探讨连续性血液滤过与腹膜透析在心脏术后急性肾功能衰竭中的应用对比
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     急性肾功能衰竭(Acute Reanal failure, ARF)是心脏外科围手术期最常见的严重并发症之一,有多种原因可诱发急性肾功能衰竭,如术前心功能不全导致的慢性肾损害,术中体外循环的损伤,术后顽固性低心排、低氧血症,以及相关药物的肾脏毒副作用等等。近年来随着心脏外科相关技术(如体外循环)的进步、手术方式的成熟以及围手术期处理的改善,急性肾功能衰竭的发生率有所降低。但是患者一旦发生ARF,其死亡率仍然非常高,如不及时处理,循环系统及其他系统将出现严重并发症。其中容量负荷的增加极容易诱发急性心功能衰竭,这也是ARF导致患者死亡最常见的原因之一。
     目前国内各大心脏外科中心已经广泛开展透析及过滤治疗来处理心脏围手术期间发生的严重ARF,其疗效也通过大量临床试验得到肯定。但是由于临床研究及各级医院条件限制,目前对心脏围手术期间发生的严重ARF进行透析及滤过治疗的方案仍难达成统一。临床死亡率仍较高,并发ARF的心脏手术患者预后较差,总体死亡率50%-70%不等,Chertow报道需要透析的心脏手术患者死亡率63.7%。Lenge报道需要透析的患者死亡率为53%。临床上如何正确,及时有效处理心脏术后ARF,仍是非常棘手的问题。因此临床如何正确处理体外循环术后的ARF仍具有重要的意义。
     连续性肾脏替代治疗(continuous renal replacement therapy, CRRT)是目前处理心脏术后ARF最常用的治疗方式,它是以对流的原理清除体内大中及小分子物质、水分和电解质,根据原发病治疗的需要补充一部分置换液,通过超虑可以降低血中溶质的浓度,以及调控机体容量平衡。实际上,CRRT不仅仅是一组维护肾脏功能的医疗措施,它能通过超滤,灌流,吸附等一系列不断发展的技术,在调节体液电解质平衡的同时,清除各种代谢产物,毒物,药物和身体内产生的各种致病性生物分子(如趋化因子,细胞因子等等)。因此,目前很多学者称CRRT为连续性血液净化(Continus blood purification, CBP), CBP作为一类崭新的、跨学科的技术,研究工作还在不断的深入发展中。
     腹膜透析(peritoneal dialysis, PD)是肾功能衰竭的重要替代治疗方法,能有效清除体内多余水分,纠正电解质及酸碱平衡紊乱,清除体内毒性物质,且对循环功能影响小,适用于体外循环心脏直视术后由于低心排综合症、心脏骤停、体外循环等原因所致急性肾功能衰竭。心外科术后肾衰竭患者究竟CBP与PD哪一种方案更有效,对ARF预后更好,仍无明确理论依据及定论。
     研究目的
     CBP因其独特的治疗效果,目前仍为处理ARF最重要的治疗方式,其效果已经得到大量临床试验的证实。但是体外循环术后发生ARF,何时运用血液透析效果最佳,目前仍没有统一定论,本文研究结果将为此提供依据。
     CBP与PD比较,对心外科术后ARF的治疗效果究竟哪一种治疗方案更有效亦是本研究的主要目的之一。本文通过对接受CBP的36例心脏术后ARF病例及接受PD的21例心脏术后ARF病例的对比临床研究,进一步深化对该疾病的认识,为临床如何正确处理类似病例提供一定依据。
     方法
     山东大学齐鲁医院2005年8月~2010年5月心脏手术后因ARF接受CBP患者36例,接受PD患者21例,术前均无肾功能异常。前者采用经皮穿刺股静脉留置单针双腔导管建立血管通路,根据预后分为生存组(n=24)和死亡组(n=12),后者采用腹膜腔荷包缝合Tenckhoff透析管,根据预后分为生存组(n=13)和死亡组(n=8),对其临床资料进行回顾性分析比较,统计各组心脏术后ARF产生的时间,开始血液透析的时间,血液透析总共持续的时间,监护室入住的天数等等指标。并对所有患者治疗前进行APACHE III评分,并分别观察两组患者治疗前、治疗12、24、48和72h后肾功能(BUN、Cr)、心肌酶(AST、CPK、LDH)、左心室射血分数(LVEF)、心脏输出量(CO)、心脏指数(CI)的变化,以及平均动脉压(MAP)、心率(HR)、氧合指数(PaO2/FiO2)、血乳酸(Lac)、WBc和P1t等指标,观察治疗前及治疗期间的白细胞介素6(IL-6),白细胞介素10(IL-10),肿瘤坏死因子(TNF-α)等炎症因子的变化。
     结果
     1.经过CBP治疗后,一共有24例患者出院时肾功能恢复,尿量正常。有12例在住院期间死亡(48h时生存组28例,死亡组8例,72h时生存组26例,死亡组10例),其中8例死于多脏器功能衰竭,3例死于心力衰竭,1例死于感染。经过PD治疗后,一共有13例患者出院时肾功能恢复,尿量正常。有8例在住院期间死亡(48h时生存组14例,死亡组7例,72h时生存组13例,死亡组8例),其中5例死于多脏器功能衰竭,2例死于心力衰竭,1例死于感染。
     2.在使用CBP及PD治疗之前,与生存组相比,死亡组CO、LDH (P<0.05)和CI、BUN、Cr、AST、CPK (P<0.01)均有统计学意义。两组患者心脏手术后发生ARF经过治疗,在48、72h时LVEF、CO、CI均有好转,CBP组更明显。在使用CBP72h后生存组LVEF值较使用CBP之前相比有明显提高(P<0.01)。两组CO、CI在经过治疗72h后均有显著提高(P<0.01), BUN及Cr在使用CBP及PD治疗后逐渐下降,其在CBP治疗24、48、72h后的测量值和术前相比均有统计学差异(P<0.01),两组相比,CBP改善更为显著。
     3.在使用CBP及PD治疗之前,死亡组和生存组相比较,除Lac的差别有统计学意义以外(P<0.05),其余指标均未见统计学差异。治疗72h后两组MAP、HR明显好转(P<0.05),Lac比术前均有明显下降(P<0.01)。呼吸功能也明显改善,PaO2/FiO2在治疗24h后明显上升(P<0.05),治疗48h、72h后进一步升高(P<0.01)。CBP及PD治疗对WBC和PLT均没有明显的影响(P>0.05)。死亡组PLT在72h后与治疗前比较明显下降(P<0.05),在12h后和生存组相比也有明显差异(P<0.05),CBP组统计学差异更显著。
     4.治疗前各组之间IL-6、IL-8、TNF-α浓度均无显著差异(P>0.05),但72h后死亡组IL-6、IL-8、TNF-α浓度明显高于生存组(P<0.05),在经过CBP及PD治疗后三种因子浓度均明显下降(P<0.05),CBP生存组下降更明显。
     结论:
     通过本研究证实:早期及时的CBP与PD均能有效改善心外科术后ARF。与PD相比,CBP治疗更为有效。
     1.早期及时地进行CBP及PD治疗有助于减少ARF引起其他并发症的发生促进恢复,缩短ICU入住时间,降低死亡率,提高治疗效果。
     2. APACHRIII评分可作为CBP治疗时的重要参考因素。如果病人ARF发生的时间较短或有急性肾功能损伤,但是APACHRIII得分很高,我们应考虑尽快行CBP及PD治疗。如果患者病情轻,APACHRIII得分低,发生急性ARF或有急性肾功能损伤后,应积极给予相应处理后再酌情给予CBP治疗。
     3.CBP治疗的主要机制为:
     a)维持循环稳定,减轻心脏负荷,改善心,肾,肺功能及机体代谢,明显提高LVEF、CO、CI等指标,升高血压,减慢心率,明显降低心肌酶浓度,减少BUN、Cr浓度,提高氧合指数,降低血液乳酸含量。
     b)减少血液炎性介质浓度,包括IL-6、IL-8、TNF-α等因子,这些炎性介质在体内是ARF产生后诱导器官功能障碍综合征(MODS)的主要因素,因此可减少对体内各器官的损伤。
Objective:Acute renal failure (ARF) is a common and serious complication after cardiac surgery using cardiopulmonary bypass (CPB), a variety of reasons could induce ARF, such as pre-operative chronic kidney damage caused by cardiac dysfunction, CPB in the surgery, postoperative serious low cardiac output, hypoxemia, as well as drug side effects, and so on. In recent years,with CPB-related technology advanced, surgical handle and perioperative management improved, the incidence of ARF has been reduced, but if patients in the event of the ARF, the mortality rate is still high. Therefore, how to properly handle ARF after cardiopulmonary bypass still has a great significance.
     The main measures to ARF are hemodialysis and peritoneal dialysis and continuous blood purification (CBP). Because of its unique advantage, CBP is still the most important treatment of ARF, the effect of which has been confirmed by a large number of clinical trials. But how to know the best time to use CBP when occurrence of ARF after cardiopulmonary bypass still has no uniform conclusion, its impact on the body and the specific mechanism need further study.
     In this paper, the clinical use of the CBP and PD during ARF in cardiac surgery and the optimal time of clinical application of CBP treatment were investigated. We further analyzed the effects of CBP and PD treatment and specific mechanism involved.
     Methods:36patients with ARF after heart surgery from August2005to May2010in Qilu Hospital of Shandong University receiving continuous blood purification,while21patients with ARF receiving PD. All patients have no abnormal renal function before surgery. By percutaneous femoral vein indwelling double lumen catheter vascular access, All patients were divided into survival group (n=24) and death group (n=12)in CBP according to the prognosis,while13&8in PD ones. Clinical data were retrospectively analyzed, including ARF-occurence time after cardiac surgery, the number of days, the initiation of dialysis time, total duration times of hemodialysis, intensive care unit stay times and the APACHE III scores. And some important indicators including renal function (BUN, Cr), cardiac enzymes (AST, CPK and LDH), left ventricular ejection factor (LVEF), cardiac output (CO), cardiac index (CI), mean arterial pressure (MAP), heart rate (HR), oxygenation index (PaO2/FiO2), blood lactate (Lac), WBC (white blood cell) and PLt (platelet), were observed in all patients before and after12h,24h,48h and72h treatment. Changes of inflammatory factors including interleukin-6(IL-6), interleukin10(IL-10), tumor necrosis factor alpha (TNF-a) were also observed during hemodialysis.
     Results:1, A total of13patients after CBP treatment discharged, with utter recovery of renal function and normal urine output.8cases still died after CBP treatment during hospitalization (12cases in survival group and8cases in death group at48h;11cases in survival group and6cases in death group at72h), of which5cases died of multiple organ failure,2cases died of heart failure and1case died of infection.2, Before using CBP, compared with the survival group, the indicators including CO, LDH (P<0.05), CI, BUN, Cr, AST and CPK (P<0.01) has statistically significance in death group. LVEF, CO and CI form two groups of patients with ARF at48and72h after CBP were significantly improved after hemodialysis.72h later after hemodialysis, LVEF values in survival group significantly increased (P<0.01) and it was also in death group (P<0.05). Indicators of CO, CI in two groups at72hours after hemodialysis were both significantly increased (P<0.01), BUN and Cr were gradually decreased with the using of hemodialysis, compared to preoperative value, the measured value at24h,48h, and72h were significantly decreased after hemodialysis (P<0.01).3, Before treatment of hemodialysis, difference of indicator Lac (P<0.05) has statistically significance in the death group v.s. survival group, but the other has no significant differences.72h after hemodialysis, the MAP, HR was significantly improved in two groups (P<0.05), the level of Lac was remarkably reduced compared with the preoperation (P<0.01), respiratory function was also improved significantly, Pa02/Fi02was significantly increased (P<0.05) at24h after hemodialysis, and continue to increase at48h,72h after hemodialysis (P<0.01). Hemodialysis had no significant effect (P>0.05) on WBC and PLT. PLT in death group at72h treatment was decreased significantly compared with that of before hemodialysis (P<0.05) and it was also decreased significantly compared with that of in survival group at12h after treatment (P<0.05).
     4, The concentrations of IL-6, IL-8, TNF-alpha in blood have no significant difference before hemodialysis between two groups (P>0.05), but at72h after hemodialysis, IL-6, IL-8, TNF-alpha concentrations in death group were significantly higher than that of in survival group (P<0.05). And IL-6, IL-8and TNF-a concentrations were significantly decreased after hemodialysis in each group (P<0.05).
     Conclusion:CBP is an effective treatment for ARF following cardiac surgery. The earlier diagnosis of ARF after cardiac surgery and faster treatment measures to be implemented will greatly reducing the incidence of other complication, such as multiple organ dysfunction syndrome and mortality in patients.
引文
1. Chan V, Jamieson WR, Chan F, Germann E. Valve replacement surgery complicated by acute renal failure-predictorsof early mortality. J Card Surg.2006; 21: 139-143.
    2. Chertow GM, Lazarus JM, Christiansen CL, et al. Preoperative renal risk stratification. Circulation 1997; 95:878-884.
    3. Grayson AD, Khater M, Jackson M, Fox MA. Valvular heart operation is an independent risk factor for acute renal failure.Ann Thorac Surg.2003; 75:1829-1835.
    4. Mangano CM, Diamondstone LS, Ramsay JG, Aggarwal A, Herskowitz A, Mangano DT. Renal dysfunction after myocardialrevascularization:Risk factors, adverse outcomes, and hospital resource utilization. The Multicenter Study ofPerioperative Ischemia Research Group. Ann Intern Med.1998; 128:194-203.
    5. Thakar CV, Worley S, Arrigain S, Yared JP, Paganini EP.Influence of renal dysfunction on mortality after cardiac surgery:Modifying effect of preoperative renal function. Kidney Int.2005; 67:1112-1119.
    6. Brown JR, Cochran RP, Dacey LJ, et al. Perioperative increases in serum creatinine are predictive of increased 90-day mortality after coronary artery bypass graft surgery. Circulation 2006; 114:1409-1413.
    7. Chertow GM, Levy EM, Hammermeister KE, Grover F, Daley J. Independent association between acute renal failure and mortality following cardiac surgery. Am J Med.1998; 104:343-348.
    8. Chuhwuemeta A, Weisel A, Maganti M, et al. Renaldysfunction in high-risk patients after on-pump and off-pump coronary artery bypass surgery:a propensity score analysis. Ann Thorac Surg.2005; 80:2148-2153.
    9 Fischer UM, Weissenberger WK, Warters RD, Geissler HJ, Allen SJ, Mehlhorn U. Impact of cardiopulmonary bypass management on postcardiac surgery renal function. Perfusion 2002; 17:401-406.
    10 Leacche, M, Winkelmayer, WC, Paul, S, et al. Predicting survival in patients requiring renal replacement therapy after cardiac surgery. Ann Thorac Surg.2006; 81: 1385-1392.
    11 Hix JK, Thakar CV, Katz EM, Yared JP, Sabik J, Paganini EP. Effect of off-pump coronary artery bypass graft surgery on postoperative acute kidney injury and mortality. Crit Care Med.2006; 34:2979-2983.
    12 Abu-Omar, Y, Ratnatunga, C. Cardiopulmonary bypass and renal injury. Perfusion 2006; 21:209-213.
    13汪曾炜,刘维永,张宝仁。心脏外科学。人民军医出版社。2002,252-259
    14洪志朋,叶椿秀,江邦玉。体外循环博动与平流灌注对肾超微结构影响的实验研究[J]。中华胸心血管外科杂志,1993,9(2):161-166
    15 John Firth.Acute renal failure.Medicine 1999; 27 (5):24-29.
    16叶任高,陆再英。内科学(第五版)。人民卫生出版社。562-568.
    17 Hyman A, Mendelssohn DC. Current Canadian approaches to dialysis for acute renal failure in the ICU. Am J Nephrol.2002; 22:29-34.
    18 Mehta RL, Pascual MT, Soroko S, et al. Spectrum of acute renal failure in the intensive care unit:The PICARD experience.Kidney Int.2004; 66:1613-1621.
    19 Silvester W, Bellomo R, Cole L. Epidemiology, management,and outcome of severe acute renal failure of critical illness in Australia. Crit Care Med.2001; 29: 1910-1915.
    20 Metnitz PG, Krenn CG, Steltzer H, etal. Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit Care Med.2002; 30: 2051-2058.
    21. Ji Q, Mei Y, Wang X, et al. Study on the risk factors of postoperative hypoxemia in patients undergoing coronary artery bypass grafting. Circ J.2008; 72:1975-1980.
    18. Manche A, Casha A, Rychter J, Farrugia E, Debono M.Early dialysis in acute kidney injury after cardiac surgery. Interact Cardiovasc Thorac Surg.2008; 7: 829-832.
    22. Nicoara A, Patel UD, Phillips-Bute BG, et al. Mortality trends associated with acute renal failure requiring dialysis after CABG surgery in the United States. Blood Purif.2009; 28:359-363.
    23 Iyem H, Tavli M, Akcicek F, Buket S. Importance of early dialysis for acute renal failure after an open-heart surgery.Hemodial Int.2009; 13:55-61.
    24. Pannu N, Klarenbach S, Wiebe N, Manns B, Tonelli M. Alberta Kidney Disease Network. Renal replacement therapy in patients with acute renal failure:a systematic review. JAMA.2008; 299:793-805.
    25. Lugones F, Chiotti G, Carrier M, et al. Continuous renal replacement therapy after cardiac surgery. Review of 85 cases. Blood Purif.2004; 22:249-255.
    26. Bent P, Tan HK, Bellomo R, et al. Early and intensive continuous hemofiltration for severe renal failure after cardiac surgery. Ann Thorac Surg.2001; 71:832-837.
    27. Demirkilic U, Kuralay E, Yenicesu M, et al. Timing ofreplacement therapy for acute renal failure after cardiacsurgery. J Card Surg.2004; 19:17-20.
    28 Chertow GM, Levy EM, Hammermeister KE, et al. Independent association be tween acute renal failure and mortality following cardiac surgery. Am J Med,1998, 104:343.
    29 Lange HW, Aeppli DM, Brown DC. Survival of patients with acute renal failure requiring dialysis after open hear surgery:Early prognostic indicators. Am Heart J. 1987,113:1138.
    30. Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG et al. The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest 1991; 100:1619-1636.
    31 Wagner D, Draper E, Knaus WA. APAGHE III study design:analytic plan for evaluation of severity and outcome in intensive care unit patients; development of APAGHE HI. Grit Gare Med..1989 17:199-203
    32 APAGHE III management system software:1.2-1.6.McLean, VA:Apache Medical Systems,1990-1999
    33 Gook DA. Performance of APAGHE HI models in an Australian IGU. Ghest 2000; 118:1732-1738
    34 Gook DA, Joyce GJ, Barnett RJ, et al. Prospective validation of APAGHE HI models in an Australian tertiary adult intensive care unit. Anaesth Intensive Gare.2002; 30:308-315
    35 Bastos PG, Sun X, Wagner DP. Application of the APACHE III prognostic system in Brazilian intensive care units:a prospective multiventer study. Intensive Care Med.1996; 22:564-570
    36 Beck DH, Taylor BL, Millar B. Prediction of outcome from intensive care:a prosective cohort study comparing APACHE III and II prognostic systems in a United Kingdom intensive care unit. Crit Care Med.1997; 25:9-15
    37 Pappachan Jv, Millar B, Bennett D.Comparison of outcome from intensive care admission after adjustment for case mix by the APACHE Ⅲprognostic systems. Chest 1999; 115:802-810.
    38 Markgraf R, Deutschinoff G, Pientka L. Comparison of APACHE Ⅱ andⅢ and SAPS Ⅱ:a prospective cohort study evaluating these methods to predict outcome in a German interdisciplinary ICU. Crit Care Med.2000; 28:26-33.
    39 Zimmerman JE, Wagner DP, Drager EA. Evaluation of APACHE III predictions of hospital mortality in an independent database. Crit Care Med.1998; 26:1317-1326
    40 Song SW, Yang HS, Lee S, et al. Earlier application of percutaneous cardiopulmonary support rescues patients from severe cardiopulmonary failure using the APACHE III scoring system. J Korean Med Sci,2009; 24:1064-1070.
    41 Mehta RL, McDonald B, Gabbai FB, et al. for the CollaborativeGroup for Treatment of ARF in ICU. A randomized clinical trial of continuous versus intermittent dialysis for acute renal failure. Kidney International 2001; 60:1154-63.
    42 Uehlinger DE, Jakob SM, Ferrari P, et al. Comparison of continuous and intermittent renal replacement therapy for acute renal failure. Nephrology Dialysis Transplantation 2005; 20:1630-7.
    43 Augustine JJ, Sandy D, Seifert TH, Paganini EP. A randomized controlled trial comparing intermittent with continuous dialysis in patients with ARF. American Journal of Kidney Disease 2004; 44:1000-7.
    44 Kellum J, Angus DC, Johnson JP, et al. Continuous versus intermittent renal replacement therapy:a meta-analysis.Intensive Care Medicine 2002; 28:29-37.
    45 Tonelli M, Manns B, Feller-Kopman D. Acute renal failure in the intensive care unit:a systematic review of the impact of dialytic modality on mortality and renal recovery. American Journal of Kidney Disease 2002; 40:875-85.
    46. Silvester W, Bellomo R, Ronco C. Continuous versus intermittent renal replacement therapy in the critically ill. In:C.Ronco, R. Bellomo, eds. Critical Care Nephrology. Dordrecht:Kluwer Academic Publishers,1998; 1225-38.
    47 Wan S, LeClerc JL, Vincent JL. Inflammatory resporkse to cardiopuhnonary bypass mechanisms involved and possible therapeutic strategies. Chest 1997; 63:269-276
    48. Canaud B, Mion C. Extracorporeal treatment of acute renal failure:methods, indications, quantified and personalized therapeutic approach. Adv Nephrol.1995; 24: 271-81.
    49. Bellomo R, Tipping P, Boyce N. Continuous veno-venous hemofiltration with dialysis cytokines from the circulation of septic patients. Crit Care Med.1993; 21: 522-6.
    50. Schetz M, Ferdinande P, Van der Berghe G, et al. Removal of pro-inflammatory cytokines with renal replacement therapy:sense or nonsense? Intensive Care Med.1995; 21:169-76.
    51. van Bommel EF, Hesse CJ, Jutte NHPM, et al. Cytokine kinetics (TNF-alpha, IL-1 beta, IL-6) during continuous hemofiltration:a laboratory and clinical study. Contrib Nephrol.1995; 116:62-75.
    52. Bellomo R, Tipping P, Boyce N. Interleukin-6 and interleukin-8 extraction during continuous venovenous-hemodiafiltration in septic acute renal failure. Ren Fail.1995; 17:457-66.
    53. Millar AB, Armstrong L, van der Linden J, et al. Cytokine production and hemofiltration in children undergoing cardiopulmonary bypass. Ann Thor Surg.1993; 56:1499-502.
    54. Journois D, Pouard P, Greely WJ, et al. Hemofiltration during cardiopulmonary bypass in pediatric cardiac surgery. Anesthesiology 1994; 81:1181-9.
    55. Goldfarb S, Golper TA. Proinflammatory cytokines andhemofiltration membranes. J Am Soc Nephrol.1994; 5:228-32.
    56. Ronco C, Tetta C, Lupi A, et al. Removal for plateletactivating factor in experimental continuous arteriovenous hemofiltration. Crit Care Med.1995; 23: 99-107.
    57谢红浪,季大玺,龚德华,等.连续性肾脏替代治疗对外周血细胞因子的影响.肾脏病与透析肾移植杂志,1999,8:217
    58余晨,刘志红,陈朝红,等.连续性血液净化对血浆细胞因子水平的影响及其清除机制.肾脏病与透析移植杂志,2004,5:401
    59茹秀颖.血清TNF-α水平变化对ARF患者的临床价值.河北医药,2012,34:1533-1534
    60.Marianol F, Fonsato V, Lanfranco G, etal. Tailoring high cut off membranes and feasible application in sepsis associated acute renalfailure:in vitrostudies[J]. Nephrol DialTransplant,2005,20(6):1116-1126.
    61.Ward RA, Ronco C. Dialyzer and machine technologies:application of recent advances to clinical practice[J]. Blood Purif,2006,24(1):610.
    62. Kooman JP, van der SandeFM, Leunissen KM. The long road to wearable blood cleansing devices[J]. Blood Purif,2007,25(4):377 382.
    63. Tam P. Peritoneal dialysis and preservation of residual renal function[J]. Perit Diallnt,2009,29 (Suppl 2):S108 S110.
    64. Cho KH, Do JY, Park JW, et al. Effect of icodextrin dialysis solution on body weight and fat acc umulation over time in CAPD patients[J]. NephrolDialTransplant, 2010,25(2):593 599.
    65. DemirciMS, OzkahyaM, AsciG, etal. Theinfluence of dialysate calcium on progression of arterial stiffness in peritonealdialysis patients[J]. Perit Diallnt,2009,29 (Suppl2):S15 S17.
    66.CrepaldiC, SoniS, Chionh CY, etal. Application of body composition monitoring to peritoneal dialysis patients[J]. Contrib Nephrol,2009,163:16.
    67. RENAL Replacement Therapy Study Investigators, Bellomo R, Cass A, etal. Intensity of continuous renal replacement therapy in critically ill patients [J]. N Engl J Med,2009,361 (17):1627 1638.
    68. The VA/NIH AcuteRenalFailure Trial Network, Palevsky PM, Zhang JH, etal. Intensity of renal support in critically ill patients with acute kidney injury[J]. N Engl J Med,2008,359(1):720.
    69. Palevsky PM. Renalsupport in acute kidney injury how much is enought[J]? N Engl J Med,2009,361(17):1699 1701.
    70. Ronco C, BellomoR, HomelP, etal. Effects ofdifferent doses in continuous veno venous haemofiltration on outcomes of acuterenalfailure:aprospective randomised trial[J]. Lancet,2000,356(9223):2630.
    71.Wang H, Li WQ, Zhou W, etal. Clinicaleffects of continuous high volume hemofiltration on severeacute pancreatitis complicated with multipleorgan dysfunction syndrome[J]. World J Gastroenterol,2003,9(9):2096 2099.
    72.Ronco C, Tetta C, Mariano F, et al. Interpreting themechanism of continuous renal replacement therapy in sepsis:thepeak concentration hypothesis[J]. Artif Organs,2003, 27(9):792801.
    73. Honor PM, Joannes Boyau O, Boer W, etal. High volumehaemofiltration and hybrid techniques in sepsis:new insights into the rationale[J]. Neth J Crit Care,2007, 11:239242.
    74. DiCarloJV, AlexanderSR. Hemofiltration for cytokine driven illness:the mediator delivery hypothesis [J]. Int J ArtifOrgans,2005,28(8):777786.
    75.Hutchison CA, BradwellAR, Cook M, etal. Treatment of acute renalfailure secondary to multiple myeloma with chemotherapy and extended high cut off hemodialysis[J]. Clin J Am Soc Nephrol,2009,4(4):745754.
    76.Gong D, JiD, Ren B, etal. Significant decrease in dialysatealbumin concentration during molecular adsorbentrecirculatingsystem (M. A.R. S.) therapy[J]. Int J Artif Organs,2008,31(4):333 339.
    77.Gong D, Cruz D, Ronco C. Depurative capacityofmolecularadsorbent recyclingsystem (MARS):A focus on bilirubin removal[J]. Int J Artif Organs, 2008,31(10):875 881.
    78.Cruz D, PerazellaMA, Bellomo R, etal. Effectiveness of polymyxin B immobilized fiber column in sepsis:asystematicreview[J]. CriticalCare,2007,11(2):R47.
    79.Miwa K, Fukuyama M, Matsuno N, etal. Physiological response to superantigen adsorbing hemoperfusion in toxin concentration controlled septic swine[J]. Blood Purif, 2006,24(3):319326.
    80.Weber V, Linsberger I, Ettenauer M, etal. Development of specificadsorbents for human tumor necrosis factor alpha:influenceofantibody immobilization on performance and biocompatibility[J]. Biomacromolecules,2005,6(4):1864 1870.
    81.Kobe Y, Oda S, MatsudaK, etal. Direct hemoperfusion with a cytokine adsorbing devicefor thetreatment of persistent or severe hypercytokinemia:a pilot study[J]. Blood Purif,2007,25(5/6):446453.
    82.Hu W, Liu Z, JiD, etal. Staphylococcal protein Aimmunoadsorption for Goodpasture s syndrome in four Chinese patients[J]. J Nephrol,2006,19(3):312317.
    83.Ji SM, Liu ZH, Chen JS, etal. Rescuetherapy by immunoadsorption in combination with tacrolimus and mycophenolate mofetilfor C4d positiveacute humoralrenal allograft rejection[J]. Transplant Proc,2006,38(10):3459 3463.
    84.Gong DH, Ji DX, Xu B, etal. Regional citrate anticoagulation in critically ill patients during continuous blood purification [J]. Chin Med J (Engl),2003,116(3):360 363.
    85.Bahar I,Akgul A,Ozatik M A.Acute renal failure following open heart surgery:risk factors and prognosis[J].Perfusion,2005,20(6):317-322.
    86.Grayson A D,Khater M,Jackson M,et al.Valvular heart oper-ation is an independent risk factor for acute renal failure [J].Ann Thorac Surg,2003,75(6):1829-1835.
    87.郭虎,訾捷,吴树明,等.腹膜透析在心脏手术后急性肾功能衰竭治疗中的应用[J].中华外科杂志,2004,42(22):1401-1403.
    88.Landoni G, Bove T, Crivellari M,etal. Acute renal failure afterisolated CABG surgery:six years of experience. MinervaAnestesiol,2007,73(11):559-565.
    89.Jander A, Tkaczyk M, Pagowska-Klimek I,et al. Continuousveno-venous hemodiafiltration in children after cardiac surgery.Eur J Cardiothorac Surg,2007,31(6): 1022-1028.
    90.Sear JW. Kidney dysfunction in the postoperative period. Br JAnaesth,2005,95(1): 20-32.
    91.Jones DR, Lee HT. Perioperative renal protection. Best PractRes Clin Anaesthesiol, 2008,22(1):193-208.
    92.Del Duca D, Iqbal S, Rahme E,etal. Renal failure after cardiacsurgery:timing of cardiac catheterization and other perioperativerisk factors. Ann Thorac Surg, 2007,84(4):1264-1271.
    93.Ranucci M. Perioperative renal failure:hypoperfusion duringcardiopulmonary bypass? Semin Cardiothorac Vasc Anesth,2007,11(4):265-268.
    94.Sirvinskas E, Andrejaitiene J, Raliene L,et al.Cardiopulmonary bypass management and acute renal failure:risk factors and prognosis. Perfusion,2008,23(6):323-327.
    95.Ranucci M, Ballotta A, Kunkl A,et al. Influence of the timingof cardiac catheterization and the amount of contrast media onacute renal failure after cardiac surgery. Am J Cardiol,2008,101(8):1112-1118.
    96.Auron A, Simon S, Andrews W,etal. Prevention of peritonitisin children receiving peritoneal dialysis. Pediatr Nephrol,2007,22(4):578-585.
    97.周智恩,邓硕曾,何伦德,等.腹膜透析治疗小儿心脏手术后并发急性肾功能衰竭.中国胸心血管外科临床杂志,2008,15(5):388-390.
    98.Fleming F, Bohn D, Edwards H,et al. Renal replacementtherapy after repair of congenital heart disease in children. Acomparison of hemfiltration and peritoneal dialysis. J ThoracCardiovasc Surg,1995,109(2):322-331.
    99.Mehta KP. Dialysis therapy in children. J Indian Med Assoc,2001,99(7):368-373. Pedersen KR, Hjortdal VE, Christensen S,et al. Clinicaloutcome in children with acute renal failure treated withperitoneal dialysis after surgery for congenital heart disease.Kidney Int Suppl,2008,73(108):S81-S86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700