银耳多糖提取纯化、结构特征及溶液性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以银耳子实体为原料,采用热水煮提、醇沉法提取银耳粗多糖,经酶-Sevage法去蛋白、DEAE-52纤维素离子交换层析和Sephacryl S-400凝胶过滤层析纯化后得到银耳均一多糖TFP1,用苯酚-硫酸法、间羟联苯-硫酸法检测其总糖、糖醛酸等组分的含量;PMP衍生化后反相高效液相色谱测单糖组成,结合红外光谱和核磁共振图谱分析银耳多糖一级结构特征;利用尺寸排阻色谱-激光光散射(SEC-LLS)、碘=碘化钾实验、刚果红实验、粘度检测和原子力显微镜技术对多糖溶液性质进行初步探讨。
     组分分析表明精制银耳多糖TFP1总糖含量为81.9%,糖醛酸含量为6.9%,不含蛋白质和核酸;单糖组成分析、红外光谱及核磁共振图谱结果表明TFP1主要由甘露糖、葡萄糖醛酸、木糖和岩藻糖四种单糖组成(含少量葡萄糖),其物质的量比约为5.78:0.7:1.1:1,TFP1是分子构型为α=型且含有O-乙酰基结构的酸性杂多糖。
     SEC-LLS检测计算出TFP1在NaCl溶液中的重均分子量(Mw)为5.832×106Da,多分散系数(Mw/Mn)为1.005,均方根旋转半径(z1/2)为191.3 nm,说明TFP1是分子量较大且糖链为刚性链的均一多糖。由Huggins方程和Kraemer方程计算的TFP1的特性粘度[η]=1508.3 mL/g,所以TFP1在25℃的0.1 mol/LNaCl溶液中具有较高的刚性,分子链较为伸展。碘-碘化钾实验中300-700 nm紫外-可见光吸收图谱中565 nm处没有最大吸收值,说明TFP1是具有多分支或支链的大分子。随着碱浓度升高,刚果红与银耳多糖形成的络合物最大吸收波长相应减小,但相对于刚果红本身最大吸收波长减少明显缓慢,说明其没有三螺旋结构。由于自身带电荷、分子内作用力和多支链等原因在原子力显微镜下观察到TFP1的形貌呈球状。
     综上,银耳多糖TFP1是以甘露糖为主链,主要由四种单糖残基(含少量葡萄糖)组成,含有O-乙酰基结构且具有多个分支的酸性均一杂多糖,分子构型为a-型。溶液性质研究表明TFP1是分子量较大且伸展的刚性链,不存在三螺旋结构。
A water-soluble polysaccharide was extracted from Tremella fuciformis Berk. Crude Tremella fuciformis polysaccharide was gained by boiling in hot-water, precipitating using ethanol, removing proteins using papain-Sevage method. Then the crude polysaccharide was applied to DEAE-52 cellulose colume and further purified through Sephacryl S-400 column, followed by dialysis, lyopilization. The resulting sample was named as TFP1. Total sugar and uronic acid contents of TFP1 were determined by phenol-sulfuric acid method and m-hydroxydiphenyl combined with sulfuric acid method using glucose and glucuronic acid as standard respectively. UV spectrum showed that no protein or nucleic acid presented in TFP1. The results of the PMP precolumn derivatization HPLC analysis, FT-IR spectroscopy and NMR spectrum showed that TFP1 was an acidic heteropolysaccharide containing mannose, glucuronic acid, xylose and fucose with the molar ratio of 5.78:0.7:1.1:1(containing a small amount of glucose), and the spectrums indicated that anomeric carbon of TFP 1 was a-configuration. The Mw, polydispersity index and root-mean square radius of polymer calculated from Zimm plot was 5.832×106Da,1.005,193.1 nm in NaCl solution respectively, which indicated that TFP1 was a homogeneous and rigid chain macromolecule. The intrinsic viscosity([η]) was used to determined by both of the Huggins and Kraemer functions was 1508.3 mL/g which indicated that the polymer molecules was considered to occupy a relatively large hydrodynamic volume in NaCl solution. I2-KI assay also suggested that many branched chains attached to the backbone chain which was composed of mannose residues. After Congo red dye was added to sample at various concentration of alkali, the variation curves of maximum absorption wavelength of mixture decreased gradually with increasing of NaOH concentration and no triple helical structure was detected in TFP1. Atomic force microscopy was used to characterize surface topology and visualize the orientation and spatical distribution of molecules absorbed to mica surface. TFP1 was observed (?)mpact chains conformation unexpectedly, and it was probable that the structure characteristics of GlcUA residue, abundant hydrogen bonds and hyperbranch tend to make macromolecule form spherical conformation.
     In brief, TFP1 was an acidic and homogeneous heteropolysaccharide mainly composed of four monosaccharide residues and the anomeric carbons were a-configuration. Solution properties research proved that the hyperbranched polysaccharide existed in the solution as an extended rigid chain but without triple helical conformation.
引文
[1]刘波.中国真菌志(第二卷)[M].北京:科学出版社,1992:78-80.
    [2]马素云,贺亮,姚丽芬.银耳多糖结构与生物活性研究进展[J].食品科学,2010,31(23):411-416.
    [3]Wu J, Zhang Y, Wang L, et al. Visualization of single and aggregated hulless oat (Avenanuda L.)(1→3), (1→4)-β-D-glucan molecules by atomic force microscopy and confocal scanning laser microscopy[J]. Journal of Agricultural and Food Chemistry,2006,54:925-934.
    [4]Tao YZ, Zhang LN. Determination of molecular size and shape of hyperbranched polysaccharide in solution[J]. Biopolymers,2006,83:414-423.
    [5]Wang JL, Zhang J, Wang XF, et al. Comparison study on microwave-assisted extraction of Artemisia sphaerocephala polysaccharides with conventional method:molecule structure and antioxidant activities evaluation [J]. International Journal of Biological Macromolecules,2009, 45:483-492.
    [6]Wang JG, Ma ZC, Zhang LN, et al. Structure and chain conformation of water-soluble heteropolysaccharides from Ganoderma lucidum[J]. Carbohydrate Polymers,2011, 86:844-851.
    [7]陈海霞.高活性茶多糖的一级结构表征、空间构象及生物活性的研究[D].武汉:华中农业大学,2002.
    [8]Guo L, Liang Q, Du XF. Effects of molecular characteristics of tea polysaccharide in green tea on glass transitions of potato amylose, amylopectin and their mixtures [J]. Food Hydrocolloids,2011,25:486-494.
    [9]Wang XH, Zhang YY, Zhang LN, et al. Multiple conformation transitions of triple helical Lentinan in DMSO/water by microcalorimetry[J]. The Journal of Physical Chemistry B,2009, 113:9915-9923.
    [10]Chen HX, Zhang M, Qu ZS, et al. Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia Sinensis)[J]. Food Chemistry,2008, 106:559-563.
    [11]Yang XB, Zhao Y, Wang QW, et al. Analysis of the monosaccharide components in Angelica polysaccharide by high performance liquide chromatography[J]. Analytical Sciences,2005, 21:1177-1180.
    [12]Dai J, Wu Y, Chen SW, et al. Sugar compositional determination of polysaccharides from Dunaliella salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone[J]. Carbohydrate Polymers,2010,82:629-635.
    [13]Pitt JJ, Gorman JJ. Oligosaccharide characterization and quantitation using 1-phenyl-3-methyl-5-pyrazolone derivatization and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J]. Analytical Biochemistry,1997, 248:63-75.
    [14]张惟杰.糖复合物生化研究技术(第二版)[M].杭州:浙江大学出版社,1999:193-198.
    [15]张惟杰.糖复合物生化研究技术(第二版)[M].杭州:浙江大学出版社,1999:242-244.
    [16]Yamada H, Yanahira S, Kiyohara H, et al. Water-soluble glucans from the seed of Coix lacryma-jobi var. ma-yuen[J]. Phytochemistry,1985,25(1):129-132.
    [17]Ogawa K, Wanatabe T, Tsurugi J, et al. Conformation behavior of a gel-forming (1→3)-(3-D-glucan in alkaline solution[J]. Carbohydrate Reaearch,1972,23(3):399-405.
    [18]Masuelli MA. Viscometric study of pectin. Effect of temperature on the hydrodynamic properties [J]. International Journal of Biological Macromolecules,2011,48:286-291.
    [19]Huang ZP, Huang YN, Li XB, et al. Molecular mass and chain conformations of Rhizoma Panacis Japonici polysaccharides[J].Carbohydrate Polymers,2009,78:596-601.
    [20]吴佳,邓霄,张芸,等.原子力显微镜技术在多糖研究中的应用[J].中国农业科学,2008,41(10):3222-3228.
    [21]Dubois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry,1956,28(3):350-356.
    [22]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976, 72:248-254.
    [23]Blumenkrantz N, Gustav A. New method for quantitative determination of uronic acids[J]. Analytical Biochemistry,1973,54:484-489.
    [24]中明月,聂少平,谢明勇,等.茶叶多糖的糖醛酸含量测定及抗氧化活性研究[J].天然产物研究与开发,2007,19:830-833.
    [25]Zhou J, Hu N, Wu YL, et al. Preliminary studies on the chemical characterization and antioxidant properties of acidic polysaccharides from Sargassum fusiforme[J]. Journal of Zhejiang University SCIENCE B,2008,9(9):721-727.
    [26]Chen HX, Zhang M, Xie BJ. Quantification of uronic acids in tea polysaccharide conjugates and their antioxidant properties [J]. Journal of Agricultural and Food Chemistry,2004, 52:3333-3336.
    [27]Ukai S, Hirose K, Kiho T. Isolations and characterizations of polysaccharides from Tremella fuciformis Berk[J]. Chemical and Pharmaceutical Bulletin,1972,20(6):1347-1348.
    [28]Ge Y, Duan YF, Fang GZ, et al. Polysaccharides from fruit calyx of Physalis alkekengi var. francheti:Isolation, purification, structural features and antioxidant activities[J]. Carbohydrate Polymers,2009,77:188-193.
    [29]Mao WJ, Li BF, Gu QQ, et al. Preliminary studies on the chemical characterization and antihyperlipidemic activity of polysaccharide from the brown alga Sargassum fusiforme[J]. Hydrobiologia,2004,512:263-266.
    [30]Ismail B, Nampoothiri KM. Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510[J]. Archives of Microbiology,2010,192:1049-1057.
    [31]艾连中.干酪乳杆菌LC2W胞外多糖制备、功能及结构的研究[D].无锡:江南大学,2007.
    [32]华允芬.铁皮石斛多糖成分研究[D].杭州:浙江大学,2005.
    [33]Guo L, Dua XF, Lan J, et al. Study on molecular structural characteristics of tea polysaccharide[J]. International Journal of Biological Macromolecules,2010,47:244-249.
    [34]Beer MU, Wood PJ, Weisz J. A simple and rapid method for evaluation of Mark-Houwink-Sakurada constants of linear random coil polysaccharides using molecular weight and intrinsic viscosity determined by high performance size exclusion chromatography:application to galactomanna[J]. Carbohydrate Polymers,1999,39:377-380.
    [35]Han Q, Yu QY, Shi J, et al. Molecular characterization and hypoglycemic activity of a novel water-soluble polysaccharide from tea(Camellia sinensis) flower[J]. Carbohydrate Polymers,2011,86(2):797-805.
    [36]Mohammadifar MA, Musavi SM, Kiumarsi A, et al. Solution properties of targacanthin (water-soluble part of gum tragacanth exudate from Astragalus gossypinus)[J]. International Journal of Biological Macromolecules,2006,38:31-39.
    [37]Signini R, Campana Filho SP. On the preparation and characterization of chitosan hydrochloride[J]. Polymer Bulletin,1999,42,159-166.
    [38]Tha Goh KK, Matia-Merino L, Pinder DN, et al. Molecular characteristics of a novel water-soluble polysaccharide from the New Zealand black tree fern (Cyathea medullaris)[J]. Food Hydrocolloids,2011,25:286-292.
    [39]Kido S, Nakanishi T, Norisuye T. Ordered conformation of Succinoglycan in aqueous sodium chloride[J]. Biomacromolecules,2001,2:952-957
    [40]Funami T, Kataoka Y, Hiroe M, et al. Thermal aggregation of methylcellulose with different molecular weights[J]. Food Hydrocolloids,2007,21:46-58.
    [41]Wang YF, Yu L, Zhang JC, et al. Study on the purfication and characterization of a polysaccharide conjugate from tea flowers[J]. International Journal of Biological Macromolecules,2010,47:266-270.
    [42]Wang YF, Peng YH, Wei XL, et al. Sulfation of tea polysaccharides:synthesis, characterization and hypoglycemic activity[J]. International Journal of Biological Macromolecules,2010,46:270-274.
    [43]Tao YZ, Zhang LN, Yan F, et al. Chain conformation of water-insoluble hyperbranched polysaccharide from Fungus[J]. Biomacromolecules 2007,8:2321-2328.
    [1]王镜岩,朱胜庚,徐长发.生物化学(第三版,上册)[M].北京:高等教育出版社,2007:40-41.
    [2]Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides[J]. Applied Microbiology Biotechnology,2002,60:258-274.
    [3]陈建旭.灵芝水溶性蛋白与碱溶性多糖的提取和抗氧化性研究及灵芝浆的研制[D].上海:华东理工大学,2010.
    [4]李先华.人参多糖的分离、纯化及结构研究[D].长春:东北师范大学,2007.
    [5]范延丽.花桑寄生多糖分离、纯化及抗肿瘤活性的研究[D].福州:福建师范大学,2008.
    [6]孙汉巨.菜籽多糖的分离纯化及特性研究[D].合肥:合肥工业大学,2009.
    [7]Dubois M. Colorimetric method for determinantion of sugars and related substances [J]. Analytical Chemistry,1956,28(3):350-356.
    [8]Bitter T, Muir HM. A modified uronic acid carbazole reaction[J]. Analytical Biochemistry, 1962,4:330-334.
    [9]Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids[J]. Analytical Biochemistry,1973,54:484-489.
    [10]姜瑞芝,陈英红,杨勇杰,等.银耳多糖中糖醛酸含量的测定[J].中草药,2004,35(9):991-993.
    [11]Hoogen BM, Weeren PR, Lopes-Cardozo M, et al. A microtiter plate assay for the determination of uronic acids[J]. Analytical Biochemistry,1998,257:107-111.
    [12]Coimbra MA, Barros A, Barros M, et al. Multivariate analysis of uronic acid and neutral sugars in whole pectic samples by FT-IR spectroscopy[J]. Carbohydrate Polymers,1998, 37:241-248.
    [13]Garleb KA, Bourquin LD, Fahey GCJr. Galacturonate in pectic substances from fruits and vegetables:comparison of anion exchange HPLC with pulsed amperometric detection to standard colorimetric procedure[J]. Journal of Food Science,1991,56(2):423-426.
    [14]Meyer A, Raba C, Fischer K. Ion-pair RP-HPLC determination of sugars, amino sugars, and uronic acids after derivatization with p-aminobenzoic acid[J]. Analytical Chemistry,2001, 3:2377-2382.
    [15]Chen HX, Zhang M, Xie BJ. Quantification of uronic acids in tea polysaccharide conjugates and their antioxidant properties[J]. Journal of Agricultural and Food Chemistry,2004, 52:3333-3336.
    [16]戴军.杜氏盐藻多糖的提取、分离分析及生物活性的研究[D].无锡:江南大学,2007.
    [17]Burton BA, Bran DA. Comparative flexibility, extension, and conformation of some simple polysaceharide chains[J]. Biopolymers,1983,22(7):1769-1792.
    [18]Han Q, Yu QY, Shi J, et al. Molecular characterization and hypoglycemic activity of a novel water-soluble polysaccharide from tea(Camellia sinensis) flower[J]. Carbohydrate Polymers,2011,86(2):797-805.
    [19]Willemsen OH, Snel MME, Cambi A, et al. Biomolecular interactions measured by atomic force microscopy [J]. Biophysical Journal,2000,79:3267-3281.
    [20]Ando T, Kodera N, Takai E, et al. A high-speed atomic force microscope for studying biological macromolecules[J]. Proceedings of the National Academy of Sciences,2001, 98(22):12468-12472.
    [21]Balnois E, Wilkinson KJ. Sample preparation techniques for the observation of environmental biopolymers by atomic force microscopy[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2002,207:229-242.
    [22]Gunning AP, Giardina TP, Faulds CB, et al. Surfactant-mediated solubilisation of amylose and visualisation by atomic force microscopy[J]. Carbohydrate Polymers,2003,51:177-182.
    [23]Ikeda S, Nitta Y, Temsiripong T, et al. Atomic force microscopy studies on cation-induced network formation of gellan[J]. Food Hydrocolloids,2004,18:727-735.
    [24]Plaschke M, Romer J, Klenze R. et al. In situ AFM study of sorbed humic acid colloids at different pH[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1999,160:269-279.
    [25]Camesano TA, Wilkinson KJ. Single molecule study of Xanthan conformation using atomic force microscopy[J]. Biomacromolecules,2001,2:1184-1191.
    [26]Bluhm TL, Sarko A. The triple helical structure of lentinan, a linear β-(1→3)-D-glucan[J]. Canadian Journal of Chemistry,1977,55:293-299.
    [27]段金友,方积年.圆二色谱在糖类化合物结构研究中的应用[J].天然产物研究与开发, 2004,16(1):71-75.
    [28]陈海霞.高活性茶多糖的一级结构表征、空间构象及生物活性的研究[D].武汉:华中农业大学,2002.
    [29]Wang XH, Zhang YY, Zhang LN, et al. Multiple conformation transitions of triple helical Lentinan in DMSO/water by microcalorimetry[J]. The Journal of Physical Chemistry B,2009, 113:9915-9923.
    [30]Guo L, Liang Q, Du XF. Effects of molecular characteristics of tea polysaccharide in green tea on glass transitions of potato amylose, amylopectin and their mixtures[J]. Food Hydrocolloids,2011,25:486-494.
    [31]刘波.中国真菌志(第二卷)[M].北京:科学出版社,1992:78-80.
    [32]Ukai S, Hirose K, Kiho T. Isolations and characterizations of polysaccharides from Tremella fuciformis Berk[J].Chemical and Pharmaceutical Bulletin,1972,20(6):1347-1348.
    [33]Ukai S, Kiho T, Hara C. Polysaccharides in fungi. IV. Acidic oligosaccharides from acidic heteroglycans of Tremella fuciformis Berk and detailed structures of the polysaccharides[J]. Chemical and Pharmaceutical Bulletin,1978,26(12):3871-3876.
    [34]夏尔宁,陈琼华.银耳子实体多糖的分离、分析及生物活性[J].真菌学报,1988,7(3):166-174.
    [35]Gao QP, Seljelid R, Chen HQ, et al. Characterisation of acidic heteroglycans from Tremella fuciformis Berk with cytokine stimulating activity[J]. Carbohydrate Research,1996,288: 135-142.
    [36]Gao QP, Jiang RZ, Chen HQ, et al. Characterization and cytokine stimulating activities of heteroglycans from Tremella fuciformis[J]. Planta Medica,1996,62:297-302.
    [37]Gao QP, Killie MK, Chen HC, et al. Characterization and cytokine-stimulating activities of acidic heteroglycans from Tremella fuciformis[J]. Planta Medica,1997,63:457-460.
    [38]Yui T, Ogawa K, Kakuta M, et al. Chain conformation of a glucurono-xylo-mannan isolated from fruit body of Tremella fuciformis Berk[J]. Journal of Carbohydrate Chemistry,1995,14: 255-263.
    [39]Ukai S, Kiho T, Hara C, et al. Polysaccharides in fungi. III. A neutral heteroglycan from alkaline extract of Tremella fuciformis Berk[J]. Chemical and Pharmaceutical Bulletin,1978, 26(6):1707-1712.
    [40]吴梧桐,余品华,夏尔宁等.银耳孢子多糖TF-A、TF-B、TF-C的分离、纯化及组成单糖的鉴定[J].生物化学与生物物理学报,1984,16(4):393-397.
    [41]姜瑞芝,陈怀永,陈英红,等.银耳孢糖的化学结构初步研究及其免疫活性[J].中国天然药物,2006,4(1):73-76.
    [42]徐文清,王雪姣,黄洁,等.银耳碱提孢子多糖A-BTF的分离与结构研究[J].天然产物研究与开发,2007,19:1055-1058.
    [43]徐文清,高文远,王雪姣.银耳孢子多糖TFA结构的研究[J].中草药,2008,39(8):1140-1142.
    [44]Kakuta M, Sone Y, Umeda T, et al. Comparative structural studies on acidic heteropolysaccharides isolated from "Shirokikurage", fruit body of Tremella fuciformis Berk, and the growing culture of its yeast-like cells[J]. Agricultural Biology Chemistry,1979,43(8): 1659-1668.
    [45]Sone Y, Misaki A. Structures of the cell wall polysaccharides of Tremella fuciformis[J]. Agricultural Biology Chemistry,1978,42(4):825-834.
    [46]徐文清.银耳孢子多糖结构表征、生物活性及抗肿瘤作用机制研究[D].天津:天津大学,2006.
    [47]林志彬,秦泽莲,夏鸿林,等.银耳多糖对小鼠免疫功能和肝匀浆细胞色素P-450含量的影响[J].中国药理学报,1985,6(3):201-204.
    [48]崔金莺,林志彬.银耳多糖对小鼠脾细胞内游离钙离子浓度的影响[J].药学学报,1997,32(8):561-564.
    [49]胡庭俊,梁纪兰,程富胜,等.银耳多糖对小鼠脾脏淋巴细胞蛋白激酶C活性的影响[J].中草药,2005,36(1):81-84.
    [50]崔金莺,林志彬.银耳多糖对小鼠IL-2、IL-6、TNF-α活性及其mRNA表达的影响[J].北京医科大学学报,1996,28(4):244-248.
    [51]Ukai S, Hirose K, Kiho T, et al. Antitumor activity on Sarcoma 180 of the polysaccharides from Tremella fuciformis Berk[J]. Chemical and Pharmaceutical Bulletin,1972,20(10): 2293-2294.
    [52]徐文清,高文远,沈秀,等.银耳孢子多糖体内抑制肿瘤作用的研究[J].天津药学,2007,19(1):7-10.
    [53]曲萌,董志恒,盖晓东.银耳多糖在肝癌治疗中的作用及相关机制的实验研究[J].北华 大学学报,2007,8(1):52-57.
    [54]解方为,欧阻学农,彭永海,等.银耳孢多糖对小鼠大肠癌的抑制作用及机理研究[J].中药药理与临床,2009,25(2):54-56.
    [55]李璐,吕俊,毕富勇,等.银耳多糖对肝癌细胞株HepG-2增殖的影响[J].皖南医学院学报,2008,27(5):320-323.
    [56]李璐,毕富勇,吕俊.银耳多糖诱导肝癌HepG-2细胞凋亡的研究[J].实用医学杂志,2009,25(7):1033-1035.
    [57]Chen B. Optimization of extraction of Tremella fuciformis polysaccharides and its antioxidant and antitumour activities in vitro[J]. Carbohydrate Polymers,2010,81:420-424.
    [58]蔡东联,沈卫,曲丹,等.银耳多糖对D-半乳糖致衰老模型小鼠抗氧化能力的影响[J].氨基酸和生物资源,2008,30(4):52-54.
    [59]刘培勋,高小荣,徐文清,等.银耳碱提多糖抗氧化活性的研究[J].中药药理与临床,2005,21(4):35-37.
    [60]曲丹,蔡东联,张浩,等.银耳多糖抗心肌细胞凋亡作用的实验研究[J].第二军医大学学报,2009,30(4):383-386.
    [61]李燕.银耳多糖的抗衰老作用及其机制研究[D].上海:第二军医大学,2004.
    [62]何执中,何执静,冯胜华,等.银耳多糖等配基修饰对胰岛素降血糖活性的影响[J].药学进展,1997,21(4):231-234.
    [63]Kiho T, Tsujimura Y, Sakushima M, et al. Polysaccharides in fungi. XXXIII. Hypoglycemic activity of acidic polysaccharide (AC) from Tremella fuciformis[J]. Yakugaku Zasshi,1994, 114:308-315.
    [64]Cho EJ, Hwang HJ, Kim SW, et al. Hypoglycemic effects of exopolysaccharides produced by mycelial cultures of two different mushrooms Tremella fuciformis and Phellinus baumii in ob/ob mice[J]. Applied Microbiolgy Biotechnology,2007,75:1257-1265.
    [65]Kim SW, Hwang HJ, Baek YM, et al. Proteomic analysis in ob/ob mice before and after hypoglycemic polysaccharide treatments[J]. Journal of Microbiology and Biotechnology, 2009,19(10):1109-1121.
    [66]侯建明,陈刚,蓝进.银耳多糖对脂类代谢影响的实验报告[J].中国疗养医学,2008,17(4):234-236.
    [67]Cheung PCK. The hypocholesterolemic effect of two edible mushrooms Auricularia auricula(tree-ear) and Tremella fuciformis (white jelly-leaf) in hypercholesterolemic rats[J]. Nutrition Research,1996,16(10):1721-1725.
    [68]Jeong HJ, Yoon SJ, Pyun YR. Polysaccharides from edible mushroom Hinmogi(Tremella fuciformis) inhibit differentiation of 3T3-L1 adipocytes by reducing mRNA expression of PPARy, C/EBPa, and Leptin[J]. Food Science Biotechnology,2008,17(2):267-273.
    [69]中建和,陈琼华.木耳多糖、银耳多糖和银耳孢子多糖对实验性血栓形成的影响[J].中国药科大学学报,1990,21(1):39-42.
    [70]中建和,陈琼华.黑木耳多糖、银耳多糖、银耳孢子多糖的抗凝血作用[J].中国药科大学学报,1987,18(2):137-139.
    [71]Kim JH, Ha HC, Lee MS, et al. Effect of Tremella fuciformis on the neurite outgrowth of PC12h cells and the improvement of memory in rats[J]. Biological and Pharmaceutical Bulletin,2007,30(4):708-714.
    [72]Wu Q, Zheng C, Zheng XN, et al. Modification of low molecular weight polysaccharides from Tremella fuciformis and their antioxidant activity in vitro[J]. International Journal of Molecular Sciences,2007,8:670-679.
    [73]徐文清,李美佳,陈木天.银耳多糖及其衍生物抑制牛免疫缺陷病毒的实验研究[J].中国性病艾滋病防治,2001,7(5):277-278.
    [74]吴子健,陈庆森,闫亚丽,等.银耳多糖对嗜酸乳杆菌L101发酵生长影响的研究[J].食品研究与开发,2008,29(11):22-25.
    [75]Guo FC, Kwakkel RP, Williams BA, et al. Effects of mushroom and herb polysaccharides, as alternatives for an antibiotic, on growth performance of broilers[J]. Poultry Science,2004, 45(5):684-694.
    [76]Guo FC, Williams BA, Kwakkel RP, et al. Effects of mushroom and herb polysaccharides, as alternatives for an antibiotic, on the cecal microbial ecosystem in broiler chickens[J]. Poultry Science,2004,83:175-182.
    [77]Guo FC, Kwakkel RP, Williams BA, et al. Effects of mushroom and herb polysaccharides on cellular and humoral immune responses of Eimeria tenella-infected chickens [J]. Poultry Science,2004,83:1124-1132.
    [78]侯建明,蓝进,高益槐.银耳多糖抗溃疡作用的试验研究[J].中国疗养医学,2008,17(5):316-318.
    [79]夏尔宁,陈琼华.黑木耳、银耳、银耳孢子多糖对血清蛋白生物合成的影响[J].南京药学院学报,1985,16(3):49-51.
    [80]Zhang M, Cui SW, Cheung PCK, et al. Antitumor polysaccharides from mushrooms:a review on their isolation process, structural characteristics and antitumor activity[J]. Trends In Food Science and Technology,2007,18:4-19.
    [81]吴琼,代永刚,高长城,等.酸降解水溶性银耳多糖及抗氧化作用研究[J].食品科学,2009,30(13):93-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700