番茄红素对大鼠心肌梗死后心室重构的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:心肌梗死(myocardial infarction,MI)是心血管疾病致死及致残的主要原因。心肌梗死后,神经体液调节机制激活、炎症、细胞因子引起心肌细胞及细胞间质形态结构的改变,使心脏结构功能按照一定的模式进行重塑,导致心脏形态结构和血流动力学异常,最终发展为心力衰竭(heart failure, HF)。因此,如何延缓、逆转心肌梗死后心室重构,是心肌梗死后临床治疗的关键。
     番茄红素是一种来源于番茄的类胡萝卜素。大量研究报道,番茄红素具有心血管保护作用。血清高浓度的番茄红素与心肌梗死、猝死的发病风险呈负相关。但对于番茄红素是否能改善心室重构较少有报道。本研究通过结扎大鼠冠状动脉前降支制备心肌梗死模型,观察番茄红素对心肌梗死后心功能及心室重构的影响,并探讨其机制。
     第一部分:番茄红素对大鼠心肌梗死后心功能及心室重构的影响
     目的:探讨番茄红素对心肌梗死后大鼠心功能及心室重构的影响。
     方法:通过结扎冠状动脉前降支制备心肌梗死模型,术后第一天开始给予番茄红素(番茄红素组)或生理盐水(心梗对照组)灌胃。假手术组冠状动脉前降支只穿线,不结扎。28天后,观察各组大鼠心率、体重、相对心脏体重比及相对肺脏体重比;心脏超声及血流动力学检测心脏结构功能改变;HE染色观察各组心肌组织结构变化。
     结果:(1)各组大鼠心率、平均动脉压、体重差异无统计学意义(P>0.05),(2)心梗对照组大鼠相对肺脏体重比较假手术组升高(P<0.05),番茄红素组较心梗对照组降低(P<0.05);(3)与假手术组相比,心肌梗死后大鼠心功能及血流动力学受损(P<0.05),番茄红素组心脏超声及血流动力学指标显著优于心梗对照组(P<0.05);(4)HE染色切片发现,与假手术组相比较,心肌梗死与番茄红素组心肌梗死区变薄,心肌结构紊乱,纤维化增加,非梗死区残存心肌梗细胞代偿性肥大(P<0.05),番茄红素组心肌组织非梗死区结构明显改善(P<0.05),梗死面积减小(P<0.05)。
     结论:番茄红素干预改善大鼠心肌梗死后心功能及心室重构。
     第二部分:番茄红素对大鼠心肌梗死后炎症反应、心肌细胞凋亡的影响及机制研究
     目的:炎症反应是心肌梗死后心室重构的重要环节,是慢性心力衰竭发展的基本机制。心肌细胞凋亡在心室重构中起着重要作用。NF-κB信号通路活化可以促进炎症反应及心肌细胞凋亡。有研究报道番茄红素可抑制肺纤维化模型中NF-κB信号通路的激活,所以我们推测番茄红素可能通过NF-κB通路逆转心肌梗死后心室重构。本实验研究目的观察番茄红素对大鼠心脏梗死周边区巨噬细胞的浸润、TNF-α表达、心肌细胞凋亡及NF-κB信号通道的影响。
     方法:通过结扎冠状动脉前降支制备心肌梗死模型,术后第一天开始给予番茄红素(番茄红素组)或生理盐水(心梗对照组)灌胃。假手术组冠状动脉前降支只穿线,不结扎。行心肌脏超声及血流动力学检测后,处死大鼠,留取心脏标本。(1)免疫组织化学法检测梗死周边巨噬细胞抗原(ED-1)的表达;(2) Tunnel染色法检测梗死周边心肌细胞凋亡指数,western blot法检测梗死周边心肌组织caspase-3的蛋白表达;(3) real-time PCR及western blot法检测梗死区周边心肌TNF-α的表达;(4) western blot法检测梗死周边心肌组织NF-κB/p65、IκBα、IKKα/β的蛋白表达。
     结果:(1)梗死周边区ED-1阳性巨噬细胞浸润增多(P<0.05),番茄红素组ED-1阳性巨噬细胞浸润较心梗对照组减少(P<0.05);(2)Tunnel染色发现,心梗对照组梗死周边区心肌细胞凋亡指数及caspase-3蛋白表达增高(P<0.05),番茄红素组改善心肌细胞凋亡(P<0.05);(3)心肌梗死后梗死周边区心肌组织TNF-a的mRNA及蛋白水平升高(P<0.05),番茄红素组低于心梗对照组(P<0.05)。(4)与假手术组相比,心梗对照组NF-κB/p65蛋白表达、IκBa及IKKα/β的磷酸化水平增加,番茄红素组抑制IKBα、IKKα/β磷酸化水平,从而抑制NF-κB/p65活化(P<0.05)。
     结论:番茄红素降低梗死周边区心肌细胞凋亡及caspase-3表达,减轻梗死周边区巨噬细胞的浸润及TNF-α的表达,可能与其抑制NF-κB信号通路的激活有关,这可能是番茄红素改善心肌梗死后心室重构的部分机制。
     第三部分:番茄红素对大鼠心肌梗死后心肌纤维化的影响及机制研究
     目的:有研究证实番茄红素能够减轻博来霉素介导的大鼠实验性肺纤维化。我们推测番茄红素可抑制心肌梗死后心肌间质纤维化改善心室重构。本实验研究目的是观察番茄红素对大鼠心肌梗死后心肌间质纤维化,并探讨可能涉及的机制。
     方法:通过结扎冠状动脉前降支制备心肌梗死模型,术后第一天开始给予番茄红素(番茄红素组)或生理盐水(心梗对照组)灌胃。假手术组冠状动脉前降支只穿线,不结扎。行心肌脏超声及血流动力学检测后,处死大鼠,留取心脏标本。(1)Masson染色检测心肌纤维化,计算出梗死周边区胶原容积分数;(2) Western blot法检测梗死周边区Ⅰ胶原的蛋白表达;(3) Western blot法检测梗死周边区MMP-9及p38MAPK信号通路的改变。
     结果:与假手术组比较,心梗对照组梗死周边区心肌纤维化增加(P<0.05),MMP-9蛋白表达增高(P<0.05), p38MAPK磷酸化水平升高(P<0.05),番茄红素改善纤维化,降低Ⅰ胶原蛋白的增生,同时抑制MMP-9的表达及p38MAPK信号通路的激活(P<0.05)。
     结论:番茄红素可能通过抑制p38MAPK信号通路及MMP-9来改善心肌梗死后心室重构。
Myocardial infarction (MI) is the leading cause of mortality and disability for cardiovascular disease. Ventricular remodeling, a key role in development of heart failure, is a therapeutic target in myocardial infarction. Lycopene is one of the major carotenoids. A large number of studies have reported that lycopene has a protective effect on cardiovascular. High serum concentration is associated with markedly reduced risk of cardiovascular disease, neurodegenerative disorders, serum lipid oxidation and cancers. However, it is unknown whether lycopene improves ventricular remodeling after myocardial infarction. In this study, we attempt to investigate the cardioprotection of lycopene after myocardial infarction. The study was divided into three parts as bellow.
     Part I:Effects of lycopene on cardiac function in the rat model of myocardial infarction
     Objective:To explore the effects of lycopene on cardiac function and ventricular remodeling after myocardial infarction.
     Methods:Rat MI model was established by Left anterior descending coronary artery ligation. After operation, rats received lycopene or saline. After28days, rats underwent echocardiography and hemodynamic detection, and were sacrificed. Cardiac pathology change was analyzed by HE staining.
     Results:Compared with the MI group, lycopene significantly improved histomorphology and cardiac function, and reduced infarct size after myocardial infarction.
     Conclusion:Lycopene improved the cardiac function and ventricular remodeling in MI rats.
     Part II:Effects of lycopene on inflammatory response and myocardial apoptosis in the rat model of myocardial infarction
     Objective:Inflammatory response is the basic mechanism of the development of chronic heart failure. Cardiomyocyte apoptosis plays an important role in ventricular remodeling after MI. NF-κB pathway could promote inflammation and myocardial apoptosis. It had reported that Lycopene inhibited cigarette smoke extract-mediated NF-kB activation. Therefore, we hypothesized that lycopene may improve ventricular remodeling by NF-κB pathway. The purpose of this part study was to observe the effects of lycopene on macrophage infiltration, TNF-a expression, cardiomyocyte apoptosis and NF-κB signaling pathway.
     Methods:Rat MI model was established by Left anterior descending coronary artery ligation. After operation, rats received lycopene or saline. After28days, rats underwent echocardiography and hemodynamic detection, and were sacrificed. Immunohistochemistry analysis was observed to macrophage infiltration. The expression of TNF-a and caspase-3, and NF-κB pathway activation in ischemic zone surrounding MI were detected PCR and western blot analysis.
     Results:Lycopene reduced myocardial apoptosis and caspase-3expression, inhibited macrophage infiltration and TNF-a expression, and attenuated NF-κB signaling pathway activation in ischemic zone surrounding MI.
     Conclusion:Lycopene inhibited NF-κB signaling pathway to reduce cardiomyocyte apoptosis and inflammatory response after MI, which could be mechanism of cardioprotective effects of lycopene.
     Part Ⅲ:Effect of lycopene on myocardial fibrosis in the rat model of myocardial infarction
     Objective:It had reported that lycopene inhibited cigarette smoke extract-mediated matrix metalloproteinase-9(MMP-9) activation, and alleviated bleomycin-mediated pulmonary fibrosis. We speculated that lycopene could inhibit myocardial fibrosis and improve ventricular remodeling after MI. The purpose of this part study is to observe the effect of lycopene on myocardial fibrosis and to explore the possible mechanisms involved.
     Methods:Rat MI model was established by Left anterior descending coronary artery ligation. After operation, rats received lycopene or saline. After28days lycopene or saline, rats underwent echocardiography and hemodynamic detection, and were sacrificed. Myocardial fibrosis was observed by Masson staining. I type collagen MMP-9and MAPK protein expression was detected in ischemic zone surrounding MI by western blot.
     Results:Compared with MI group, lycopene improved myocardial fibrosis, inhibited the expression of p38MAPK, MMP-9and I type collagen.
     Conclusion:Lycopene improved ventricular remodeling by inhibiting p38MAPK activation and MMP-9expression.
引文
[1]S. Pennathur, D. Maitra, J. Byun, I. Sliskovic, I. Abdulhamid, G.M. Saed, M.P. Diamond, H.M. Abu-Soud, Potent antioxidative activity of lycopene:A potential role in scavenging hypochlorous acid, Free Radic Biol Med 49 (2010) 205-213.
    [2]J. Marcotorchino, B. Romier, E. Gouranton, C. Riollet, B. Gleize, C. Malezet-Desmoulins, J.F. Landrier, Lycopene attenuates LPS-induced TNF-alpha secretion in macrophages and inflammatory markers in adipocytes exposed to macrophage-conditioned media, Mol Nutr Food Res 56 (2012) 725-732.
    [3]P. Di Tomo, R. Canali, D. Ciavardelli, S. Di Silvestre, A. De Marco, A. Giardinelli, C. Pipino, N. Di Pietro, F. Virgili, A. Pandolfi, beta-Carotene and lycopene affect endothelial response to TNF-alpha reducing nitro-oxidative stress and interaction with monocytes, Mol Nutr Food Res 56(2012)217-227.
    [4]S.T. Mayne, B. Cartmel, H. Lin, T. Zheng, W.J. Goodwin, Jr., Low plasma lycopene concentration is associated with increased mortality in a cohort of patients with prior oral, pharynx or larynx cancers, J Am Coll Nutr 23 (2004) 34-42.
    [5]A.J. Teodoro, F.L. Oliveira, N.B. Martins, A. Maia Gde, R.B. Martucci, R. Borojevic, Effect of lycopene on cell viability and cell cycle progression in human cancer cell lines, Cancer Cell Int 12(2012)36.
    [6]X. Qiu, Y. Yuan, A. Vaishnav, M.A. Tessel, L. Nonn, R.B. van Breemen, Effects of Lycopene on Protein Expression in Human Primary Prostatic Epithelial Cells, Cancer Prev Res (Phila) (2013).
    [7]J. McEneny, L. Wade, I.S. Young, L. Masson, G. Duthie, A. McGinty, C. McMaster, F. Thies, Lycopene intervention reduces inflammation and improves HDL functionality in moderately overweight middle-aged individuals, J Nutr Biochem 24 (2013) 163-168.
    [8]G. Riccioni, B. Mancini, E. Di Ilio, T. Bucciarelli, N. D'Orazio, Protective effect of lycopene in cardiovascular disease, Eur Rev Med Pharmacol Sci 12 (2008) 183-190.
    [9]J. Karppi, S. Kurl, T. Nurmi, T.H. Rissanen, E. Pukkala, K. Nyyssonen, Serum lycopene and the risk of cancer:the Kuopio Ischaemic Heart Disease Risk Factor (KIHD) study, Ann Epidemiol 19(2009)512-518.
    [10]T. Rissanen, S. Voutilamen, K. Nyyssonen, R. Salonen, J.T. Salonen, Low plasma lycopene concentration is associated with increased intima-media thickness of the carotid artery wall, Arterioscler Thromb Vase Biol 20 (2000) 2677-2681.
    [11]Y.N. Engelhard, B. Gazer, E. Paran, Natural antioxidants from tomato extract reduce blood pressure in patients with grade-1 hypertension:a double-blind, placebo-controlled pilot study, Am Heart J 151 (2006) 100.
    [12]M. Biddle, D. Moser, E.K. Song, S. Heo, H. Payne-Emerson, S.B. Dunbar, S. Pressler, T. Lennie, Higher dietary lycopene intake is associated with longer cardiac event-free survival in patients with heart failure, Eur J Cardiovasc Nurs (2012).
    [13]M.D. Shardell, D.E. Alley, G.E. Hicks, S.S. El-Kamary, R.R. Miller, R.D. Semba, L. Ferrucci, Low-serum carotenoid concentrations and carotenoid interactions predict mortality in US adults:the Third National Health and Nutrition Examination Survey, Nutr Res 31 (2011) 178-189.
    [14]P. Xaplanteris, C. Vlachopoulos, P. Pietri, D. Terentes-Printzios, D. Kardara, N. Alexopoulos, K. Aznaouridis, A. Miliou, C. Stefanadis, Tomato paste supplementation improves endothelial dynamics and reduces plasma total oxidative status in healthy subjects, Nutr Res 32 (2012) 390-394.
    [15]J.Y. Kim, J.K. Paik, O.Y. Kim, H.W. Park, J.H. Lee, Y. Jang, Effects of lycopene supplementation on oxidative stress and markers of endothelial function in healthy men, Atherosclerosis 215 (2011) 189-195.
    [16]H.M. Lo, C.F. Hung, Y.L. Tseng, B.H. Chen, J.S. Jian, W.B. Wu, Lycopene binds PDGF-BB and inhibits PDGF-BB-induced intracellular signaling transduction pathway in rat smooth muscle cells, Biochem Pharmacol 74 (2007) 54-63.
    [17]A. Upaganlawar, H. Gandhi, R. Balaraman, Effect of vitamin E alone and in combination with lycopene on biochemical and histopathological alterations in isoproterenol-induced myocardial infarction in rats, J Pharmacol Pharmacother 1 (2010) 24-31.
    [18]R.E. Simone, M. Russo, A. Catalano, G. Monego, K. Froehlich, V. Boehm, P. Palozza, Lycopene inhibits NF-kB-mediated 1L-8 expression and changes redox and PPARgamma signalling in cigarette smoke-stimulated macrophages, PLoS One 6 (2011) e19652.
    [19]C. Zhou, W. Han, P. Zhang, M. Cai, D. Wei, C. Zhang, Lycopene from tomatoes partially alleviates the bleomycin-induced experimental pulmonary fibrosis in rats, Nutr Res 28 (2008) 122-130.
    [20]R. Yue, H. Hu, K.H. Yiu, T. Luo, Z. Zhou, L. Xu, S. Zhang, K. Li, Z. Yu, Lycopene protects against hypoxia/reoxygenation-induced apoptosis by preventing mitochondrial dysfunction in primary neonatal mouse cardiomyocytes, PLoS One 7 (2012) e50778.
    [21]N.G. Frangogiannis, The mechanistic basis of infarct healing, Antioxid Redox Signal 8 (2006) 1907-1939.
    [22]R.B. Jennings, C.E. Murry, C. Steenbergen, Jr., K.A. Reimer, Development of cell injury in sustained acute ischemia, Circulation 82 (1990) 112-12.
    [23]G. Agnoletti, A. Cargnoni, L. Agnoletti, M. Di Marcello, P. Balzarini, E. Pasini, G. Gitti, P. Martina, R. Ardesi, R. Ferrari, Experimental ischemic cardiomyopathy:insights into remodeling, physiological adaptation, and humoral response, Ann Clin Lab Sci 36 (2006) 333-340.
    [24]J. Karppi, J.A. Laukkanen, T.H. Makikallio, S. Kurl, Low serum lycopene and beta-carotene increase risk of acute myocardial infarction in men, Eur J Public Health 22 (2012) 835-840.
    [25]H.D. Sesso, L. Wang, P.M. Ridker, J.E. Buring, Tomato-based food products are related to clinically modest improvements in selected coronary biomarkers in women, J Nutr 142 (2012) 326-333.
    [26]M. Pauschinger, D. Knopf, S. Petschauer, A. Doerner, W. Poller, P.L. Schwimmbeck, U. Kuhl, H.P. Schultheiss, Dilated cardiomyopathy is associated with significant changes in collagen type Ⅰ/Ⅲ ratio, Circulation 99 (1999) 2750-2756.
    [27]R. Martos, J. Baugh, M. Ledwidge, C. O'Loughlin, C. Conlon, A. Patle, S.C. Donnelly, K. McDonald, Diastolic heart failure:evidence of increased myocardial collagen turnover linked to diastolic dysfunction, Circulation 115 (2007) 888-895.
    [28]B.I. Jugdutt, M.J. Joljart, M.I. Khan, Rate of collagen deposition during healing and ventricular remodeling after myocardial infarction in rat and dog models, Circulation 94 (1996) 94-101.
    [29]A.M. Arruda-Olson, M. Enriquez-Sarano, F. Bursi, S.A. Weston, A.S. Jaffe, J.M. Killian, V.L. Roger, Left ventricular function and C-reactive protein levels in acute myocardial infarction, Am J Cardiol 105 (2010) 917-921.
    [30]B. Bozkurt, D.L. Mann, A. Deswal, Biomarkers of inflammation in heart failure, Heart Fail Rev 15(2010)331-341.
    [31]R. Roberts, V. DeMello, B.E. Sobel, Deleterious effects of methylprednisolone in patients with myocardial infarction, Circulation 53 (1976) 1204-206.
    [32]N.G. Frangogiannis, Targeting the inflammatory response in healing myocardial infarcts, Curr Med Chem 13 (2006) 1877-1893.
    [33]S. Frantz, J. Bauersachs, G. Ertl, Post-infarct remodelling:contribution of wound healing and inflammation, Cardinvasc Res 81 (2009)474-481.
    [34]M. Nian, P. Lee, N. Khaper, P. Liu, Inflammatory cytokines and postmyocardial infarction remodeling, Circ Res 94 (2004) 1543-1553.
    [35]Y. Maekawa, N. Mizue, A. Chan, Y. Shi, Y. Liu, S. Dawood, M. Chen, F. Dawood, G. de Couto, G.H. Li, N. Suzuki, W.C. Yeh, A. Gramolini, J.A. Medin, P.P. Liu, Survival and cardiac remodeling after myocardial infarction are critically dependent on the host innate immune interleukin-1 receptor-associated kinase-4 signaling:a regulator of bone marrow-derived dendritic cells, Circulation 120 (2009) 1401-1414.
    [36]T. Shishido, N. Nozaki, S. Yamaguchi, Y. Shibata, J. Nitobe, T. Miyamoto, H. Takahashi, T. Arimoto, K. Maeda, M. Yamakawa, O. Takeuchi, S. Akira, Y. Takeishi, I. Kubota, Toll-like receptor-2 modulates ventricular remodeling after myocardial infarction, Circulation 108 (2003) 2905-2910.
    [37]M.S. Finkel, C.V. Oddis, T.D. Jacob, S.C. Watkins, B.G. Hattler, R.L. Simmons, Negative inotropic effects of cytokines on the heart mediated by nitric oxide, Science 257 (1992) 387-389.
    [38]D.J. Van Antwerp, S.J. Martin, T. Kafri, D.R. Green, I.M. Verma, Suppression of TNF-alpha-induced apoptosis by NF-kappaB, Science 274 (1996) 787-789.
    [39]D.A. Siwik, D.L. Chang, W.S. Colucci, Interleukin-1 beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro, Circ Res 86 (2000) 1259-1265.
    [40]T. Hamid, S.Z. Guo, J.R. Kingery, X. Xiang, B. Dawn, S.D. Prabhu, Cardiomyocyte NF-kappaB p65 promotes adverse remodelling, apoptosis, and endoplasmic reticulum stress in heart failure, Cardiovasc Res 89 (2011) 129-138.
    [41]R.A. Gottlieb, K.O. Burleson, R.A. Kloner, B.M. Babior, R.L. Engler, Reperfusion injury induces apoptosis in rabbit cardiomyocytes, J Clin Invest 94 (1994) 1621-1628.
    [42]H. Fliss, D. Gattinger, Apoptosis in ischemic and reperfused rat myocardium, Circ Res 79 (1996) 949-956.
    [43]J. Kajstura, W. Cheng, K. Reiss, W.A. Clark, E.H. Sonnenblick, S. Krajewski, J.C. Reed, G. Olivetti, P. Anversa, Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats, Lab Invest 74 (1996) 86-107.
    [44]G. Torre-Amione, S. Kapadia, C. Benedict, H. Oral, J.B. Young, D.L. Mann, Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction:a report from the Studies of Left Ventricular Dysfunction (SOLVD), J Am Coll Cardiol 27 (1996) 1201-1206.
    [45]E. Gouranton, C. Thabuis, C. Riollet, C. Malezet-Desmoulins, C. E1 Yazidi, M.J. Amiot, P. Borel, J.F. Landrier, Lycopene inhibits proinflammatory cytokine and chemokine expression in adipose tissue, J Nutr Biochem 22 (2011) 642-648.
    [46]F.J. Neumann, I. Ott, M. Gawaz, G. Richardt, H. Holzapfel, M. Jochum, A. Schomig, Cardiac release of cytokines and inflammatory responses in acute myocardial infarction, Circulation 92 (1995)748-755.
    [47]M. Dobaczewski, C. Gonzalez-Quesada, N.G. Frangogiannis, The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction, J Mol Cell Cardiol 48 (2010) 504-511.
    [48]M. Satoh, Y. Minami, Y. Takahashi, M. Nakamura, Immune modulation:role of the inflammatory cytokine cascade in the failing human heart, Curr Heart Fail Rep 5 (2008) 69-74.
    [49]M. Bujak, M. Dobaczewski, K. Chatila, L.H. Mendoza, N. Li, A. Reddy, N.G. Frangogiannis, Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling, Am J Pathol 173 (2008) 57-67.
    [50]T.T. Tang, J. Yuan, Z.F. Zhu, W.C. Zhang, H. Xiao, N. Xia, X.X. Yan, S.F. Nie, J. Liu, S.F. Zhou, J.J. Li, R. Yao, M.Y. Liao, X. Tu, Y.H. Liao, X. Cheng, Regulatory T cells ameliorate cardiac remodeling after myocardial infarction, Basic Res Cardiol 107 (2012) 232.
    [51]Y. Onai, J. Suzuki, Y. Maejima, G. Haraguchi, S. Muto, A. Itai, M. Isobe, Inhibition of NF-{kappa}B improves left ventricular remodeling and cardiac dysfunction after myocardial infarction, Am J Physiol Heart Circ Physiol 292 (2007) H530-538.
    [52]M. Jacobs, S. Staufenberger, U. Gergs, K. Meuter, K. Brandstatter, M. Hafner, G. Ertl, W. Schorb, Tumor necrosis factor-alpha at acute myocardial infarction in rats and effects on cardiac fibroblasts, J Mol Cell Cardiol 31 (1999) 1949-1959.
    [53]G.L. Kukielka, C.W. Smith, A.M. Manning, K.A. Youker, L.H. Michael, M.L. Entman, Induction of interleukin-6 synthesis in the myocardium. Potential role in postreperfusion inflammatory injury, Circulation 92 (1995) 1866-1875.
    [54]D. Gurantz, R.T. Cowling, N. Varki, E. Frikovsky, C.D. Moore, B.H. Greenberg, IL-lbeta and TNF-alpha upregulate angiotensin II type 1 (AT1) receptors on cardiac fibroblasts and are associated with increased AT1 density in the post-MI heart, J Mol Cell Cardiol 38 (2005) 505-515.
    [55]B. Levine, J. Kalman, L. Mayer, H.M. Fillit, M. Packer, Elevated circulating levels of tumor necrosis factor in severe chronic heart failure, N Engl J Med 323 (1990) 236-241.
    [56]T. Yokoyama, M. Nakano, J.L. Bednarczyk, B.W. McIntyre, M. Entman, D.L. Mann, Tumor necrosis factor-alpha provokes a hypertrophic growth response in adult cardoac myocytes, Circulation 95 (1997) 1247-1252.
    [57]D. Engel, R. Peshock, R.C. Armstong, N. Sivasubramanian, D.L. Mann, Cardiac myocyte apoptosis provokes adverse cardiac remodeling in transgenic mice with targeted TNF overexpression, Am J Physiol Heart Circ Physiol 287 (2004) H1303-1311.
    [58]Y. Hu, H. Zhang, Y. Lu, H. Bai, Y. Xu, X. Zhu, R. Zhou, J. Ben, Q. Chen, Class A scavenger receptor attenuates myocardial infarction-induced cardiomyocyte necrosis through suppressing M1 macrophage subset polarization, Basic Res Cardiol 106 (2011) 1311-1328.
    [59]R.S. Kellar, J.J. Lancaster, H.M. Thai, E. Juneman, N.M. Johnson, H.G. Byrne, M. Stansifer, R. Arsanjani, M. Baer, C. Bebbington, M. Flashner, G. Yarranton, S. Goldman, Antibody to granulocyte macrophage colony-stimulating factor reduces the number of activated tissue macrophages and improves left ventricular function after myocardial infarction in a rat coronary artery ligation model, J Cardiovasc Pharmacol 57 (2011) 568-574.
    [60]Y. Maekawa, T. Anzai, T. Yoshikawa, Y. Asakura, T. Takahashi, S. Ishikawa, H. Mitamura, S. Ogawa, Prognostic significance of peripheral monocytosis after reperfused acute myocardial infarction:a possible role for left ventricular remodeling, J Am Coll Cardiol 39 (2002) 241-246.
    [61]Y.J. Hong, M.H. Jeong, Y. Ahn, N.S. Yoon, S.R. Lee, S.N. Hong, J.Y. Moon, K.H. Kim, H.W. Park, J.H. Kim, J.G. Cho, J.C. Park, J.C. Kang, Relationship between peripheral monocytosis and nonrecovery of left ventricular function in patients with left ventricular dysfunction complicated with acute myocardial infarction, Circ J 71 (2007) 1219-1224.
    [62]R. Morishita, T. Sugimoto, M. Aoki, I. Kida, N. Tomita, A. Moriguchi, K. Maeda, Y. Sawa, Y. Kaneda, J. Higaki, T. Ogihara, In vivo transfection of cis element "decoy" against nuclear factor-kappaB binding site prevents myocardial infarction, Nat Med 3 (1997) 894-899.
    [63]N.C. Moss, W.E. Stansfield, M.S. Willis, R.H. Tang, C.H. Selzman, IKKbeta inhibition attenuates myocardial injury and dysfunction following acute ischemia-reperfusion injury, Am J Physiol Heart Circ Physiol 293 (2007) H2248-2253.
    [64]S. Nunoda, A. Genda, N. Sugihara, A. Nakayama, S. Mizuno, R. Takeda, Quantitative approach to the histopathology of the biopsied right ventricular myocardium in patients with diabetes mellitus, Heart Vessels 1 (1985) 43-47.
    [65]C.A. Souders, S.L. Bowers, T.A. Baudino, Cardiac fibroblast:the renaissance cell, Circ Res 105 (2009) 1164-1176.
    [66]F.G. Spinale, Matrix metalloproteinases:regulation and dysregulation in the failing heart, Circ Res 90 (2002) 520-530.
    [67]W.M. Yarbrough, R. Mukherjee, G.P. Escobar, J.T. Mingoia, J.A. Sample, J.W. Hendrick, K.B. Dowdy, J.E. McLean, A.S. Lowry, T.P. O'Neill, F.G. Spinale, Selective targeting and timing of matrix metalloproteinase inhibition in post-myocardial infarction remodeling, Circulation 108 (2003) 1753-1759.
    [68]Y. Xu, T. Tang, Y. Ding, R. Yao, J. Xie, M. Liao, H. Xiao, Y. Chen, X. Yu, M. Fu, Y. Liao, G. Zhao, X. Cheng, Improved cardiac performance by rosuvastatin is associated with attenuations in both myocardial tumor necrosis factor-alpha and p38 MAP kinase activity in rats after myocardial infarction, Am J Med Sci 340 (2010) 121-127.
    [69]H. Takeshima, N. Kobayashi, W. Koguchi, M. Ishikawa, F. Sugiyama, T. Ishimitsu, Cardioprotective effect of a combination of Rho-kinase inhibitor and p38 MAPK inhibitor on cardiovascular remodeling and oxidative stress in Dahl rats, J Atheroscler Thromb 19 (2012) 326-336.
    [70]C.C. Yeh, H. Li, D. Malhotra, S. Turcato, S. Nicholas, R. Tu, B.Q. Zhu, J. Cha, P.M. Swigart, B.E. Myagmar, A.J. Baker, P.C. Simpson, M.J. Mann, Distinctive ERK and p38 signaling in remote and infarcted myocardium during post-MI remodeling in the mouse, J Cell Biochem 109(2010) 1185-1191.
    [71]H. Luosujarvi, J. Aro, H. Tokola, H. Leskinen, O. Tenhunen, R. Skoumal, I. Szokodi, H. Ruskoaho, J. Rysa, A novel p38 MAPK target dyxin is rapidly induced by mechanical load in the heart, Blood Press 19 (2010) 54-63.
    [72]J. Lei, S. Xue, W. Wu, S. Zhou, Y. Zhang, G. Yuan, J. Wang, Sdcl Overexpression Inhibits the p38 MAPK Pathway and Lessens Fibrotic Ventricular Remodeling in MI Rats, Inflammation (2012).
    [73]S.A. Hunt, W.T. Abraham, M.H. Chin, A.M. Feldman, G.S. Francis, T.G. Ganiats, M. Jessup, M.A. Konstam, D.M. Mancini, K. Michl, J.A. Oates, P.S. Rahko, M.A. Silver, L.W. Stevenson, C.W. Yancy,2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults:a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation, Circulation 119 (2009) e391-479.
    [74]M. Jessup, W.T. Abraham, D.E. Casey, A.M. Feldman, G.S. Francis, T.G. Ganiats, M.A. Konstam, D.M. Mancini, P.S. Rahko, M.A. Silver, L.W. Stevenson, C.W. Yancy,2009 focused update:ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines:developed in collaboration with the International Society for Heart and Lung Transplantation, Circulation 119 (2009) 1977-2016.
    [75]K.T. Weber, Y. Sun, S.C. Tyagi, J.P. Cleutjens, Collagen network of the myocardium:function, structural remodeling and regulatory mechanisms, J Mol Cell Cardiol 26 (1994) 279-292.
    [76]D. Mukherjee, S. Sen, Alteration of cardiac collagen phenotypes in hypertensive hypertrophy: role of blood pressure, J Mol Cell Cardiol 25 (1993) 185-196.
    [77]M. Kawaguchi, M. Techigawara, T. Ishihata, T. Asakura, F. Saito, K. Maehara, Y. Maruyama, A comparison of ultrastructural changes on endomyocardial biopsy specimens obtained from patients with diabetes mellitus with and without hypertension, Heart Vessels 12 (1997) 267-274.
    [78]A.J. Boyle, D.J. Kelly, Y. Zhang, A.J. Cox, R.M. Gow, K. Way, S. Itescu, H. Krum, R.E. Gilbert, Inhibition of protein kinase C reduces left ventricular fibrosis and dysfunction following myocardial infarction, J Mol Cell Cardiol 39 (2005) 213-221.
    [79]K.T. Weber, Cardiac interstitium in health and disease:the fibrillar collagen network, J Am Coll Cardiol 13(1989) 1637-1652.
    [80]T. Meyer-ter-Vehn, H. Han, F. Grehn, G. Schlunck, Extracellular matrix elasticity modulates TGF-beta-induced p38 activation and myofibroblast transdifferentiation in human tenon fibroblasts, Invest Ophthalmol Vis Sci 52 (2011) 9149-9155.
    [81]Y. Zhao, Y. Tan, S. Xi, Y. Li, C. Li, J. Cui, X. Yan, X. Li, G. Wang, W. Li, L. Cai, A novel mechanism by which SDF-lbeta protects cardiac cells from palmitate-induced ER stress and apoptosis via CXCR7 and AMPK/p38 MAPK-mediated IL-6 generation, Diabetes (2013).
    [82]C.M. Yang, I.T. Lee, C.C. Lin, C.H. Wang, W.J. Cherng, L.D. Hsiao, c-Src-dependent MAPKs/AP-1 activation is involved in TNF-alpha-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells, Biochem Pharmacol (2013).
    [83]J. Ren, S. Zhang, A. Kovacs, Y. Wang, A.J. Muslin, Role of p38alpha MAPK in cardiac apoptosis and remodeling after myocardial infarction, J Mol Cell Cardiol 38 (2005) 617-623.
    [84]Z. Pan, W. Zhao, X. Zhang, B. Wang, J. Wang, X. Sun, X. Liu, S. Feng, B. Yang, Y. Lu, Scutellarin alleviates interstitial fibrosis and cardiac dysfunction of infarct rats by inhibiting TGFbetal expression and activation of p38-MAPK and ERK1/2, Br J Pharmacol 162 (2011) 688-700.
    [85]F. See, W. Thomas, K. Way, A. Tzanidis, A. Kompa, D. Lewis, S. Itescu, H. Krum, p38 mitogen-activated protein kinase inhibition improves cardiac function and attenuates left ventricular remodeling following myocardial infarction in the rat, J Am Coll Cardiol 44 (2004) 1679-1689.
    [86]H.M. Lo, C.L. Chen, C.M. Yang, P.H. Wu, C.J. Tsou, K.W. Chiang, W.B. Wu, The carotenoid lutein enhances matrix metalloproteinase-9 production and phagocytosis through intracellular ROS generation and ERK1/2, p38 MAPK, and RARbeta activation in murine macrophages, J Leukoc Biol(2013).
    [87]A. Khadjavi, E. Valente, G. Giribaldi, M. Prato, Involvement of p38 MAPK in haemozoin-dependent MMP-9 enhancement in human monocytes, Cell Biochem Funct (2013).
    [88]Y.C. Cheng, W.W. Kuo, H.C. Wu, T.Y. Lai, C.H. Wu, J.M. Hwang, W.H. Wang, F.J. Tsai, J.J. Yang, C.Y. Huang, C.H. Chu, ZAK induces MMP-2 activity via JNK/p38 signals and reduces MMP-9 activity by increasing TIMP-1/2 expression in H9c2 cardiomyoblast cells, Mol Cell Biochem 325 (2009) 69-77.
    [89]A. Radauceanu, C. Ducki, J.M. Virion, P. Rossignol, Z. Mallat, J. McMurray, D.J. Van Veldhuisen, L. Tavazzi, D.L. Mann, J. Capiaumont-Vin, M. Li, D. Hanriot, F. Zannad, Extracellular matrix turnover and inflammatory markers independently predict functional status and outcome in chronic heart failure, J Card Fail 14 (2008) 467-474.
    [90]E.E. Creemers, J.P. Cleutjens, J.F. Smits, M.J. Daemen, Matrix metalloproteinase inhibition after myocardial infarction:a new approach to prevent heart failure?, Circ Res 89 (2001) 201-210.
    [91]A. Ducharme, S. Frantz, M. Aikawa, E. Rabkin, M. Lindsey, L.E. Rohde, F.J. Schoen, R.A. Kelly, Z. Werb, P. Libby, R.T. Lee, Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction, J Clin Invest 106 (2000) 55-62.
    [92]S. Heymans, A. Luttun, D. Nuyens, G. Theilmeier, E. Creemers, L. Moons, G.D. Dyspersin, J.P. Cleutjens, M. Shipley, A. Angellilo, M. Levi, O. Nube, A. Baker, E. Keshet, F. Lupu, J.M. Herbert, J.F. Smits, S.D. Shapiro, M. Baes, M. Borgers, D. Collen, M.J. Daemen, P. Carmeliet, Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure, Nat Med 5 (1999) 1135-1142.
    [93]F.G. Spinale, G.P. Escobar, J.W. Hendrick, L.L. Clark, S.S. Camens, J.P. Mingoia, C.G. Squires, R.E. Stroud, J.S. Ikonomidis, Chronic matrix metalloproteinase inhibition following myocardial infarction in mice:differential effects on short and long-term survival, J Pharmacol Exp Ther 318 (2006) 966-973.
    [94]D. Kelly, G. Cockerill, L.L. Ng, M. Thompson, S. Khan, N.J. Samani, I.B. Squire, Plasma matrix metalloproteinase-9 and left ventricular remodelling after acute myocardial infarction in man:a prospective cohort study,Eur Heat J 28(2007)711-718.
    [1]D. Lloyd-Jones, R. Adams, M. Carnethon, G. De Simone, T.B. Ferguson, K. Flegal, E. Ford, K. Furie, A. Go, K. Greenlund, N. Haase, S. Hailpern, M. Ho, V. Howard, B. Kissela, S. Kittner, D. Lackland, L. Lisabeth, A. Marelli, M. McDermott, J. Meigs, D. Mozaffarian, G. Nichol, C. O'Donnell, V. Roger, W. Rosamond, R. Sacco, P. Sorlie, R. Stafford, J. Steinberger, T. Thom, S. Wasserthiel-Smoller, N. Wong, J. Wylie-Rosett, Y. Hong, Heart disease and stroke statistics--2009 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee, Circulation 119 (2009) e21-181.
    [2]D. Lloyd-Jones, R. Adams, M. Carnethon, G. De Simone, T.B. Ferguson, K. Flegal, E. Ford, K. Furie, A. Go, K. Greenlund, N. Haase, S. Hailpern, M. Ho, V. Howard, B. Kissela, S. Kittner, D. Lackland, L. Lisabeth, A. Marelli, M. McDermott, J. Meigs, D. Mozaffarian, G. Nichol, C. O'Donnell, V. Roger, W. Rosamond, R. Sacco, P. Sorlie, R. Stafford, J. Steinberger, T. Thom, S. Wasserthiel-Smoller, N. Wong, J. Wylie-Rosett, Y. Hong, Heart disease and stroke statistics--2009 update:a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee, Circulation 119 (2009) 480-486.
    [3]F. Najafi, K. Jamrozik, A.J. Dobson, Understanding the 'epidemic of heart failure':a systematic review of trends in determinants of heart failure, Eur J Heart Fail 11 (2009) 472-479.
    [4]R.B. Jennings, C.E. Murry, C. Steenbergen, Jr., K.A. Reimer, Development of cell injury in sustained acute ischemia, Circulation 82 (1990) 112-12.
    [5]N.G. Frangogiannis, The mechanistic basis of infarct healing, Antioxid Redox Signal 8 (2006) 1907-1939.
    [6]O. Dewald, G. Ren, G.D. Duerr, M. Zoerlein, C. Klemm, C. Gersch, S. Tincey, L.H. Michael, M.L. Entman, N.G. Frangogiannis, Of mice and dogs:species-specific differences in the inflammatory response following myocardial infarction, Am J Pathol 164 (2004) 665-677.
    [7]M. Dobaczewski, M. Bujak, P. Zymek, G. Ren, M.L. Entman, N.G. Frangogiannis, Extracellular matrix remodeling in canine and mouse myocardial infarcts, Cell Tissue Res 324 (2006) 475-488.
    [8]B.I. Jugdutt, M.J. Joljart, M.I. Khan, Rate of collagen deposition during healing and ventricular remodeling after myocardial infarction in rat and dog models, Circulation 94 (1996) 94-101.
    [9]R.S. Whelan, V. Kaplinskiy, R.N. Kitsis, Cell death in the pathogenesis of heart disease: mechanisms and significance, Annu Rev Physiol 72 (2010) 19-44.
    [10]X.P. Ren, J. Wu, X. Wang, M.A. Sartor, J. Qian, K. Jones, P. Nicolaou, T.J. Pritchard, G.C. Fan, MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20, Circulation 119 (2009) 2357-2366.
    [11]M. Xu, R. Uemura, Y. Dai, Y. Wang, Z. Pasha, M. Ashraf, In vitro and in vivo effects of bone marrow stem cells on cardiac structure and function, J Mol Cell Cardiol 42 (2007) 441-448.
    [12]D.K. Singla, G.E. Lyons, T.J. Kamp, Transplanted embryonic stem cells following mouse myocardial infarction inhibit apoptosis and cardiac remodeling, Am J Physiol Heart Circ Physiol 293 (2007) H1308-1314.
    [13]G. Kung, K. Konstantinidis, R.N. Kitsis, Programmed necrosis, not apoptosis, in the heart, Circ Res 108(2011) 1017-1036.
    [14]K. Boengler, D. Hilfiker-Kleiner, G. Heusch, R. Schulz, Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion, Basic Res Cardiol 105 (2010) 771-785.
    [15]C. Piot, P. Croisille, P. Staat, H. Thibault, G. Rioufol, N. Mewton, R. Elbelghiti, T.T. Cung, E. Bonnefoy, D. Angoulvant, C. Macia, F. Raczka, C. Sportouch, G. Gahide, G. Finet, X. Andre-Fouet, D. Revel, G. Kirkorian, J.P. Monassier, G. Derumeaux, M. Ovize, Effect of cyclosporine on reperfusion injury in acute myocardial infarction, N Engl J Med 359 (2008) 473-481.
    [16]N. Varda-Bloom, J. Leor, D.G. Ohad, Y. Hasin, M. Amar, R. Fixler, A. Battler, M. Eldar, D. Hasin, Cytotoxic T lymphocytes are activated following myocardial infarction and can recognize and kill healthy myocytes in vitro, J Mol Cell Cardiol 32 (2000) 2141-2149.
    [17]D. Kretzschmar, S. Betge, A. Windisch, R. Pistulli, I. Rohm, M. Fritzenwanger, C. Jung, K. Schubert, B. Theis, I. Petersen, S. Drobnik, G. Mall, H.R. Figulla, A. Yilmaz, Recruitment of circulating dendritic cell precursors into the infarcted myocardium and pro-inflammatory response in acute myocardial infarction, Clin Sci (Lond) 123 (2012) 387-398.
    [18]F.Q. Sheng, R. Xu, L.X. Cheng, Q.T. Zeng, W. Gao, W. Wang, S.Y. Dang, C.Q. Wang, C.R. He, In rats with myocardial infarction, interference by simvastatin with the TLR4 signal pathway attenuates ventricular remodelling, Acta Cardiol 64 (2009) 779-785.
    [19]Y. Xu, T. Tang, Y. Ding, R. Yao, J. Xie, M. Liao, H. Xiao, Y. Chen, X. Yu, M. Fu, Y. Liao, G. Zhao, X. Cheng, Improved cardiac performance by rosuvastatin is associated with attenuations in both myocardial tumor necrosis factor-alpha and p38 MAP kinase activity in rats after myocardial infarction, Am J Med Sci 340 (2010) 121-127.
    [20]K. Malliaras, Y. Zhang, J. Seinfeld, G. Galang, E. Tseliou, K. Cheng, B. Sun, M. Aminzadeh, E. Marban, Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart, EMBO Mol Med 5 (2013) 191-209.
    [21]A. Maisel, D. Cesario, S. Baird, J. Rehman, P. Haghighi, S. Carter, Experimental autoimmune myocarditis produced by adoptive transfer of splenocytes after myocardial infarction, Circ Res 82(1998)458-463.
    [22]J. Bauersachs, P. Galuppo, D. Fraccarollo, M. Christ, G. Ertl, Improvement of left ventricular remodeling and function by hydroxymethylglutaryl coenzyme a reductase inhibition with cerivastatin in rats with heart failure after myocardial infarction, Circulation 104 (2001) 982-985.
    [23]K. Node, M. Fujita, M. Kitakaze, M. Hori, J.K. Liao, Short-term statin therapy improves cardiac function and symptoms in patients with idiopathic dilated cardiomyopathy, Circulation 108 (2003) 839-843.
    [24]C. Stumpf, S. Petzi, K. Seybold, G. Wasmeier, M. Arnold, D. Raaz, A. Yilmaz, W.G. Daniel, C.D. Garlichs, Atorvastatin enhances interleukin-10 levels and improves cardiac function in rats after acute myocardial infarction, Clin Sci (Lond) 116 (2009) 45-52.
    [25]M. Plak, L. Orlinski, M. Lobos, M. Ciesielczyk, R.N. Wlazel, M.T. Paradowski, [Evaluation of dynamic cardiac troponin I concentrations and C-reactive protein in the monitoring of myocardial infarction in patients with repeated myocardial infarction], Pol Merkur Lekarski 28 (2010)444-449.
    [26]B.A. Groenning, J.C. Nilsson, L. Sondergaard, T. Fritz-Hansen, H.B. Larsson, P.R. Hildebrandt, Antiremodeling effects on the left ventricle during beta-blockade with metoprolol in the treatment of chronic heart failure, J Am Coll Cardiol 36 (2000) 2072-2080.
    [27]F. Waagstein, O. Stromblad, B. Andersson, M. Bohm, M. Darius, W. Delius, F. Goss, K.J. Osterziel, M. Sigmund, S.P. Trenkwalder, I. Wahlqvist, Increased exercise ejection fraction and reversed remodeling after long-term treatment with metoprolol in congestive heart failure:a randomized, stratified, double-blind, placebo-controlled trial in mild to moderate heart failure due to ischemic or idiopathic dilated cardiomyopathy, Eur J Heart Fail 5 (2003) 679-691.
    [28]B. Mayer, S.R. Holmer, C. Hengstenberg, W. Lieb, M. Pfeifer, H. Schunkert, Functional improvement in heart failure patients treated with beta-blockers is associated with a decline of cytokine levels, Int J Cardiol 103 (2005) 182-186.
    [29]A.M. Arruda-Olson, M. Enriquez-Sarano, F. Bursi, S.A. Weston, A.S. Jaffe, J.M. Killian, V.L. Roger, Left ventricular function and C-reactive protein levels in acute myocardial infarction, Am J Cardiol 105 (2010) 917-921.
    [30]A. Palaniyappan, R.R. Uwiera, H. Idikio, B.I. Jugdutt, Comparison of vasopeptidase inhibitor omapatrilat and angiotensin receptor blocker candesartan on extracellular matrix, myeloperoxidase, cytokines, and ventricular remodeling during healing after reperfused myocardial infarction, Mol Cell Biochem 321 (2009) 9-22.
    [31]B. Bozkurt, D.L. Mann, A. Deswal, Biomarkers of inflammation in heart failure, Heart Fail Rev 15(2010)331-341.
    [32]R. Roberts, V. DeMello, B.E. Sobel, Deleterious effects of methylprednisolone in patients with myocardial infarction, Circulation 53 (1976) 1204-206.
    [33]R.A. Kloner, M.C. Fishbein, H. Lew, P.R. Maroko, E. Braunwald, Mummification of the infarcted myocardium by high dose corticosteroids, Circulation 57 (1978) 56-63.
    [34]J.T. Parissis, S. Adamopoulos, K.F. Venetsanou, D.G. Mentzikof, S.M. Karas, D.T. Kremastinos, Serum profiles of C-C chemokines in acute myocardial infarction:possible implication in postinfarction left ventricular remodeling, J Interferon Cytokine Res 22 (2002) 223-229.
    [35]M. Sun, F. Dawood, W.H. Wen, M. Chen, I. Dixon, L.A. Kirshenbaum, P.P. Liu, Excessive tumor necrosis factor activation after infarction contributes to susceptibility of myocardial rupture and left ventricular dysfunction, Circulation 110 (2004) 3221-3228.
    [36]D.L. Mann, J.J. McMurray, M. Packer, K. Swedberg, J.S. Borer, W.S. Colucci, J. Djian, H. Drexler, A. Feldman, L. Kober, H. Krum, P. Liu, M. Nieminen, L. Tavazzi, D.J. van Veldhuisen, A. Waldenstrom, M. Warren, A. Westheim, F. Zannad, T. Fleming, Targeted anticytokine therapy in patients with chronic heart failure:results of the Randomized Etanercept Worldwide Evaluation (RENEWAL), Circulation 109 (2004) 1594-1602.
    [37]E.S. Chung, M. Packer, K.H. Lo, A.A. Fasanmade, J.T. Willerson, Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure:results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial, Circulation 107 (2003) 3133-3140.
    [38]K.T. Weber, Y. Sun, S.C. Tyagi, J.P. Cleutjens, Collagen network of the myocardium:function, structural remodeling and regulatory mechanisms, J Mol Cell Cardiol 26 (1994) 279-292.
    [39]D. Mukherjee, S. Sen, Alteration of cardiac collagen phenotypes in hypertensive hypertrophy: role of blood pressure, J Mol Cell Cardiol 25 (1993) 185-196.
    [40]M. Kawaguchi, M. Techigawara, T. Ishihata, T. Asakura, F. Saito, K. Maehara, Y. Maruyama, A comparison of ultrastructural changes on endomyoeardial biopsy specimens obtained from patients with diabetes mellitus with and without hypertension, Heart Vessels 12 (1997) 267-274.
    [41]M. Pauschinger, D. Knopf, S. Petschauer, A. Doerner, W. Poller, P.L. Schwimmbeck, U. Kuhl, H.P. Schultheiss, Dilated cardiomyopathy is associated with significant changes in collagen type Ⅰ/Ⅲ ratio, Circulation 99 (1999) 2750-2756.
    [42]S. Nunoda, A. Genda, N. Sugihara, A. Nakayama, S. Mizuno, R. Takeda, Quantitative approach to the histopathology of the biopsied right ventricular myocardium in patients with diabetes mellitus, Heart Vessels 1 (1985) 43-47.
    [43]T.J. Regan, M.M. Lyons, S.S. Ahmed, G.E. Levinson, H.A. Oldewurtel, M.R. Ahmad, B. Haider, Evidence for cardiomyopathy in familial diabetes mellitus, J Clin Invest 60 (1977) 884-899.
    [44]C.G. Brilla, R.C. Funck, H. Rupp, Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease, Circulation 102 (2000) 1388-1393.
    [45]J. Diez, R. Querejeta, B. Lopez, A. Gonzalez, M. Larman, J.L. Martinez Ubago, Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients, Circulation 105 (2002) 2512-2517.
    [46]M. Sun, M. Chen, F. Dawood, U. Zurawska, J.Y. Li, T. Parker, Z. Kassiri, L.A. Kirshenbaum, M. Arnold, R. Khokha, P.P. Liu, Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state, Circulation 115 (2007) 1398-1407.
    [47]R.G. Dean, L.C. Balding, R. Candido, W.C. Burns, Z. Cao, S.M. Twigg, L.M. Burrell, Connective tissue growth factor and cardiac fibrosis after myocardial infarction, J Histochem Cytochem 53 (2005) 1245-1256.
    [48]S.A. Hunt, W.T. Abraham, M.H. Chin, A.M. Feldman, G.S. Francis, T.G. Ganiats, M. Jessup, M.A. Konstam, D.M. Mancini, K. Michl, J.A. Oates, P.S. Rahko, M.A. Silver, L.W. Stevenson, C.W. Yancy,2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults:a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation, Circulation 119 (2009) e391-479.
    [49]M. Jessup, W.T. Abraham, D.E. Casey, A.M. Feldman, G.S. Francis, T.G. Ganiats, M.A. Konstam, D.M. Mancini, P.S. Rahko, M.A. Silver, L.W. Stevenson, C.W. Yancy,2009 focused update:ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines:developed in collaboration with the International Society for Heart and Lung Transplantation, Circulation 119 (2009) 1977-2016.
    [50]R. Martos, J. Baugh, M. Ledwidge, C. O'Loughlin, C. Conlon, A. Patle, S.C. Donnelly, K. McDonald, Diastolic heart failure:evidence of increased myocardial collagen turnover linked to diastolic dysfunction, Circulation 115 (2007) 888-895.
    [51]C.A. Souders, S.L. Bowers, T.A. Baudino, Cardiac fibroblast: the renaissance cell, Circ Res 105 (2009)1164-1176.
    [52]F.G. Spinale, Matrix metalloproteinases:regulation and dysregulation in the failing heart, Circ Res 90 (2002) 520-530.
    [53]D. Kelly, S.Q. Khan, M. Thompson, G. Cockerill, L.L. Ng, N. Samani, I.B. Squire, Plasma tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-9:novel indicators of left ventricular remodelling and prognosis after acute myocardial infarction, Eur Heart J 29 (2008) 2116-2124.
    [54]W.M. Yarbrough, R. Mukherjee, G.P. Escobar, J.T. Mingoia, J.A. Sample, J.W. Hendrick, K.B. Dowdy, J.E. McLean, A.S. Lowry, T.P. O'Neill, F.G. Spinale, Selective targeting and timing of matrix metalloproteinase inhibition in post-myocardial infarction remodeling, Circulation 108 (2003)1753-1759.
    [55]M.P. Hudson, P.W. Armstrong, W. Ruzyllo, J. Brum, L. Cusmano, P. Krzeski, R. Lyon, M. Quinones, P. Theroux, D. Sydlowski, H.E. Kim, M.J. Garcia, W.A. Jaber, W.D. Weaver, Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction:results of the PREMIER (Prevention of Myocardial Infarction Early Remodeling) trial, J Am Coll Cardiol 48 (2006) 15-20.
    [56]F.G. Spinale, G.P. Escobar, J.W. Hendrick, L.L. Clark, S.S. Camens, J.P. Mingoia, C.G. Squires, R.E. Stroud, J.S. Ikonomidis, Chronic matrix metalloproteinase inhibition following myocardial infarction in mice:differential effects on short and long-term survival, J Pharmacol Exp Ther 318 (2006) 966-973.
    [57]D. Kelly, G. Cockerill, L.L. Ng, M. Thompson, S. Khan, N.J. Samani, I.B. Squire, Plasma matrix metalloproteinase-9 and left ventricular remodelling after acute myocardial infarction in man:a prospective cohort study, Eur Heart J 28 (2007) 711-718.
    [58]D.K. Singla, D.E. McDonald, Factors released from embryonic stem cells inhibit apoptosis of H9c2 cells, Am J Physiol Heart Circ Physiol 293 (2007) H1590-1595.
    [59]J. Cai, F.F. Yi, X.C. Yang, G.S. Lin, H. Jiang, T. Wang, Z. Xia, Transplantation of embryonic stem cell-derived cardiomyocytes improves cardiac function in infarcted rat hearts, Cytotherapy 9 (2007) 283-291.
    [60]J. Ge, Y. Li, J. Qian, J. Shi, Q. Wang, Y. Niu, B. Fan, X. Liu, S. Zhang, A. Sun, Y. Zou, Efficacy of emergent transcatheter transplantation of stem cells for treatment of acute myocardial infarction (TCT-STAMI), Heart 92 (2006) 1764-1767.
    [61]E. Kizana, Therapeutic prospects of cardiac gene transfer, Heart Lung Circ 16 (2007) 180-184.
    [62]H.J. Abunasra, R.T. Smolenski, K. Morrison, J. Yap, M.N. Sheppard, T. O'Brien, K. Suzuki, J. Jayakumar, M.H. Yacoub, Efficacy of adenoviral gene transfer with manganese superoxide dismutase and endothelial nitric oxide synthase in reducing ischemia and reperfusion injury, Eur J Cardiothorac Surg 20 (2001) 153-158.
    [63]R.G. Kratlian, R.J. Hajjar, Cardiac gene therapy:from concept to reality, Curr Heart Fail Rep 9 (2012)33-39.
    [64]V. Kairouz, L. Lipskaia, R.J. Hajjar, E.R. Chemaly, Molecular targets in heart failure gene therapy:current controversies and translational perspectives, Ann N Y Acad Sci 1254 (2012) 42-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700