他达那非对分流型肺动脉高压大鼠肺血管重构的影响及其对心肌Cx43磷酸化影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺动脉高压(Pulmonary arterial hypertension, PAH)是不同病因导致的、以肺动脉压力升高和肺血管阻力增加为特点的一组病理生理综合征。如果不进行干预,则病程进行性恶化,最终会导致右心衰竭甚至死亡。PAH患者进行麻醉和手术时,风险极高。手术的刺激,麻醉对心肺功能的影响以及体外循环引起的炎性因子释放均可加重肺动脉高压,严重时患者不能脱离体外循环机,导致手术失败;而且,这些因素还可加重术后右心室衰竭,缺氧,心肌缺血等导致病人死亡的危险因素。目前,国内外针对PAH的研究大多集中在如何提高PAH晚期病人的生活质量,延长其寿命;或者如何在PAH治疗术过程中,降低体外循环后期肺动脉压力,而对于如何降低PAH病人术前肺动脉压力,改善其右心室肥厚,进而争取手机机会,提高手术成功率,改善术后生活质量的研究尚未见报道。
     已有研究表明肺动脉压力的调节主要受内皮素-1(Endothelin-1,ET-1)和一氧化氮的调节。PAH患者ET-1表达升高,一氧化氮合酶表达下降,导致肺动脉收缩,肺小动脉平滑肌细胞增生肥厚,非肌性动脉肌化,导致肺动脉压力升高和肺血管重构。磷酸二酯酶5(Phosphodiesterase-5,PDE-5)抑制剂可选择性舒张肺血管、降低肺动脉压。他达那非(Tadalafil,TDF)是一种选择性PDE-5抑制剂,它通过增加肺血管平滑肌和内皮细胞中cGMP浓度,舒张肺血管,降低肺血管的阻力进而降低肺动脉压。然而,TDF是否可以通过影响肺动脉ET-1及ET-1受体表达起到抗肺动脉高压的作用尚未见报道。
     另有研究证实,缝隙连接蛋白43(Connexins43, Cx43)是Cx基因家族中数量最为丰富的成员,不同水平磷酸化的Cx43可调控细胞信号转导,控制着细胞内许多生理过程,与心律失常、心肌缺血、心衰和心肌肥厚等许多疾病有密切联系。有学者提出通过调控Cx43的表达有助于治疗某些心血管疾病。PDE-5抑制剂能否通过调控右心室Cx43表达起到减轻右心室肌肥厚,改善心功能的作用及其可能机制目前尚无报道。
     本研究应用腹主动脉-腔静脉造瘘术建立大鼠分流型肺动脉高压模型,模拟临床左向右分流先心病所致早、中期肺动脉高压。探讨中短期应用磷酸二酯酶5抑制剂TDF对PAH大鼠肺动脉高压的早、中期阶段肺血管重塑、右心室肥厚的影响及其可能机制。为临床中度肺高压病人术前短期应用磷酸二酯酶5抑制剂,降低肺动脉压力,改善心功能提供进一步的理论依据。第一部分:ET-1和cGMP参与大鼠轻中度肺动脉高压心肺功能形态变
     化
     目的:本实验旨在建立大鼠腹主动脉-腔静脉分流模型,模拟先心病左向右分流肺动脉高压早中期阶段,从功能学和形态学方面探讨该模型大鼠在动静脉分流1-8w内肺血管重构以及右心室肥厚发生发展过程和可能机制。
     方法:健康清洁级雄性SD大鼠72只,随机分为2组,假手术组(Sham,S)分流组(Fistula,F)组。参照Garcia的方法,大鼠麻醉后,仰卧位固定,正中切口打开腹腔,暴露腹主动脉和下腔静脉,使用18G穿刺针,穿刺点为腹腔动静脉壁联合部,相当于腹主动脉肾动脉发出点与髂总动脉分叉处连线的中下1/3处,于静脉壁侧刺入进而刺破动静脉壁联合部进入腹主动脉形成瘘口。暂时用小动脉夹在肾动脉分支处上方钳夹腹主动脉,阻断血流;拔出穿刺针,以一滴氰基丙基酸盐粘合剂封住穿刺口。30s后松开小动脉夹。若观察到下腔静脉增粗并伴有波动,则证实造瘘分流建立成功,假手术组大鼠仅单纯开腹,暴露腹主动脉和下腔静脉,腹主动脉夹闭,不作分流手术。两组动物分别于术后1,2,3,4,6,8w测量肺动脉及右心室压力。经右颈动脉取血测量血清ET-1与环磷酸鸟苷(cGMP)含量。右下肺组织行HE染色观察肺动脉形态学变化;取出大鼠心脏测定心室相对重量以及Masson特殊染色观察心肌胶原总量的改变。
     结果:1各组大鼠颈动脉平均动脉压差异无统计学意义(P>0.05)。与对应的S组比较,F组大鼠肺动脉平均肺动脉压(mPAP)、肺动脉收缩压(SPAP)升高;右心室发展压(+dP/dtmax)增加(P<0.05)。2与对应的S组比较,F组大鼠右心室肥厚指数RV/(LV+S)在第2w升高,第3-8w与S组相比无差异;左心室与体重比(LV+S)/BW从第4w直到第8w升高(P<0.05)。右心室与体重比(RV/BW)与对应的S组比较,从第2w到第8w升高,(P<0.05)。3与对应的S组比较,F组大鼠心肌纤维明显增粗、排列紊乱、心肌纤维间质成分增多。F组心肌胶原容积百分比(CVF%)均显著高于对应的S组(P<0.01),并且F组动物4w后较第4w前CVF%升高更显著(P<0.01)。4与对应的S组比较,F组大鼠肺动脉管壁明显增厚,管腔变小。内皮下层不明显,中膜平滑肌层明显增厚,平滑肌纤维直径增粗,细胞层数增多。F组直径50~100μm的肌性动脉的血管厚度百分比(WT%)和血管壁面积百分比(WA%)均显著高于对应的S组(P<0.01)。5与S组比较,F组大鼠血清ET-1、cGMP浓度均升高,差异有统计学意义(P<0.05)。
     结论:1本实验结果显示通过腹主动脉-下腔静脉造瘘手术可以成功模拟先心病左向右分流所致肺动脉高压早中期病理生理状态。2分流2w后大鼠开始出现右心室肥厚,分流4-6w后大鼠心室肥厚加重,并发生全心肥厚,但其右心室肌仍处于心肌肥厚代偿期。分流8w大鼠右心室心肌处于肥厚失代偿期。3肺动脉高压早中期病理生理变化与血清ET-1和cGMP浓度升高有关。
     第二部分:他达那非对左向右分流肺动脉高压大鼠肺血管重构的影响
     目的:通过建立分流型肺动脉高压大鼠模型,模拟先天性心脏病所致的肺动脉高压早中期阶段的病理生理状态,探讨磷酸二酯酶5抑制剂TDF短期和中期应用对分流型肺动脉高压大鼠肺血管重构的影响。
     方法:健康雄性SD大鼠48只,随机分为6组,每组8只,假手术4w组6w组(S4、S6组)、分流4w组6w组(F4、F6组)、TDF4w组6w组(T4、T6组):除S两组外其余四组麻醉后开腹行腹主动脉-腔静脉造瘘手术,S4、S6组与F4、F6组术后第4w开始使用生理盐水灌胃;T4、T6组术后第4w开始使用同等容积TDF(10mg/kg/d)灌胃。各组均从术后第三周开始灌胃,S4、F4、T4三组灌胃1w,S6、F6、T6灌胃3w。S4、F4、T4组和S6、F6、T6组分别于4w或6w后再次麻醉开胸,按上述方法测量肺动脉及右心室压力,大鼠右下肺组织行HE染色观察肺动脉形态学变化。酶联免疫法测定血清ET-1与cGMP含量。免疫组织化学染色测定肺动脉内皮素A受体(ETRA)和内皮素B受体(ETRB)表达变化。
     结果:1与S4和S6比较,F4与F6组大鼠肺动脉mPAP、SPAP和右心室+dP/dtmax均升高(P<0.05)。与F4和F6组相比,T4与T6组大鼠mPAP、SPAP和右心室+dP/dtmax均升高(P<0.05)。2大鼠血清cGMP浓度:与F4和F6组相比,T4与T6组大鼠cGMP升高(P<0.05)。3大鼠血清ET-1浓度:与S4和S6比较,F4与F6组大鼠血清ET-1浓度升高(P<0.05)。与F4和F6组相比,T4与T6组大鼠血清ET-1浓度升高(P<0.05)。4与F4和F6组相比,T4与T6组大鼠肺动脉WT%和WA%均降低(P<0.01)。ETRA在肺动脉平滑肌细胞上表达, ETRB大部分在肺动脉内皮细胞上表达,少量在平滑肌细胞上表达,阳性显棕黄色颗粒。F组ETRA表达量高于S组(P<0.01),T组表达量低于F组(P<0.01)且与S组比较无统计学差异(P<0.05)。F组ETRB表达显著低于S组(P<0.01),T组表达量高于F组(P<0.01)。
     结论:1TDF通过抑制血管壁的磷酸二酯酶-5对cGMP的降解,提高肺血管平滑肌cGMP的浓度。2cGMP水平的提高,降低了血管平滑肌的张力,从而有效降低分流型早中期肺动脉高压大鼠的肺动脉压力,改善肺血管重塑。3TDF使内源性ET-1浓度升高,可能与其改变肺血管收缩/舒张平衡调节有关。
     第三部分:TDF对分流型肺动脉高压大鼠心肌Cx43磷酸化影响的研究
     目的:通过建立大鼠分流型肺动脉高压模型,模拟先天性心脏病所致的早中期肺动脉高压,探讨磷酸二酯酶5抑制剂TDF短期和中期应用对分流型肺动脉高压早中期大鼠心肌肥厚的影响及心肌Cx43磷酸化的影响。
     方法:分组方法和造模型同前;S4、F4、T4组和S6、F6、T6组分别于4w或6w后再次麻醉开胸,取出大鼠心脏进行Masson特殊染色观察心肌胶原含量变化。免疫组织化学染色测定大鼠心肌Cx及pCx表达及分布。Western-blot法检测Cx43和pCx43的表达。
     结果:1与F4、F6组相比,T4、T6两组RV/BW、(LV+S)/BW和RV/(LV+S)均降低(P<0.05)。2与F4、F6组相比,T4、T6两组心肌CVF%显著降低(P<0.01)。3免疫组化结果:与S4相比,F4组心肌细胞Cx43与pCx43均表达明显增多(P<0.05);F6组Cx43与pCx43表达介于S4、F4两组之间,与两者相比无统计学意义(P>0.05);与F组相比,T组表达无明显变化,但Cx43从闰盘向心肌保质转移现象明显好转,闰盘OD/总体细胞OD明显增多(P<0.05)。4Western-blot结果:与S4相比,F4组Cx43、pCx43表达升高(P<0.05);与F4组相比,F6组Cx43、pCx43表达降低到S4和F4两组之间水平(P>0.05);与F4组相比,T4组Cx43、pCx43表达无明显变化(P>0.05);与F6组相比,T6组Cx43、pCx43表达减少(P<0.05)。
     结论:1TDF可改善肺动脉高压早、中期右心室收缩功能。2TDF抑制右心室肌肥厚,增强右心室收缩功能可能与对闰盘处Cx43有保护作用有关。
     第四部分:香豆雌酚通过cAMP/PKA通路介导一氧化氮抑制麻醉大鼠
     颈动脉窦压力感受器活动
     目的:大量研究证实植物雌激素对心血管系统具有保护作用。但植物雌激素香豆雌酚(coumestrol,CMT)对动脉压力感受器活动(carotidbaroreceptor activity, CBA)的影响尚不明确。本研究拟观察CMT对CBA的影响并探讨其可能作用机制。
     方法:通过隔离灌流大鼠颈动脉窦,记录窦神经传入放电Westen-blot和ELISA等方法,研究CMT对CBA的影响。
     结果:CMT抑制CBA,使颈动脉窦功能曲线右下移位,并浓度依赖性的抑制窦神经放电的峰值和积分。雌激素受体拮抗剂他莫昔芬(tamoxifen)预处理不影响CMT的作用;而一氧化氮(NO)合酶抑制剂(NG-硝基-L-精氨酸甲基酯,L-NAME)能完全取消CMT对CBA的抑制作用;一氧化氮供体(SIN-1)可以模拟该抑制效应。CMT可浓度依赖性的增加颈动脉分叉组织内cAMP水平和Ser1176-eNOS磷酸化水平,并且Ser1176-eNOS磷酸化可被高选择性PKA抑制剂H89阻断。
     结论:CMT可以通过cAMP/PKA通路刺激局部组织释放NO抑制CBA,且该作用与雌激素受体的基因效应无关。
Part Ⅰ:ET-1and cGMP participated in the process of lung pulmonaryhypertension
     Objective: Pulmonary arterial hypertension (PAH) is described as akind of pathophysiological syndrome characterized by a progressiveraised pulmonary arterial pressure and pulmonary vascular resistance,resulting in right heart failure or even death. This study was designed toestablish the abdominal aorta-inferior vena cava shunt model in rats andto investigate the morphological and molecular mechanisms ofpulmonary vascular remodeling and right ventricular hypertrophy.
     Method:72male SD rats were randomly divided into two groups: thesham operation (Sham, S) group and the fistula (Fistula,F) group. Accordingto Garcia’s method, a midline abdominal incision was made and thedescending aorta above the renal bifurcation was cleared of adjacent tissuesand a snugger was placed. The infra-renal portion of the aorta and inferiorvena cava were exposed at a site where the two vessels share a common fascia.The supra-renal portion of the abdominal aorta was then occluded with asnugger to control bleeding. The shunt was then created with an18Gangiocatheter inserted between the sutures on the anterior surface of the aorta.Following release of the snugger in thirty seconds, we observed mixing ofarterial and venous blood in the IVC, with distention of and pulsations in theIVC. Sham animals were treated the same way except for IVC puncture. Ratswere anesthetized again to measure the pressure of pulmonary artery and rightventricular (RV) four or six weeks after the corresponding treatment via amicro-catheter in the right ventricular outflow tract placed by thoracotomy.The pulmonary morphological changes were observed by HE staining of the right lower lobe tissue of the lung. The relative weight of ventricular wasdetermined and the changes of myocardial collagen were identified by Massonspecial staining.
     Results:1. There is no significantly difference of pulmonary arterypressure between two groups (P>0.05). Compared with S group, the meanpulmonary artery pressure (mPAP), the right ventricular systolic pressure(RVSP) and the maximal positive velcity of right ventricular pressure(+RVdP/dtmax) were increased in F group.2. Compared with S group, thepercentage of wall thickness (WT%) and the wall-to-total area ratio (WA%)were increased duing the process of the model (P<0.05).3. The two kindsmuscular artery which extremely diameter limited to50~100μm respectivelywere highly increased in F4and F6rats.4The RV/body weight ratio (RV/BW)and the percentage of (left ventricle+interventricular septum)/body weight(LV+S)/BW were markedly increased in F groups compared with that of S rats.5Compared with S4and S6, the myocardial collagen volume fraction (CVF)increased in F4and F6groups. Moreover, the CVF of F6rats was much higherthan that in F4.
     Conclusions:1Arterio-venous shunt induced pulmonary hypertensionand right ventricular hypertrophy model can be successfully established in ratsby the abdominal aorta and inferior vena cava fistula surgery.2The rightventricular hypertrophy was detected at2w after aorto-caval shunt. After8wof the aorto-caval shunt, discompensation of cardiac hypertrophy was detectedin model rats.3The concentration of ET-1and cGMP was increased with theprocess of the pulmonary hypertension.
     Part Ⅱ:The effect of Tadalafil on pulmonary vascular remodeling inpulmonary hypertension model caused by left to right shunt
     Objective: To investigate the effects of Tadalafil, a Phosphodiesterase5inhibitor, on the pulmonary vascular remodeling in shunt-induced pulmonaryhypertension via establishing shunt pulmonary hypertension model in rats.
     Method: Male Spague-Dawley rats (250-290g) were randomly dividedinto the following six groups (n=8): S4, S6(four or six weeks after sham operation), F4, F6(four or six weeks after shunt), T4and T6group (treatmentwith four or six weeks after shunt). The rats in T4and T6group were givenTadalafil (10mg/kg/d) by gavage four weeks after the aorta-caval fistulasurgery. The remaining rats were received the same volume of saline.Therefore, the S4, F4and T4groups received gavage for one week, while theS6, F6and T6groups for three weeks. The rats were anesthetized to measurethe mapped RVSP according to the above mentioned method after thecorresponding treatment. The pulmonary morphological changes wereobserved by HE staining of the right lower lobe tissue of the lung. ELISA isused to determinate serum content of ET-1and cGMP. The expression ofETAR and ETBR was detected with Immunohistochemistry staining.
     Results:1Compared with S4and S6, the mPAP, sPAP and+PAdP/dtmaxof F4and F6group increased significantly (P<0.05). The mPAP, sPAP and+PAdP/dtmax in T4and T6rats were higher even than that of F4and F6group(P<0.05).2The serum concentration of cGMP increased in T4and T6ratscompared with that of F4and F6groups (P<0.05).3The concentration of ET-1in serum of F4and F6groups is higher than that of S4and S6rats (P<0.05).Compared with the F4and F6group, ET-1concentrations in serum wereincreased obviously in T4and T6rats (P<0.05).4Compared with the F4andF6groups, the WT%and WA%of pulmonary arterial were much lower in T4and T6rats (P<0.01). The expression of ETAR was mainly observed in theSMC of the pulmonary arteries. However, the expression of ETBR wasobserved in endothelial cells and partially in SMC of the pulmonary arteries.The amount of ETAR expression was increased in F group than that in controlgroup (P<0.01). However, in T group the expression of ETRA was obviouslydecreased compared with the control (P<0.01). Furthermore, the amount ofETRB expression was reduced significantly in F group than that in controlgroup (P<0.01). On the contrary, the expression of ETRB was obviouslyhigher in T group than F group (P<0.01), but was still lower than controlgroup (P<0.05).
     Conclusions:1Tadalafil can effectively increase cGMP concentrations in pulmonary vascular smooth muscle by inhibiting widespread pulmonaryvascular phosphodiesterase-5ring guanosine monophosphate (cGMP)degradation.2The decrease of cGMP can effectively reduce the shunt withpulmonary hypertensionrat pulmonary artery pressure through the nitric oxide(NO) pathway.3Tadalafil can increase ET-1levels by adjusting pulmonaryvasoconstriction/diastolic balance.
     Part Ⅲ:The role of Tadalafil on the Cx43phosphorylation in left-rightshunt pulmonary hypertension
     Objective: To investigate the effects of phosphodiesterase-5inhibitorTadalafil on cardiac hypertrophy and the phosphorylation of Cx43in shunt-induced pulmonary hypertension via establishing shunt pulmonaryhypertension model in rats.
     Method: Male Spague-Dawley rats (250-290g) were randomly dividedinto the following six groups (n=8): S4, S6(four or six weeks after shamoperation), F4, F6(four or six weeks after shunt), T4and T6group (treatmentwith four or six weeks after shunt). Masson special staining was carried out toobserve the changes of myocardial collagen. The expression of Cx43and thephosphorylation Cx43in heart were determined with immunohistochemicalstaining and Western blot.
     Results:1Compared with the F4and F6groups, the RV/BW,(LV+S)/BW and RV/(LV+S) decreased in T4and T6rats (P<0.05).2Compared with F4and F6groups, the CVF in T4and T6groups wassignificantly decreased (P<0.01).3Compared with S4rats, the mean opticaldensity (OD) of the brown positive staining particles of Cx43or pCx43inmyocardium was increased significantly in F4group (P<0.05). There was nosignificant difference between F6and S4or between F6and F4(P>0.05).Compared with the F groups, the OD value of T groups remained unchanged,however, the ratio of the intercalated disc OD to total OD increasedsignificantly (P<0.05),4Western-blot: Compared with the S4group, theexpression of Cx43and pCx43was upregulated in F4group (P<0.05). Therewas no significant difference between F6and S4or between F6and F4(P> 0.05).Compared with F4group, Cx43and pCx43expression in T4group hasno significant changes (P>0.05). Compared with the F6group, the expressionof Cx43and pCx43decreased (P<0.05).
     Conclusions:1Tadalafil, the Phosphodiesterase5inhibitors, can notonly reduce pulmonary artery pressure load by expensing the pulmonaryartery smooth muscle, but also attenuate the stimulating effects of beta-adrenergic and postpone the cardiac hypertrophy and remodeling viaincreasing cGMP levels.2Tadalafil can prompt the translocation of Cx43andpCx43from the intercalated disc to the cytoplasm, i.e. preventing loss ordestruction.
     Part Ⅳ: Coumestrol inhibits carotid sinus baroreceptor activity bycAMP/PKA depended nitric oxide release in anesthetized male rats
     Objective: Although evidences suggest that phytoestrogens offermultiple beneficial effects on the cardiovascular system, but the effects ofcoumestrol (CMT), one of the well-known phytoestrogens, on arterialbaroreceptors are still unknown.
     Method: In this study we examine the effects of CMT on arterialbaroreceptors activity (CBA) for the first time by isolated carotid sinusperfusion, sinus nerve afferent discharge recording and western blot.
     Results: The results showed that CMT inhibited the CBA, which shiftedthe functional curve of the carotid baroreceptor to the right and downward,with a marked decrease in the peak slope and the peak integral value of carotidsinus nerve discharge in a concentration dependent manner. Also, the possiblemechanisms underlying these effects were examined. We found thatpretreatment with an estrogen-receptor antagonist, tamoxifen, did not affectthe inhibition of CMT on CBA, while pretreatment with NG-nitro-L-argininemethyl ester, an inhibitor of nitric oxide (NO) synthase, could completelyabolish the effects of CMT, moreover, a NO donor, SIN-1, could potentiatethese inhibitory effects. In addition, we also found that the intracellular cAMPlevels and phosphorylation of Ser1176-eNOS protein expression in carotidbifurcation tissue could be increased dose-dependently by CMT, and the phosphorylation of Ser1176-eNOS was blocked by a highly selective PKAinhibitor H89.
     Conclusions: These findings indicate that CMT could inhibit CBA viathe local release of NO, which were mediated by the cAMP/PKA pathway andwere unrelated to the estrogenic effect.
引文
1Stringham R, Shah NR. Pulmonary arterial hypertension: An update ondiagnosis and treatment. Am Fam Physician,2010,82:370-377
    2Stenmark KR, Meyrick B, Galie N, et al. Animal models of pulmonaryarterial hypertension: The hope for etiological discovery andpharmacological cure. Am J Physiol Lung Cell Mol Physiol,2009,297:L1013-1032
    3Loukanov T, Geiger R, Agrawal R. Animal models related to congenitalheart disease and clinical research in pulmonary hypertension. Cardiology,2010,116:18-25
    4Zuckerbraun BS, Shiva S, Ifedigbo E, et al. Nitrite potently inhibitshypoxic and inflammatory pulmonary arterial hypertension and smoothmuscle proliferation via xanthine oxidoreductase-dependent nitric oxidegeneration. Circulation,2010,121:98-109
    5Sawamura F, Kato M, Fujita K, et al. Tadalafil, a long-acting inhibitor ofpde5, improves pulmonary hemodynamics and survival rate ofmonocrotaline-induced pulmonary artery hypertension in rats. J PharmacolSci,2009,111:235-243
    6Caruso P, MacLean MR, Khanin R, et al. Dynamic changes in lungmicrorna profiles during the development of pulmonary hypertension dueto chronic hypoxia and monocrotaline. Arterioscler Thromb Vasc Biol,2010,30:716-723
    7Sener Comert S, Caglayan B.[pulmonary hypertension related topulmonary diseases or hypoxia and its treatment]. Anadolu Kardiyol Derg,2010,10Suppl2:47-55
    8Rondelet B, Dewachter L, Kerbaul F, et al. Sildenafil added to sitaxsentanin overcirculation-induced pulmonary arterial hypertension. Am J PhysiolHeart Circ Physiol,2010,299: H1118-1123
    9Reddy SM, Thingnam SK, Joshi K. Study of pulmonary arterial pressuresand histopathological changes in patients having congenital heart defectswith left-to-right shunt. Indian J Surg,2011,73:116-121
    10Garcia R, Diebold S. Simple, rapid, and effective method of producingaortocaval shunts in the rat. Cardiovasc Res,1990,24:430-432
    11Zeng Z, Li Y, Jiang Z, et al. The extracellular signal-regulated kinase isinvolved in the effects of sildenafil on pulmonary vascular remodeling.Cardiovasc Ther,2010,28:23-29
    12Ocampo C, Ingram P, Ilbawi M, et al. Revisiting the surgical creation ofvolume load by aorto-caval shunt in rats. Mol Cell Biochem,2003,251:139-143
    13Wang X, Ren B, Liu S, et al. Characterization of cardiac hypertrophy andheart failure due to volume overload in the rat. J Appl Physiol,2003,94:752-763
    14Li M, Stenmark KR, Shandas R, et al. Effects of pathological flow onpulmonary artery endothelial production of vasoactive mediators andgrowth factors. J Vasc Res,2009,46:561-571
    15Jankov RP, Kantores C, Belcastro R, et al. Endothelin-1inhibits apoptosisof pulmonary arterial smooth muscle in the neonatal rat. Pediatr Res,2006,60:245-251
    16Jeffery TK, Morrell NW. Molecular and cellular basis of pulmonaryvascular remodeling in pulmonary hypertension. Prog Cardiovasc Dis,2002,45:173-202
    17Bogaard HJ, Abe K, Vonk Noordegraaf A, et al. The right ventricle underpressure: Cellular and molecular mechanisms of right-heart failure inpulmonary hypertension. Chest,2009,135:794-804,
    18Goncalvesova E, Luknar M, Lesny P. Ecg signs of right ventricularhypertrophy may help distinguish pulmonary arterial hypertension andpulmonary hypertension due to left ventricular diastolic dysfunction.Bratisl Lek Listy,2011,112:614-618
    19Hong KH, Lee YJ, Lee E, et al. Genetic ablation of the bmpr2gene inpulmonary endothelium is sufficient to predispose to pulmonary arterialhypertension. Circulation,2008,118:722-730
    20Ishikawa M, Sato N, Asai K, et al. Effects of a pure alpha/beta-adrenergicreceptor blocker on monocrotaline-induced pulmonary arterialhypertension with right ventricular hypertrophy in rats. Circ J,2009,73:2337-2341
    21McMurtry MS, Moudgil R, Hashimoto K, et al. Overexpression of humanbone morphogenetic protein receptor2does not ameliorate monocrotalinepulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol,2007,292: L872-878
    20Piao L, Fang YH, Cadete VJ, et al. The inhibition of pyruvatedehydrogenase kinase improves impaired cardiac function and electricalremodeling in two models of right ventricular hypertrophy: Resuscitatingthe hibernating right ventricle. J Mol Med (Berl),2010,88:47-60
    21Piao L, Marsboom G, Archer SL. Mitochondrial metabolic adaptation inright ventricular hypertrophy and failure. J Mol Med (Berl),2010,88:1011-1020
    22Tan XY, He JG. The remodeling of connexin in the hypertrophied rightventricular in pulmonary arterial hypertension and the effect of a dual etreceptor antagonist (bosentan). Pathol Res Pract,2009,205:473-482
    1Stringham R, Shah NR. Pulmonary arterial hypertension: An update ondiagnosis and treatment. Am Fam Physician,2010,82:370-377
    2Pearl JM, Nelson DP, Raake JL, et al. Inhaled nitric oxide increasesendothelin-1levels: A potential cause of rebound pulmonary hypertension.Crit Care Med,2002,30:89-93
    3Katz SD. Tadalafil: The evidence for its clinical potential in the treatmentof pulmonary arterial hypertension. Core Evid,2008,2:225-231
    4Kilickesmez K, Kucukoglu MS.[phosphodiesterase type5inhibitors in thetreatment of pulmonary arterial hypertension]. Anadolu Kardiyol Derg,2010,10Suppl2:16-18
    5Lin CS, Lin G, Xin ZC, et al. Expression, distribution and regulation ofphosphodiesterase5. Curr Pharm Des,2006,12:3439-3457
    6Ghofrani HA, Osterloh IH, Grimminger F. Sildenafil: From angina toerectile dysfunction to pulmonary hypertension and beyond. Nat Rev DrugDiscov,2006,5:689-702
    7Laties AM, Fraunfelder FT. Ocular safety of viagra,(sildenafil citrate).Trans Am Ophthalmol Soc,1999,97:115-125; discussion125-118
    8Kiroglu AF, Bayrakli H, Yuca K, et al. Nasal obstruction as a commonside-effect of sildenafil citrate. Tohoku J Exp Med,2006,208:251-254
    9Hatano M, Yao A, Kinugawa K, et al. Acute effect of sildenafil ismaintained in pulmonary arterial hypertension patients chronically treatedwith bosentan. Int Heart J,2011,52:233-239
    10He B, Zhang F, Li X, et al. Meta-analysis of randomized controlled trialson treatment of pulmonary arterial hypertension. Circ J,2010,74:1458-1464
    11Vachiery JL, Huez S, Gillies H, et al. Safety, tolerability andpharmacokinetics of an intravenous bolus of sildenafil in patients withpulmonary arterial hypertension. Br J Clin Pharmacol,2011,71:289-292
    12Sawamura F, Kato M, Fujita K, et al. Tadalafil, a long-acting inhibitor ofpde5, improves pulmonary hemodynamics and survival rate ofmonocrotaline-induced pulmonary artery hypertension in rats. J PharmacolSci,2009,111:235-243
    13Granstam SO, Granstam E. Endothelin-induced changes in blood flow instz-diabetic and non-diabetic rats: Relation to nitric oxide synthase andcyclooxygenase inhibition. J Physiol Sci,2011,61:497-505
    14Lyon-Roberts B, Strait KA, van Peursem E, et al. Flow regulation ofcollecting duct endothelin-1production. Am J Physiol Renal Physiol,2011,300: F650-656
    15Takashimizu S, Kojima S, Nishizaki Y, et al. Effect of endothelin a receptorantagonist on hepatic hemodynamics in cirrhotic rats. Implications forendothelin-1in portal hypertension. Tokai J Exp Clin Med,2011,36:37-43
    16Salloum F, Yin C, Xi L, et al. Sildenafil induces delayed preconditioningthrough inducible nitric oxide synthase-dependent pathway in mouse heart.Circ Res,2003,92:595-597
    17Wiley KE, Davenport AP. Novel nitric oxide donors reverse endothelin-1-mediated constriction in human blood vessels. J Cardiovasc Pharmacol,2000,36: S151-152
    18Wiley KE, Davenport AP. Endothelin receptor pharmacology and functionin the mouse: Comparison with rat and man. J Cardiovasc Pharmacol,2004,44Suppl1: S4-6
    19Goligorsky MS. Endothelial cell dysfunction and nitric oxide synthase.Kidney Int,2000,58:1360-1376
    20Goligorsky MS, Abedi H, Noiri E, et al. Nitric oxide modulation of focaladhesions in endothelial cells. Am J Physiol,1999,276: C1271-1281
    21Goligorsky MS, Li H, Brodsky S, et al. Relationships between caveolaeand enos: Everything in proximity and the proximity of everything. Am JPhysiol Renal Physiol,2002,283: F1-10
    22Wang C, Wang J, Zhao L, et al. Sildenafil inhibits human pulmonary arterysmooth muscle cell proliferation by decreasing capacitative ca2+entry. JPharmacol Sci,2008,108:71-78
    23Davie N, Haleen SJ, Upton PD, et al. Et(a) and et(b) receptors modulatethe proliferation of human pulmonary artery smooth muscle cells. Am JRespir Crit Care Med,2002,165:398-405
    1Levin M. Isolation and community: A review of the role of gap-junctionalcommunication in embryonic patterning. J Membr Biol,2002,185:177-192
    2Danesh-Meyer HV, Green CR. Focus on molecules: Connexin43--mind thegap. Exp Eye Res,2008,87:494-495
    3Danesh-Meyer HV, Huang R, Nicholson LF, et al.Connexin43antisenseoligodeoxynucleotide treatment down-regulates theinflammatory response in an in vitro interphase organotypic culture modelof optic nerve ischaemia. J Clin Neurosci,2008,15:1253-1263
    4Alexander DB, Goldberg GS. Transfer of biologically important moleculesbetween cells through gap junction channels. Curr Med Chem,2003,10:2045-2058
    5Goldberg GS, Alexander DB, Pellicena P, et al. Src phosphorylates cas ontyrosine253to promote migration of transformed cells. J Biol Chem,2003,278:46533-46540
    6Herve JC, Derangeon M, Bahbouhi B, et al. The connexin turnover, animportant modulating factor of the level of cell-to-cell junctionalcommunication: Comparison with other integral membrane proteins. JMembr Biol,2007,217:21-33
    7Herve JC, Derangeon M, Sarrouilhe D, et al. Gap junctional channels areparts of multiprotein complexes. Biochim Biophys Acta,2011,
    8Hawat G, Baroudi G. Differential modulation of unapposed connexin43hemichannel electrical conductance by protein kinase c isoforms. PflugersArch,2008,456:519-527
    9Goliger JA, Bruzzone R, White TW, et al. Dominant inhibition ofintercellular communication by two chimeric connexins. Clin ExpPharmacol Physiol,1996,23:1062-1067
    10Jia G, Cheng G, Gangahar DM, et al. Involvement of connexin43inangiotensin ii-induced migration and proliferation of saphenous veinsmooth muscle cells via the mapk-ap-1signaling pathway. J Mol CellCardiol,2008,44:882-890
    11Krutovskikh VA, Troyanovsky SM, Piccoli C, et al. Differential effect ofsubcellular localization of communication impairing gap junction proteinconnexin43on tumor cell growth in vivo. Oncogene,2000,19:505-513
    12Martinez AD, Maripillan J, Acuna R, et al. Different domains are criticalfor oligomerization compatibility of different connexins. Biochem J,2011,436:35-43
    13Nakagami T, Tanaka H, Dai P, et al. Generation of reentrant arrhythmias bydominant-negative inhibition of connexin43in rat cultured myocytemonolayers. Cardiovasc Res,2008,79:70-79
    14Ey B, Eyking A, Gerken G, et al. Tlr2mediates gap junctional intercellularcommunication through connexin-43in intestinal epithelial barrier injury.J Biol Chem,2009,284:22332-22343
    15Matsushita S, Tran VN, Pelleg A, et al. Pacing-induced cardiac gapjunction remodeling: Modulation of connexin43phosphorylation state. AmJ Ther,2009,16:224-230
    16Miura T, Miki T, Yano T. Role of the gap junction in ischemicpreconditioning in the heart. Am J Physiol Heart Circ Physiol,2010,298:H1115-1125
    17Garcia R, Diebold S. Simple, rapid, and effective method of producingaortocaval shunts in the rat. Cardiovasc Res,1990,24:430-432
    18Kucewicz E, Wojarski J, Goliszek L, et al. pulmonary hypertension.Anestezjol Intens Ter,2009,41:51-55
    19Kasimir MT, Seebacher G, Jaksch P, et al. Reverse cardiac remodelling inpatients with primary pulmonary hypertension after isolated lungtransplantation. Eur J Cardiothorac Surg,2004,26:776-781
    20Castelain V, Chemla D, Humbert M, et al. Pulmonary artery pressure-flowrelations after prostacyclin in primary pulmonary hypertension. Am JRespir Crit Care Med,2002,165:338-340
    21Chemla D, Castelain V, Herve P, et al. Haemodynamic evaluation ofpulmonary hypertension. Eur Respir J,2002,20:1314-1331
    22Corno AF, Boone Y, Mallabiabarrena I, et al. Myocardial and pulmonaryeffects of aqueous oxygen with acute hypoxia. Ann Thorac Surg,2004,78:956-960; discussion956-960
    23Berkowitz DS, Coyne NG. Understanding primary pulmonaryhypertension. Crit Care Nurs Q,2003,26:28-34
    24Kostin S, Dammer S, Hein S, et al. Connexin43expression anddistribution in compensated and decompensated cardiac hypertrophy inpatients with aortic stenosis. Cardiovasc Res,2004,62:426-436
    25Bupha-Intr T, Haizlip KM, Janssen PM. Temporal changes in expressionof connexin43after load-induced hypertrophy in vitro. Am J PhysiolHeart Circ Physiol,2009,296: H806-814
    26Peters NS, Green CR, Poole-Wilson PA, et al. Reduced content ofconnexin43gap junctions in ventricular myocardium from hypertrophiedand ischemic human hearts. Circulation,1993,88:864-875
    27Uzzaman M, Honjo H, Takagishi Y, et al. Remodeling of gap junctionalcoupling in hypertrophied right ventricles of rats with monocrotaline-induced pulmonary hypertension. Circ Res,2000,86:871-878
    28Arnold JM, Phipps MW, Chen J, et al. Cellular sublocalization of cx43andthe establishment of functional coupling in imr-32neuroblastoma cells.Mol Carcinog,2005,42:159-169
    29Sroka J, Czyz J, Wojewoda M, et al. The inhibitory effect of diphenyltin ongap junctional intercellular communication in hek-293cells is reduced bythioredoxin reductase1. Toxicol Lett,2008,183:45-51
    30Sasano C, Honjo H, Takagishi Y, et al. Internalization anddephosphorylation of connexin43in hypertrophied right ventricles of ratswith pulmonary hypertension. Circ J,2007,71:382-389
    1Adlercreutz H, Western diet and Western diseases: some hormonal andbiochemical mechanisms and associations. Scand J Clin Lab Invest Suppl
    1990201,3-23
    2Anderson JJ, Anthony MS, Cline JM, et al. Health potential of soyisoflavones for menopausal women. Public Health Nutr19992,489-504
    3Bolotina VM, Najibi S, Palacino JJ, et al. Nitric oxide directly activatescalcium-dependent potassium channels in vascular smooth muscle. Nature
    1994368,850-853
    4Boo YC, Hwang J, Sykes M, et al. Shear stress stimulates phosphorylationof eNOS at Ser(635) by a protein kinase A-dependent mechanism. Am JPhysiol Heart Circ Physiol2002283, H1819-1828
    5Canal CC, Pagnussat AS, Orlandi L, et al. Coumestrol has neuroprotectiveeffects before and after global cerebral ischemia in female rats. Brain Res
    20121474,82-90
    6Chapleau MW, Hajduczok G, Sharma RV, et al. Mechanisms ofbaroreceptor activation. Clin Exp Hypertens199517,1-13
    7Fu XD, Simoncini T, Non-genomic sex steroid actions in the vascularsystem. Semin Reprod Med200725,178-186
    8Gewaltig MT, Kojda G, Vasoprotection by nitric oxide: mechanisms andtherapeutic potential. Cardiovasc Res200255,250-260
    9Gornik HL, Creager MA, Arginine and endothelial and vascular health. JNutr2004134,2880S-2887S; discussion2895S
    10Heldring N, Pike A, Andersson S, et al. Estrogen receptors: how do theysignal and what are their targets. Physiol Rev200787,905-931
    11Koike S, Sakai M, Muramatsu M, Molecular cloning and characterizationof rat estrogen receptor cDNA. Nucleic Acids Res198715,2499-2513
    12Leuner O, Havlik J, Hummelova J, et al. Distribution of isoflavones andcoumestrol in neglected tropical and subtropical legumes. J Sci Food Agric.2012
    13Li PG, Sun L, Han X, et al. Quercetin induces rapid eNOSphosphorylation and vasodilation by an Akt-independent and PKA-dependent mechanism. Pharmacology201289,220-228.
    14Li Z, Chapleau MW, Bates JN, et al. Nitric oxide as an autocrineregulator of sodium currents in baroreceptor neurons. Neuron199820,1039-1049
    15Liu D, Homan LL, Dillon JS. Genistein acutely stimulates nitric oxidesynthesis in vascular endothelial cells by a cyclic adenosine5'-monophosphate-dependent mechanism. Endocrinology2004145,5532-5539
    16Ma H, He Q, Dou D, Zheng X, et al, Increased degradation of MYPT1contributes to the development of tolerance to nitric oxide in porcinepulmonary artery. Am J Physiol Lung Cell Mol Physiol2010299, L117-123
    17Ma HJ, Liu YX, Wang FW, et al, Genistein inhibits carotid sinusbaroreceptor activity in anesthetized male rats. Acta Pharmacol Sin200526,840-844
    18Mahn K, Borras C, Knock GA, et al, Dietary soy isoflavone inducedincreases in antioxidant and eNOS gene expression lead to improvedendothelial function and reduced blood pressure in vivo. FASEB J200519,1755-1757
    19Mann GE, Rowlands DJ, Li FY, et al, Activation of endothelial nitricoxide synthase by dietary isoflavones: role of NO in Nrf2-mediatedantioxidant gene expression. Cardiovasc Res200775,261-274
    20McAllister RM, Newcomer SC, Laughlin MH, Vascular nitric oxide:effects of exercise training in animals. Appl Physiol Nutr Metab200833,173-178
    21Mendelsohn ME, Genomic and nongenomic effects of estrogen in thevasculature. Am J Cardio.2002l90,3F-6F
    22Ogawa S, Inoue S, Watanabe T, et al. Molecular cloning andcharacterization of human estrogen receptor betacx: a potential inhibitorofestrogen action in human. Nucleic Acids Res199826,3505-3512
    23Patisaul HB, Jefferson W, The pros and cons of phytoestrogens. FrontNeuroendocrinol.201031,400-419
    24Pechanova O, Simko F, The role of nitric oxide in the maintenance ofvasoactive balance. Physiol Res.200756Suppl2, S7-S16
    25Si H, Yu JJ, Lum H, et al. Phytoestrogen genistein up-regulatesendothelial nitric oxide synthase expression via activation of cAMPresponse element-binding protein in human aortic endothelial cells.Endocrinology.2012153,3190-3198
    26Simoncini T, Rabkin E, Liao JK., Molecular basis of cell membraneestrogen receptor interaction with phosphatidylinositol3-kinase inendothelial cells. Arterioscler Thromb Vasc Bio.2003l23,198-203
    27Smiley DA, Khalil RA, Estrogenic compounds, estrogen receptors andvascular cell signaling in the aging blood vessels. Curr Med Chem.200916,1863-1887
    28Tanano I, Nagaoka T, Omae T, et al Dilation of Porcine RetinalArterioles to Cilostazol: Roles of eNOS Phosphorylation viacAMP/Protein Kinase A and AMP-Activated Protein Kinase andPotassium Channels. Invest Ophthalmol Vis Sci.2013
    29Usui T. Pharmaceutical prospects of phytoestrogens. Endocr J200653,7-20.
    30Yamori Y, Food factors for atherosclerosis prevention: Asian perspectivederived from analyses of worldwide dietary biomarkers. Exp Clin Cardiol200611,94-98
    1Omori KJ, Overview of PDes and their regulation. Circ. Res.2007,100,309–327
    2Mullershausen F, Direct activation of PDe5by cGMP: long-term effectswithin NO/cGMP signaling. J. Cell Biol.2003,160,719–727
    3Conti M, Beavo J, Biochemistry and physiology of cyclic nucleotidephosphodiesterases: essential components in cyclic nucleotide signaling.Annu. Rev Biochem.2007,76,481–511
    4Pauvert o, Effect of sildenafil on cyclic nucleotide hosphodiesteraseactivity, vascular tone and calcium signaling in rat pulmonary artery. Br. J.Pharmacol.2003,139,513–522
    5Martin w, Furchgott, rF, Villani GM, Jothianandan D, Phosphodiesteraseinhibitors induce endothelium-dependent relaxation of rat and rabbit aortaby potentiating the effects of spontaneously released endothelium-derivedrelaxing factor. J. Pharmacol. Exp. Ther.1986,237,539–547
    6Lin C, Lin G, Xin ZC, Lue TF,expression, distribution and regulation ofphosphodiesterase5. Curr. Pharm. Des.2006,12,3439–3457
    7Ghofrani HA, Osterloh IH, Grimminger F, Sildenafil: from angina toerectile dysfunctionto pulmonary hypertension and beyond. Nat.Rev. DrugDiscov.2006,5,689–702
    8Wallis RM, Corbin JD, Francis s, et al Tissue distribution ofphosphodiesterase families and the effects of sildenafil on tissue cyclicnucleotides, platelet function, and the contractile responses of trabeculaecarneae and aortic rings in vitro. Am. J. Cardiol.1999,83,3C-12
    9CCorbin J, Sildenafil citrate does not affect cardiac contractility in humanor dog heart.Curr. Med. Res. Opin.2003,19,747–752
    10Chen Y, Effect of PDe5inhibition on coronary hemodynamics inpacing-induced heart failure. Am. J. Physiol. Heart Circ. Physiol.2003,284, H1513–H1520
    11Takimoto E, CGMP catabolism by phosphodiesterase5A regulatescardiac adrenergic stimulation by NOs3-dependent mechanism. Circ. Res.2005,96,100–109
    12Forfia PR, Acute phosphodiesterase5inhibition mimics hemodynamiceffects of B-type natriuretic peptide and potentiates B-type natriureticpeptide effects in failing but not normal canine heart. J. Am. Coll. Cardiol.2007,49,1079–1088
    13Corbin JD, Beasley A., Blount M, High lung PDe5: a strong basis fortreating pulmonary hypertension with PDe5inhibitors. Biochem. Biophys.Res. Commun.2005,334,930–938
    14Rybalkin SD, Rybalkina, IG., shimizu-Albergine JA, PDe5is convertedto an activated state upon cGMP binding to the GAF A domain. EMBO J.2003,22,469–478
    15Nagendran J, Phosphodiesterase type5is highly expressed in thehypertrophied human right ventricle, and acute inhibition ofphosphodiesterase type5improves contractility. Circulation.2007,116,238–248
    16Layland J, Li JM, Shah AM. Role of cyclic GMP-dependent proteinkinase in the contractile response to exogenous nitric oxide in rat cardiacmyocytes. J. Physiol.2002,540,457–46
    17Leroy MJ, Characterization of two recombinant PDe3(cGMP-inhibitedcyclic nucleotide phosphodiesterase) isoforms, rcGiP1and HcGiP2,expressed in NiH3006murine fibroblasts and sf9insect cells.Biochemistry1996,35,10194–10202
    18Lincoln TM, Dey N,. Sellak H, Invited review: cGMP-dependentprotein kinase signaling mechanisms in smooth muscle: from theregulation of tone to gene expression. J. Appl. Physiol.2001,91,1421–1430
    19Lincoln TM, Wu X, Sellak H, Dey N, Choi CS. Regulation of vascularsmooth muscle cell phenotype by cyclic GMP and cyclic GMP-dependentprotein kinase. Front. Biosci.2006,11,356–367
    20Castro LR, Verde, I, Cooper DM, Fischmeister, r. Cyclic guanosinemonophosphate compartmentation in rat cardiac myocytes. Circulation.2006.113,2221–2228
    21Corbin JD, Turko,IV, Beasley A, Francis, SH, Phosphorylation ofphosphodiesterase-5by cyclic nucleotidedependent protein kinase altersits catalytic and allosteric cGMP-binding activities. Eur. J. Biochem.
    2000,267,2760–2767
    22Hart CY, Hahn EL, Meyer, D. M.,Burnett, J. C. Jr&redfield, M. M.Differential effects of natriuretic peptides and NO on Lv function in heartfailure and normal dogs. Am.J. Physiol. Heart Circ. Physiol.281,2001,146–H154
    23Nagayama T, Zhang M, Hsu S, Takimoto, DA, Sustained solubleguanylate cyclase stimulation offsets nitric-oxide synthase inhibition torestore acute cardiac modulation by sildenafil. J. Pharmacol. Exp. Ther.2008,326,380–387
    24Piggott LA, Natriuretic peptides and nitric oxide stimulate cGMPsynthesis in different cellular compartments. J. Gen. Physiol.2006,128,3–14
    25Takimoto E,Compartmentalization of cardiac beta-adrenergic inotropymodulation by phosphodiesterase type5. Circulation,2007,115,2159–2167
    26Borlaug BA, Melenovsky V, Marhin T. et al Sildenafil inhibitsbeta-adrenergic-stimulated cardiac contractility in humans. Circulation.2005,112,2642–2649
    27Senzaki H, Cardiac phosphodiesterase5(cGMP-specific) modulatesbeta-adrenergic signaling in vivo and is downregulated in heart failure.FASEB J.2001,15,1718–1726
    28Das A, Xi L. Kukreja RC, Phosphodiesterase-5inhibitor sildenafilpreconditions adult cardiac myocytes against necrosis and apoptosis.essential role of nitric oxide signaling. J. Biol. Chem.2005,280,12944–12955
    29Kukreja RC, Pharmacological preconditioning with sildenafil: basicmechanisms and clinical implications. Vascul.Pharmacol,.2005.42,219–232
    30Salloum FN, Ockaili RA., Wittkamp M, Marwaha, v. r.&Kukreja, r. C.vardenafil:a novel type5phosphodiesterase inhibitor reduces myocardialinfarct size following ischemia/reperfusion injury via opening ofmitochondrial K(ATP) channels in rabbits.J. Mol. Cell. Cardiol.2006,40,405–411
    31Sesti C, Florio V, Johnson EG, et al The phosphodiesterase-5inhibitortadalafil reduces myocardial infarct size. Int. J.Impot. Res.2007,19,55–61
    32Zahabi A, Picard s, Fortin N, Reudelhuber,T. L.&Deschepper, C. F.expression of constitutively active guanylate cyclase in cardiomyocytesinhibits the hypertrophic effects of isoproterenol and aortic constriction onmouse hearts. J. Biol. Chem.2003,278,47694–47699
    33Kishimoto I., Rossi K, Garbers DL, A genetic model provides evidencethat the receptor for atrial natriuretic peptide (guanylyl cyclase-A) inhibitscardiac ventricular myocyte hypertrophy. Proc. Natl Acad. Sci. USA2001,98,2703–2706
    34Knowles JW, Pressure-independent enhancement of cardiac hypertrophyin natriuretic peptide receptor A-deficient mice. J. Clin. Invest.2001,107,975–984
    35Wollert KC, Gene transfer of cGMPdependent protein kinase i enhancesthe antihypertrophic effects of nitric oxide in cardiomyocytes.Hypertension2002,39,87–92
    36Lepore JJ, Effect of sildenafil on the acute pulmonary vasodilatorresponse to inhaled nitric oxide in adults with primary pulmonaryhypertension. Am. J. Cardiol.2002,90,677–680
    37Takimoto E, Chronic inhibition of cyclic GMP phosphodiesterase5Aprevents and reverses cardiac hypertrophy. Nat. Med.2005,11,214–222
    38Chen HH, Huntley BK, Schirger J, et al Maximizing the renal cyclic3'-5'-guanosine monophosphate system with type v phosphodiesteraseinhibition and exogenous natriuretic peptide: a novel strategy to improverenal function in experimental overt heart failure. J. Am. Soc.Nephrol.2006,17,2742–2747
    39Galie N, Sildenafil citrate therapy for pulmonary arterial hypertension. N.Engl. J. Med.2005,353,2148–2157
    40Guazzi M, Tumminello G, Di Marco F, et al The effects ofphosphodiesterase-5inhibition with sildenafil on pulmonaryhemodynamics and diffusion capacity, exercise ventilatory efficiency, andoxygen uptake kinetics in chronic heart failure.J. Am. Coll. Cardiol.2004,44,2339–2348
    41Alaeddini J, Efficacy and safety of sildenafil in the evaluation ofpulmonary hypertension in severe heart failure. Am. J. Cardiol.2004,94,1475–1477
    42Michelakis ED, Long-term treatment with oral sildenafil is safe andimproves functional capacity and hemodynamics in patients withpulmonary arterial hypertension.Circulation2003,108,2066–2069
    43Zakliczynski M, Effectiveness and safety of treatment with sildenafil forsecondary pulmonary hypertension in heart transplant candidates.Transplant. Proc.2007,39,2856–2858
    44Phillips BG, Sympathetic activation by sildenafil. Circulation.2000,102,3068–3073
    45Al-Hesayen A, Floras JS, Parker JD, The effects of intravenoussildenafil on hemodynamics and cardiac sympathetic activity in chronichuman heart failure. Eur. J. Heart Fail.2006,8,864–868
    46Piccirillo G, Effects of sildenafil citrate (viagra) on cardiac repolarizationand on autonomic control in subjects with chronic heart failure. Am. HeartJ.2002,143,703–710
    47Katz SD, Acute type5phosphodiesterase inhibition with sildenafilenhances flow-mediated vasodilation in patients with chronic heart failure.J. Am. Coll.Cardiol.2000,36,845–851
    48Guazzi M, Tumminello G, Di Marco F, et al, Influences of sildenafil onlung function and hemodynamics in patients with chronic heart failure.Clin. Pharmacol. Ther.2004,76,371–378
    49Guazzi M, Samaja M, Arena R, Vicenzi et al Long-term use ofsildenafil in the therapeutic management of heart failure.J. Am. Coll.Cardiol.2007,50,2136–2144
    50Hryniewicz K, Inhibition of angiotensinconverting enzyme andphosphodiesterase type5improves endothelial function in heart failure.Clin. Sci.(Lond.)2005,108,331–338
    51Hirata K, Adji A, Vlachopoulos C, O’rourke, M. F. Effect of sildenafil oncardiac performance in patients with heart failure.Am. J. Cardiol.2005,96,1436–1440
    52Lewis GD, Sildenafil improves exercise hemodynamics and oxygenuptake in patients with systolic heart failure. Circulation.2007,115,59–66
    53Guazzi M, Tumminello G, Di Marco F, et al The effects ofphosphodiesterase-5inhibition with sildenafil on pulmonaryhemodynamics and diffusion capacity, exercise ventilatory efficiency, andoxygen uptake kinetics in chronic heart failure. J. Am. Coll. Cardiol.2004,44,2339–2348
    54Lewis GD, Sildenafil improves exercise capacity and quality of life inpatients with systolic heart failure and secondary pulmonary hypertension.Circulation.2007,116,1555–1562
    55Kass DA, Champion, HC, Beavo JA, Phosphodiesterase type5:expanding roles in cardiovascular regulation. Circ. Res.2007,101,1084–1095
    56Packer M, Effect of oral milrinone on mortality in severe chronic heartfailure. The PrOMise study research Group. N. Engl. J. Med.1991,325,1468–1475
    57Goldsmith SR, Type5phosphodiesterase inhibition in heart failure: thenext step. J. Am.Coll. Cardiol.2007,50,2145–2147
    1Levin M, Isolation and community: a review of the role of gap-junctionalcommunication in embryonic patterning J Membr Biol,2002185(3): p177-92
    2Nogi T, M Levin, Characterization of innexin gene expression andfunctional roles of gap-junctional communication in planarian regenerationDev Biol,2005287(2): p314-35
    3Danesh-Meyer HV, CR Green, Focus on molecules: connexin43--mindthe gap Exp Eye Res,200887(6): p494-5
    4Alexander DB, GS Goldberg, Transfer of biologically importantmolecules between cells through gap junction channels Curr Med Chem,
    200310(19): p2045-58
    5Goldberg GS, Src phosphorylates Cas on tyrosine253to promotemigration of transformed cells J Biol Chem,2003278(47): p46533-40
    6Hawat G, G Baroudi, Differential modulation of unapposed connexin43hemichannel electrical conductance by protein kinase C isoforms PflugersArch,2008456(3): p519-27
    7Yancey SB, The43-kD polypeptide of heart gap junctions:immunolocalization, topology, and functional domains J Cell Biol,1989108(6): p2241-54
    8Goliger JA, Dominant inhibition of intercellular communication by twochimeric connexins Clin Exp Pharmacol Physiol,199623(12): p1062-7
    9Goodenough DA JA, Goliger, and DL Paul, Connexins, connexons, andintercellular communication Annu Rev Biochem,199665: p475-502
    10Desplantez T, Gap junction channels and cardiac impulse propagation JMembr Biol,2007218(1-3): p13-28
    11Herve JC, The connexin turnover, an important modulating factor of thelevel of cell-to-cell junctional communication: comparison with otherintegral membrane proteins J Membr Biol,2007217(1-3): p21-33
    12Herve JC, Gap junctional channels are parts of multiprotein complexesBiochim Biophys Acta,2011
    13Desplantez T, Influence of v5/6-His tag on the properties of gap junctionchannels composed of connexin43, connexin40or connexin45J MembrBiol,2011240(3): p139-50
    14Howarth FC, Long-term effects of type2diabetes mellitus on heartrhythm in the Goto-Kakizaki rat Exp Physiol,200893(3): p362-9
    15Kanagaratnam P, Relative expression of immunolocalized connexins40and43correlates with human atrial conduction properties J Am CollCardiol,200239(1): p116-23
    16Sato T, Altered expression of connexin43contributes to thearrhythmogenic substrate during the development of heart failure incardiomyopathic hamster Am J Physiol Heart Circ Physiol,2008294(3): pH1164-73
    17Kostin IA, V DS, Blinov, I Moiseeva, The antiarrhythmic activity of thetrimecain ammonium derivative in myocardial ischemia Eksp KlinFarmakol,200366(3): p29-31
    18Kostin S, Gap junction remodeling and altered connexin43expression inthe failing human heart Mol Cell Biochem,2003242(1-2): p135-44
    19Yamada KA, Up-regulation of connexin45in heart failure J CardiovascElectrophysiol,200314(11): p1205-12
    20Kostin S, Connexin43expression and distribution in compensated anddecompensated cardiac hypertrophy in patients with aortic stenosisCardiovasc Res,200462(2): p426-36
    21Yogaratnam JZ, Can hyperbaric oxygen be used as adjunctive heart failuretherapy through the induction of endogenous heat shock proteins? AdvTher,200724(1): p106-18
    22Ruiz-Meana M, Mitochondrial connexin43as a new player in thepathophysiology of myocardial ischaemia-reperfusion injury CardiovascRes,200877(2): p325-33
    23Saffitz JE, KY Hames, S Kanno, Remodeling of gap junctions inischemic and nonischemic forms of heart disease J Membr Biol,2007218(1-3): p65-71
    24Schwanke U, No ischemic preconditioning in heterozygous connexin43-deficient mice--a further in vivo study Basic Res Cardiol,200398(3): p181-2
    25Heusch G, No loss of cardioprotection by postconditioning in connexin43-deficient mice Basic Res Cardiol,2006101(4): p354-6
    26Eckardt D, Cardiomyocyte-restricted deletion of connexin43during mousedevelopment J Mol Cell Cardiol,200641(6): p963-71
    27Verheule S, Characterization of gap junction channels in adult rabbit atrialand ventricular myocardium Circ Res,199780(5): p673-81
    28Van, Veen TA, Remodeling of gap junctions in mouse heartshypertrophied by forced retinoic acid signaling J Mol Cell Cardiol,200234(10): p1411-23
    29Bupha-Intr T, Haizlip KM, PM, Janssen, Temporal changes in expressionof connexin43after load-induced hypertrophy in vitro Am J Physiol HeartCirc Physiol,2009296(3): p H806-14
    30Peters NS, Cardiac arrhythmogenesis and the gap junction J Mol CellCardiol,199527(1): p37-44
    31Uzzaman M, Remodeling of gap junctional coupling in hypertrophiedright ventricles of rats with monocrotaline-induced pulmonaryhypertension Circ Res,200086(8): p871-8
    32Peters NS, Reduced content of connexin43gap junctions in ventricularmyocardium from hypertrophied and ischemic human hearts Circulation,
    199388(3): p864-75
    33Chou Y, Endothelial gap junctions are down-regulated by arsenic trioxideEur J Pharmacol,2007569(1-2): p29-36
    34Haussig S, Sub-chronic nicotine exposure induces intercellularcommunication failure and differential down-regulation of connexins incultured human endothelial cells Atherosclerosis,2008196(1): p210-8
    35Das S, PKCgamma, role in lens differentiation and gap junction couplingCurr Eye Res,201136(7): p620-31
    36Kimura S, Regulation of connexin phosphorylation and cell-cell couplingin trabecular meshwork cells Invest Ophthalmol Vis Sci,200041(8): p2222-8
    37Li X, QP Liao, Expression of connexin43in ovarian cancer and itsrelationship with chemoresistance Zhonghua Fu Chan Ke Za Zhi,200944(1): p50-5
    38Zhang L, Propranolol regulates cardiac transient outward potassiumchannel in rat myocardium via cAMP/PKA after short-term but not afterlong-term ischemia Naunyn Schmiedebergs Arch Pharmacol,2010382(1):p63-71
    39Yogo K, PKA implicated in the phosphorylation of Cx43induced bystimulation with FSH in rat granulosa cells J Reprod Dev,200652(3): p321-8
    40Song EK, Connexin-43hemichannels mediate cyclic ADP-ribosegeneration and its Ca2+-mobilizing activity by NAD+/cyclic ADP-ribosetransport J Biol Chem,2011286(52): p44480-90
    41Somekawa S, Enhanced functional gap junction neoformation by proteinkinase A-dependent and Epac-dependent signals downstream of cAMP incardiac myocytes Circ Res,200597(7): p655-62
    42Salameh A, Chronic regulation of the expression of the gap junctionprotein connexin43in transfected HeLa cells Naunyn Schmiedebergs ArchPharmacol,2003368(1): p33-40
    43Sagar GD,DM Larson, Carbenoxolone inhibits junctional transfer andupregulates Connexin43expression by a protein kinase A-dependentpathway J Cell Biochem,200698(6): p1543-51
    44Popp R, Dynamic modulation of interendothelial gap junctionalcommunication by11,12-epoxyeicosatrienoic acid Circ Res,200290(7): p800-6
    45Ponsioen B, Direct measurement of cyclic AMP diffusion and signalingthrough connexin43gap junctional channels Exp Cell Res,2007313(2): p415-23
    46Ogawa H, Relationship of gap junction formation to phosphorylation ofconnexin43in mouse preimplantation embryos Mol Reprod Dev,200055(4): p393-8
    47Matsumura K, Effects of cyclic AMP on the function of the cardiac gapjunction during hypoxia Exp Clin Cardiol,200611(4): p286-93
    48Li K, Reciprocal regulation between proinflammatory cytokine-inducedinducible NO synthase (iNOS) and connexin43in bladder smooth musclecells J Biol Chem,2011286(48): p41552-62
    49Kwak BR, HJ Jongsma, Regulation of cardiac gap junction channelpermeability and conductance by several phosphorylating conditions MolCell Biochem,1996157(1-2): p93-9
    50Knerr I, Stimulation of GCMa and syncytin via cAMP mediated PKAsignaling in human trophoblastic cells under normoxic and hypoxicconditions FEBS Lett,2005579(18): p3991-8
    51Hoffmann A, Nitric oxide enhances de novo formation of endothelial gapjunctions Cardiovasc Res,200360(2): p421-30
    52Gu H, Coexpression of connexins40and43enhances the pH sensitivity ofgap junctions: a model for synergistic interactions among connexins CircRes,200086(10): p E98-E103
    53Faucheux N, Gap junction communication between cells aggregated on acellulose-coated polystyrene: influence of connexin43phosphorylationBiomaterials,200425(13): p2501-6
    54Duncan JC, WH Fletcher, Alpha1Connexin (connexin43) gap junctionsand activities of cAMP-dependent protein kinase and protein kinase C indeveloping mouse heart Dev Dyn,2002223(1): p96-107
    55Bolon ML, Lipopolysaccharide reduces electrical coupling inmicrovascular endothelial cells by targeting connexin40in a tyrosine-,ERK1/2-, PKA-, and PKC-dependent manner J Cell Physiol,2007211(1):p159-66
    56Arnold JM, Cellular sublocalization of Cx43and the establishment offunctional coupling in IMR-32neuroblastoma cells Mol Carcinog,200542(3): p159-69
    57Lin H, Thyroid hormones suppress epsilon-PKC signalling, down-regulateconnexin-43and increase lethal arrhythmia susceptibility in non-diabeticand diabetic rat hearts J Physiol Pharmacol,200859(2): p271-85
    58Imanaga I, Pathological remodeling of cardiac gap junction connexin43-With special reference to arrhythmogenesis Pathophysiology,201017(2): p73-81
    59Akoyev V, Hypoxia-regulated activity of PKCepsilon in the lens InvestOphthalmol Vis Sci,200950(3): p1271-82
    60Sung PH, Impact of hyperglycemic control on left ventricular myocardiumA molecular and cellular basic study in a diabetic rat model Int Heart J,
    200950(2): p191-206
    61Solan JL, Phosphorylation at S365is a gatekeeper event that changes thestructure of Cx43and prevents down-regulation by PKC J Cell Biol,2007179(6): p1301-9
    62Rivedal E, E Leithe, Connexin43synthesis, phosphorylation, anddegradation in regulation of transient inhibition of gap junctionintercellular communication by the phorbol ester TPA in rat liver epithelialcells Exp Cell Res,2005302(2): p143-52
    63Richards TS, Protein kinase C spatially and temporally regulates gapjunctional communication during human wound repair via phosphorylationof connexin43on serine368J Cell Biol,2004167(3): p555-62
    64Park JH, A potential role of connexin43in epidermal growth factor-induced proliferation of mouse embryonic stem cells: involvement ofCa2+/PKC, p44/42and p38MAPKs pathways Cell Prolif,200841(5): p786-802
    65Pahujaa M, M Anikin GS, Goldberg, Phosphorylation of connexin43induced by Src: regulation of gap junctional communication betweentransformed cells Exp Cell Res,2007313(20): p4083-90
    66Miura T, Delta-opioid receptor activation before ischemia reduces gapjunction permeability in ischemic myocardium by PKC-epsilon-mediatedphosphorylation of connexin43Am J Physiol Heart Circ Physiol,2007293(3): p H1425-31
    67Leithe E, Recovery of gap junctional intercellular communication afterphorbol ester treatment requires proteasomal degradation of protein kinaseC Carcinogenesis,200324(7): p1239-45
    68Kardami E, PKC-dependent phosphorylation may regulate the ability ofconnexin43to inhibit DNA synthesis Cell Commun Adhes,200310(4-6):p293-7
    69Kwak, BR, et al, Differential regulation of distinct types of gap junctionchannels by similar phosphorylating conditions Mol Biol Cell,19956(12):p1707-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700