城市干道交通信号协调优化控制及评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市经济的快速发展,交通需求和交通供给矛盾逐渐激化,交通拥堵现象日益严重。改善城市道路交通状况已刻不容缓。智能交通系统(ITS)处于当今世界交通科技的前沿,代表着21世纪交通体系的发展方向。ITS的发展对改善城市道路服务质量、缓解城市道路交通拥堵有着重要意义。面向ITS的交通信息服务系统是适应城市发展智能交通系统的需要。城市主干道是城市道路交通网络中的核心道路,关系着城市社会经济的快速发展。本文以城市干道为研究对象,开展了关于解决城市主干道交通问题的研究,重点从信号控制、交通状况评估和系统建设三方面进行研究。
     首先,本文结合考虑了支路车流汇入主干道及车辆离散性的影响,建立了以城市干道车辆总延误最小为目标函数的优化模型,并结合混沌优化算法和小步长单向搜索算法来综合优化相位差、绿信比和信号周期。本文设计了四个交叉口的干道仿真案例,仿真结果表明,在支路车辆汇入主干道的流量比例高达50%至70%之间的情况下,本文建立的模型相对于MAXBAND方法在总延误上改善了20.09%。
     其次,本文利用占有率来评估城市道路交通运行状况。这一部分从三个方面来研究:第一,采用瞬时速度分布图和占有率数据图匹配的方法确定检测器最佳检测位置,并通过对塔南路主干道进行仿真分析,最终确定该主干道检测器宜安装在停车线上游50m处。第二,结合占有率和旅行时间来评估协调控制下的干道运行效率。第三,提出了周期-占有率关系图的概念,采用可视化图形分析方法对塔南路主干道的其中两个交叉口进行仿真分析,确定其最优相位差。仿真结果表明,相位差调整后的旅行时间相对于初始情况减少了0.57min。
     最后,本文粗略地探讨了城市干道信号控制信息系统的框架体系、结构和功能。
With the rapid development of the economic, the conflict between traffic demand and traffic supply has intensified gradually, and the traffic congestion is becoming increasingly serious. Improving the urban road traffic conditions has become essential. Intelligent Transportation System(ITS) is in the forefront of traffic science and technology in today's world. It represents the development direction of21st century transportation system. The development of ITS is of great significance to improve the service quality of urban roads and ease traffic congestion. For ITS transportation information service system is adapt to the needs of urban development of intelligent transportation system. Urban arterial is the core of urban traffic network, and it is important for the city of rapid development of social economy. Taking it as the study object, this paper conductes the study to solve the traffic problems in urban arterial and studies from three aspects which conclude the signal control, traffic condition evaluation and system development.
     First of all, considering the influence of flow from minor road and the discrete property of the fleet, this paper proposes a model of minimize total delay of vehicles on urban arterial and a method which conbines the chaos optimization algorithm and a small step-way search algorithim to synthetically optimize the offset, split and cycle. The designed of simulation case for four intersections shows that this model compared whih MAXBAND method has improved20.09%on the total delay when the proportion of vehicles from minor road is between50%and70%.
     Secondly, this paper uses the occupancy to assess the traffic condition. This part studies from three aspects. First, this paper uses the matching method on the velocity diagram and occupancy data diagram to determine the best detection position of the detectior. The detector should be installed at the upstream50m far away from the stop line on the Tanan Road by designing a simulation case. Second, the combination of occupancy and travel time to evaluate the quality of service on signalized arterial is proposed. Third, this paper proposes the concept of the cycle-occupancy diagram(COD). A method to adjust the offset is used to analyze two intersections on Tanan Road and the optimal offset is obtained. After adjusting the offset, the travel time between the two intersections reduces0.57min.
     Finally, this paper roughly explores the system framework, structure and basic function of the Arterial Signal Control Information System(ACIS).
引文
[1]张飞舟,范耀祖.交通控制工程[M].北京:中国铁道出版社,2005.
    [2]http://news.21cn.com/caiji/roll1/2013/02/09/14652553.shtml.
    [3]http://www.chexun.com/2013-01-10/101693663.html.
    [4]刘智勇.智能交通控制理论及其应用[M].北京:科学出版社,2003.
    [5]M.Papageorgiou. Concise encyclopedia of traffic & transportation systems[M]. England:Pergamon Press,1991.
    [6]Little, J. D. C., Kelson, M. D., Gartner, N. H.. MAXBAND:A program for setting signals on arteries and triangular networks. Transportation Research Record,1981,795:40-46.
    [7]Little, J. D. C.. The synchronization of traffic signals by mixed-integer linear programming. Operations Research,1966,14(4):568-594.
    [8]Chang, E. P., Cohen, S. L., Liu, C., Chaudhary, N. A., et al. MAXBAND-86:A program for optimizing left-turn phase sequence in multiarterial closed networks. Transportation Research Record,1988,1181(a):61-67.
    [9]Chang, E. P., Lei, J. C., Messer, C. J.. Arterial signal timing optimization using PASSER Ⅱ-87:microcomputer user's guide. TTI Research Report,1988.
    [10]Gartner, N. H., Assmann, S. F., Lasaga, F., Hou, D. L.. A multi-band approach to arterial traffic signal optimization. Transportation Research Part B,1991,25(1): 55-74.
    [11]Stamatiadis, C., Gartner, N. H.. MULTIBAND-96:A program for variable-bandwidth progression optimization of multiarterial traffic networks. Transportation Research Record,1996,1554:9-17.
    [12]Gartner, N. H., Stamatiadis, C.. Arterial-based control of traffic flow in urban grid networks. Mathematical and Computer Modelling,2002,35(5-6):657-671.
    [13]Gartner, N. H., Stamatiadis, C.. Progression optimization featuring arterial- and route-based priority signal networks. Journal of Intelligent Transportation Systems,2004,8(2):77-86.
    [14]常云涛,彭国雄.基于遗传算法的城市干道协调控制[J].交通运输工程学报, 2003,3(2).
    [15]常云涛,彭国雄.城市道路绿波控制系统延误评价[J].中南公路工程,2004,29(1).
    [16]宋现敏.城市交叉口信号协调控方法研究[D].吉林大学博士学位论文,2008.
    [17]姜桂艳.道路交通状态判别技术与应用[M].北京:人民交通出版社,2004.
    [18]Patel, C. R., Joshi, Dr. G.J.. Capacity and LOS for urban arterial road in Indian mixed traffic condition. Procedia-Social and Behavioral Sciences, 2012,48:527-534.
    [19]Liu, H. X., Ma, W.. A virtual vehicle probe model for time-dependent travel time estimation on signalized arterials. Transportation Research Part C 2009,17(1):11-26.
    [20]Liu, H. X., Ma, W.. Arterial travel time estimation using event-based traffic data from signalized intersections. In:Paper Compendium of the 86th Transportation Research Board Annual Meeting, Washington, DC,2007.
    [21]Liu, H. X., Ma, W.. Real-time performance measurement system for arterial traffic signals. In:Paper Compendium of the 87th Transportation Research Board Annual Meeting, Washington, DC,2008.
    [22]Tian, Z., Ohene, F., Hu, P.. Arterial performance evaluation on an adaptive traffic signal control system. Procedia-Social and Behavioral Sciences, 2011,16:230-239.
    [23]Nee, J., Hallenbeck, M.. Surveillance options for monitoring arterial traffic conditions. Washington State Department of Transportation,2001.
    [24]Liang, F., Engineer, P. T. S.O.. Development of Bellevue real time arterial How map. ITE District 6,2006.
    [25]Wolfe, M., Monsere, C. M., Koonce, P., et al. Improving arterial performance measurement using traffic signal system data. Intelligent Transportation Systems Conference,2007. ITSC 2007. IEEE(113-118).
    [26]Berkow, M., Wolfe, M., Monsere, C. M., et al. Using signal system data and buses as probe vehicles to define the congested regime on arterials. Transportation Research Record:Journal of the Transportation Research Board,2008,2129:81-89.
    [27]Day, C. M., Haseman, R., Premachandra, H., et al. Visualization and assessment of arterial progression quality using high resolution signal event data and measured travel time[J]. Transportation Research Record,2010 (2192):37-49.
    [28]Day C M, Smaglik E J, Bullock D M, et al. Real-Time Arterial Traffic Signal Performance Measures[J].2008.
    [29]邹难,俞洁等.道路交通系统的智能优化控制与管理[C].2009中国自动化大会暨两化融合高峰会议,2009.
    [30]Zou, N., Lin, P.W., Lai, X., Chang, G. L., et al. Development of An Integrated Network Simulator for a Real-Time Traffic Management:I-95/US-1 Traffic Simulator. Proceeding in the 8th International Conference on Application of Advanced Technologies in Transportation Engineering, Beijing, China.2004.
    [31]Seymour, P. E., James, E., Bryan, M. Use of google-based mapping system for traffic management center web navigation. Transportation Research Board 86th Annual Meeting, Washington, DC,2007.
    [32]Wu, Y. J., Wang, Y.. Google-Map-based online platform for arterial traffic information and analysis[C]. Transportation Research Board 87th Annual Meeting, Washington, DC,2008.
    [33]Wu, Y. J., Wang, Y., Qian, D.. A Google-Map-based arterial traffic information system[C]. Intelligent Transportation Systems Conference,2007. ITSC 2007. IEEE:968-973.
    [34]Wu, Y. J., Wang, Y.. An interactive Web-based system for urban traffic data analysis[J]. International Journal of Web Applications,2009,1(4):241-252.
    [35]Sarasua, W. A.. A GIS-based traffic signal coordination and information management system[J]. Computer-Aided Civil and Infrastructure Engineering, 1994(9),235-250.
    [36]全永燊.城市交通控制[M].北京:人民交通出版社,1989.
    [37]Lieberman, E. B., Woo, J. L.. SIGOP Ⅱ:A new computer program for calculating optimal signal timing patterns. Transportation Research Record,1976,16-21.
    [38]许旺土,何世伟,宋瑞.城市交通仿真中的延误计算模型对比比分析[J].系统仿真学报,2009(13):3880-3884.
    [39]Hdward, N., Lorenz. Reflections on the Conception, Birth, and Childhood of NumericalWeather Prediction . Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology. 2005:7.
    [40]李兵,蒋慰孙.混沌优化方法及其应用[J].控制理论与应用,1997,14(4):613-615.
    [41]Shaw, T.. Performance measures of operational effectiveness for highway segments and systems. Transportation Research Board, Washington,D.C, 2003.
    [42]赵承树.城市道路运行评价的初步探讨[J].市政技术,1990,4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700