1-3.
    [135] Nakamiti G, Gomide F. Fuzzy sets in distributed traffic control[A]. Pro. of the Fifth IEEE International Conference on Fuzzy Systems[C], New Orleans, LA, 1996, (3): 1617-1623.
    [136] Yuan Xiaobo, He Zhongxing. Fuzzy extension information and intelligent transportation management control system [A]. Pro. of the 4th World Congress on Intelligent Control and Automation[C], Shanghai, 2002: 1041-1045.
    [137] Tao C W. A reduction approach for fuzzy rule bases of fuzzy controllers [J]. IEEE Trans. System, Man and Cybernetic, 2002, (32): 668-675.
    [138] Turksen I B. Fuzzy logic: review of recent concerns[A]. Proc. of IEEE International Conference on Computational Cybernetics and Simulation[C], Orlando FL, 1997, (3): 2975-2978.
    [139] Hong Wei, Wang Yong, Mu Xuanqin. A cooperative fuzzy control method for traffic lights[A]. Proc. of IEEE International Conference on Intelligent Transportation Systems [C], Oakland CA, 2001: 185-188.
    [140] Guojiang Shen, Tingfang Ma, Youxian Sun. Application of fuzzy control theory in multi-phase traffic control of single intersection[A]. Proc. of the 4th World Congress on Intelligent Control and Automation[C], Shanghai China, 2002, (2): 1017-1022.
    [141] Hoyer R, Jumar U. Fuzzy control of traffic lights[A]. Proc. of the IEEE World Congress on Computational Intelligence[C], Orlando FL, 1994: 26-29.
    [142] Gao Haijun, Li Lingxi, Liu Rui. Changeable phases signal control of an isolated intersection[J]. IEEE Trans. System, Man Cybernet, 2002, (5): 435-438.
    [143] 李灵犀,高海军,陈龙等.两相邻路口信号的分层递阶模糊控制[J].中国公路学报,2002,15(4):66-68.
    [144] 李艳,樊晓平.基于模糊控制的城市交叉路口群信号控制及仿真[J].交通运输工程学报,2003,3(2):117-119.
    [145] Pawlak Z. Rough sets[J]. International Journal of Information and Computer Science, 1982, 11(5): 341-356.
    [146] Pawlak Z. Rough set theory for intelligent industrial applications[A]. Proc. of the Second International Conference on Intelligent Processing and Manufacturing of Materials[C], Honolulu, 1999: 37-44.
    [147] 韩祯祥,张琦,文福拴.粗集理论及其应用综述[J].控制理论与应用,1999,(2): 154-157.
    [148] Pawlak Z. Why rough sets[A]. Pro. of the Fifth IEEE International Conference on Fuzzy Systems[C], New Orleans, 1996: 738-743.
    [149] 胡可云,路玉昌.粗糙集理论及其应用进展[J].清华大学学报(自然科学版),2001,41(1):64-68.
    [150] Hu Xiaohua, et al. Mining knowledge rules from databases-a rough set approach{A}. Proc. of IEEE International Conference on Data Engineering[C], Los Alamitos, 1996: 96-105.
    [151] Tsumoto S, et al. Extraction of domain knowledge from databases based on rough set theory[A]. Proc. of IEEE International Conference on Fuzzy Systems[C], New Jersey, 1996: 748-754.
    [152] Sienkiewicz J. Rough set and rough function approaches to the control algorithm reconstruction[M]. Institute of Computer Science Reports, Warsaw University of Technology, Warsaw, 1996.
    [153] Mrozek A et al. Methodology of rough controller synthesis[A]. Proc. of IEEE International Conference on Fuzzy Systems[C], New Jersey, 1996: 1135-1139.
    [154] Slowinski R. Rough set approach to decision analysis[J]. AI Expert, 1995: 19-25.
    [155] Pawlak Z. Rough set approach to knowledge based decision support[M]. Institute of Computer Science Reports, Warsaw University of Technology, Warsaw, 1995.
    [156] Slowinski R, et al. Rough set sorting of firms according to bankruptcy risk[M]. Applying Multiple Criteria aid for Decision to Environment Management, Dordrecht: Kluwer Academic Publishers, 1994: 339-357.
    [157] Zhang Q, Han Z X, Wen F S. A new approach for fault diagnosis in power systems based on rough set theory[A].Proc. of APSCOM[C], HongKong, 1997: 597-602.
    [158] 张琦,韩祯祥,文福拴.一种基于粗糙集方法的电力系统故障诊断/警报处理的新方法[J].中国电力,1998,31(4):32-38.
    [159] 刘清.Rough集及Rough推理[M].北京科学出版社,2002.
    [160] Hauser T, Scherer W. Data mining tools for real time traffic signal decision support and maintenance[A]. Proc. of the IEEE International Conference on Systems, Man and Cybernetics[C], Tucson USA, 2001: 1471-1477.
    [161] Park B, Lee Do-Hoon, Yun Hsoo. Enhancement of time of day Based traffic signal control[A]. Proc. of the IEEE International Conference on Systems, Man, and Cybernetics[C], USA, 2003: 3619-3624.
    [162] 焦李成,杜海峰.人工免疫系统进展与展望[J].电子学报,2003,31(10):1540-1547.
    [163] Dasgupta D, Forrest S. Artificial immune systems in industrial applications[A]. Proc. of the Second International Conference on Intelligent Processing and Manufacturing of Materials[C], Honolulu USA, 1999: 257-267.
    [164] Kim J, Bentley P. Towards an artificial immune system for network intrusion detection: An investigation of clonal selection with a negative selection operator[A]. Proc. of the Congress on Evolutionary Computation[C], Seoul Korea, 2001: 27-30.
    [165] Forrest S, Hofmeyr S A, Somayaji A. Computer immunology[J]. Communications of the ACM, 1997, 40(10): 88-96.
    [166] De Castro L N, Von Zuben F J. Clonal selection algorithm with engineering applications[A]. Proc. GECCO[C], Las Vegas USA, 2000: 36-37.
    [167] Dasgupta D, Cao Y, Yang C. Immune-genetic approach to spectra recognition[A]. Proc GECCO[C], CA USA, 1999: 149-155.
    [168] Endoh S, Toma N, Yamada K. Immune algorithm for n-TSP[A]. Proc. IEEE International Conference on Systems, Man and Cybernetics[C], San Diego CA USA, 1998: 3844-3849.
    [169] Chun J S, Lim J P, Jung H K. Optimal design of synchronous motor with parameter correction using immune algorithm[J]. IEEE Trans Energy Conversion, 1999, 14 (3): 610-615.
    [170] Ishiguro A, Watanabe Y, Uchikawa Y. Fault diagnosis of plant systems using immune networks[A]. Proc. IEEE International Conference on Multi-Sensor Fusion and Integration for Intelligent Systems[C], Las Vegas NV, 1994: 34-42.
    [171] Tang Z, Yamaguchi T, Tashima K. Multiple-valued immune network model and its simulations[A]. Proc. 27th International Symposium on Multiple-Valued Logic[C], Antigonish Nova Scotia Canada, 1997: 519-524.
    [172] Hunt J E, CookeD E. Learning using an artificial immune system[J]. Journal of Netwok and Computer Applications, 1996, 19(2): 189-212.
    [173] Timmis J, Neal M. A resource limited artificial immune system for data analysis[J]. Knowledge Based System, 2001, 14 (3/4): 121-130.
    [174] Mitsumoto N, Fukuda T, Shimojima K. Autonomous robotic system and biologically inspired immune swarm strategy as a multi-agent robotic system[A]. Proc IEEE International Conference on Robotics and Automation[C], Minneapolis, Minnesota USA, 1995: 2187-2192.
    [175] Mitsumoto N, Hattori T, Idogaki T. Self-organizing micro robotic system[A]. Proc. 6th International Symposium on Micro Machine and Human Science[C], Nagoya Japan, 1995: 261-270.
    [176] 莫宏伟.人工免疫系统原理与应用[M],哈尔滨 哈尔滨工业大学出版社,2003.12:131-157.
    [177] Dasgupta D. Artificial neural networks and artificial immune systems[A]. Proc. of the IEEE SMC, 1997(1): 873-878.
    [178] 肖人彬,王磊.人工免疫系统:原理、模型、分析及展望[J].计算机学报,2002,25(12):1282-1291.
    [179] 林学颜,张玲.现代细胞与分子免疫学[M].北京 科学出版社,1999.
    [180] Castro L, Zuben F. An evolutionary immune network for data clustering[A]. Proc. of the Sixth Brazilian Symposium on Neural Networks[C], Janeiro, 2000: 84-89.
    [181] Liu Ruochen, Du Haifeng, Jiao Licheng. Immunity clonal strategies[A]. Proc. of the Fifth International Conference on Computational Intelligence and Multimedia Application[C], IEEE, 2003: 290-295.
    [182] Timmis J, Neal M. An artificial immune systems for data analysis[J]. BioSystems, 2000, 55: 143-150.
    [183] 陈国良,王煦法,庄镇泉等.遗传算法及其应用[M],北京 人民邮电出版社,1996,81-147.
    [184] Rudolph G. Convergence analysis of canonical genetic algorithms[J]. IEEE Trans. on Neural Networks, 1994, 5(1): 96-101.
    [185] 张讲社,徐宗本,梁怡.整体退火遗传算法及其收敛充要条件[J].中国科学(E),1997,27(2):154-164.
    [186] Smith B L, Demetsky M J. Traffic flow forecasting composition of modeling approaches[J]. J. of Transportation Engineering, 1997, 123(4): 262-266.
    [187] Long Chen, Feiyue Wang. A neoro-fuzzy system approach for forecasting short term freeway traffic flows[A]. Proc. of The IEEE 5th International Conference on Intelligent Transportation Systems[C], Beijing, 2002: 747-751.
    [188] 朱中,杨兆升.实时交通量人工神经网络预测模型[J].中国公路学报,1998,11(4):89-92.
    [189] Xihuai Wang, Jianmei Xiao. A radial basis function neural network approach to traffic flow forecasting[A]. Proc. of IEEE on Intelligent Transportation Systems[C], Singapore, 2003, (1): 614-617.
    [190] Smith B L, Demetsky M J. Short-term traffic flow prediction models-a comparison of neural network and nonparametric regression approaches[A]. Proc. of IEEE International Conference on Humans, Information and Technology[C], San Antonio TX, 1994, (2): 1706-1709.
    [191] 陈淑燕,王炜,瞿高峰.交通量预测的神经网络集成方法[J].公路交通科技,2004,21(12):80-83.
    [192] Licai Yang, Lei Jia, Hong Wang. Wavelet network with genetic algorithm and its applications for traffic flow forecasting[A]. Proc. of the 5th World Congress on Intelligent Control and Automation[C], Hangzhou China, 2004, (6): 5330-5333.
    [193] Shuyan Chen, Gaofeng Qu, Xinghe Wang. Traffic flow forecasting based on gray neural network model[A]. Proc. of the Second International Conference on Machine Learning and Cybernetics[C], Xian China, 2003, (2): 1275-1278.
    [194] Zhang Qinghua, Benveniste A. Wavelet network[J]. IEEE Trans on Neural Networks, 1992, 3(6): 889-898.
    [195] 李弼程,罗建书.小波分析及其应用.北京:电子工业出版社,2003.
    [196] Bashir Z, El-Hawary M.E. Short term load forecasting by using wavelet neural networks[A]. Proc. of The IEEE Conference on Electrical and Computer Engineering[C], Canadian, 2000, 163-166.
    [197] Shengtun Li, Shuching Chen. Function approximation using robust wavelet neural networks[A]. Proc The 14th IEEE International Conference on Tools with Artificial Intelligent[C], Taiwan, 2002, 483-488.
    [198] Billings S A, Wei H L. A new class of wavelet networks for nonlinear system identification[J]. IEEE Transactions on Neural Networks, 16(4): 862-874.
    [199] Ho D W, Pingau Zhang, Jinhua Xu. Fuzzy wavelet networks for function learning[J]. IEEE Transactions on Fuzzy Systems, 2001, 9(1): 200-211.
    [200] Pawan Lingras. Comparison of Neofuzzy and Rough Neural Networks[J]. Information Sciences, 1998, (2): 207-215.
    [201] 王玮,蔡莲红.基于粗集理论的神经网络[J].计算机工程,2001,27(5):65-67.
    [202] Hassan Y, Tazaki E, Egawa S. Rough neural classifier system[A]. Proc. of the IEEE Conference on Systems, Man and Cybernetics[C], Yokohama, 2002: 1-6.
    [203] Scheunders P. An orthogonal wavelet representation of multivalued images[J]. IEEE Transactions on Image Processing, 2003, 12(6): 718-725.
    [204] 张新红.正交尺度小波网络及在非线性经济系统预测中的应用[J].运筹与管理,2002,(11):99-103.
    [205] Ribes-Gomez E, McLoone S, Irwin G W. Orthogonal wavelet network construction using local regularization[A]. Proc. of the First International IEEE Symposium on Intelligent Systems[C], IEEE, 2002, (1): 271-276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700