INS/地磁匹配组合导航系统技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着地磁测量技术及各相关学科的快速发展,地磁导航的综合优势日益突出。地磁匹配导航定位误差不随时间积累且具有长期稳定性,可弥补惯性导航系统(Inertial Navigation System, INS)误差随时间累积的不足,INS的短期高精度又可为地磁匹配提供位置参考,从而提高匹配效率和匹配精度。INS/地磁匹配组合定位能满足“长期、自主、实时、高精度、全天候”的导航需求,从而成为一种新型的组合导航技术。
     现有的大范围、导航用高精度磁测数据的数据源不足,针对此问题,本文在国际地磁学与高空大气物理学协会(International Association of Geomagnetism and Aeronomy, IAGA)提供的磁测数据Earth Magnetic Anomaly Grid 2 (EMAG2)基础上,提出一种插值算法对数据进行内插,以提高地磁图分辨率。空间数据内插中广泛使用的克里金法是无偏最优的,但它的“平滑效应”或“低通滤波”作用,难以获得两点间的局部细节变化和非均质特征。因此,本文将分形几何学思想引入到磁异常数据二维内插中,采用多重分形测度与克里金法相结合,提出一种多重分形测度克里金插值法。这种插值法不但能更真实地表征磁异常在几何域上的趋势变化,同时还能保持和增强磁异常的局部结构信息。
     地磁异常场是一种位场,存在大面积特征相似的部分,因此匹配时正确选择匹配区域很重要。根据磁异常具有非线性和自相似性的特点,通过定义特征指标,对某区域中18个子区域磁异常的估计精度、离散程度、单位表面起伏程度及不规则程度等进行了统计分析,在此基础上对区域适配性能做综合评价。在适配区的选择上,现有文献大多是通过多次试验,根据各区域的匹配概率和匹配误差人为划分选择标准,目前还没有通用的适配区选择方法。本文提出一种基于主成分分析的适配区选择法,可对区域适配性进行综合定量描述,使适配区的选择变得比较简单、直观、有效。
     以磁异常为特征量匹配时,磁异常值在个别局部范围内的数值差异小而导致配准率降低,针对这一问题,提出基于多重分维谱提取匹配特征量。多重分维谱通过描述磁异常的局部特征以及磁异常在其形成过程中不同层次的特征,能准确分辨磁异常相似区中数据间的差异。对于地磁匹配算法的研究,公开发表的文献中多是将地形匹配、图像处理的方法延伸或推广应用于地磁匹配导航中,并没有形成为地磁导航量身定做的匹配算法。由于地磁匹配导航可获样本少、非线性、维数高、要求全局最优等特点,本文提出一种基于支持向量机的地磁匹配算法,用支持向量机进行模式分类来实现匹配定位。考虑到磁异常表面的不规则性及自相似性,文中提出以分形几何中的自相似参数作为高斯核宽度参数。的初值,用启发式搜索共同选择。和惩罚因子C。给出了匹配算法实现的详细步骤。仿真结果表明,算法适用有效。
     对INS/地磁匹配组合定位的技术实现展开了研究。设计了组合定位滤波器。以INS的经、纬度误差等参量为状态量,以INS输出位置与地磁匹配位置之差为观测量,用滤波器估计了INS定位误差。对三个特征不同子区域的组合定位进行了仿真,结果显示地磁匹配可有效抑制INS长时间定位精度降低问题。
With the fast development of the geomagnetic measurement technology and the related studies, the comprehensive advantages of geomagnetic navigation have become increasingly prominent. The positioning errors of geomagnetic matching navigation do not accumulate over time and have long-term stability, which can compensate the error accumulated over time in inertial navigation system (INS). INS can provide high-precision reference of short-term for geomagnetic matching positioning, which can improve the efficiency and accuracy of matching. INS/geomagnetic matching integrated positioning is becoming a new navigation technology, which can satisfy "long-term, self-contained, high-precision, all-weather" navigation requirements.
     The large-scale high precision data for navigation are inadequate. Based on the geomagnetic measurement data, Earth Magnetic Anomaly Grid 2 (EMAG2), provided by International Association of Geomagnetism and Aeronomy (IAGA), a new interpolation method is proposed for improving resolution of the geomagnetic map. Kriging method widely used in spatial data interpolation is unbiased optimal. It connects the two adjoining points with a straight line or a higher-order smooth curve that leads to "smooth effect" or "low-pass filter", so it is difficult to get the details of changes and non-average features between two points. Therefore, the fractal geometry theory is introduced to the geomagnetic data interpolation. Here the Multifractal Measure Kriging (MFMK) interpolation method is proposed. MFMK combines Kriging method with multifractal measure. It can not only show the trends of geomagnetic anomaly in geometric domain, but also maintain and enhance the local information of data structure.
     Geomagnetic anomaly field is a potential field, and there are large areas with similar characteristics. Therefore, selecting the suitable-matching region(SMR) is very important. Geomagnetic anomaly data are nonlinear and self-similarity. By defining feature indexes, the estimation accuracy, scattering, undulations within unit surface, irregular degree of geomagnetic anomaly regions are analyzed for selecting the SMR, and the performance of regional matching is evaluated on this basis. There has not been a universal method for SMR selection now. It mostly depends on the matching probability and matching error of each region to division standard by man-made in the existing references. In this paper, a SMR selection method based on principal component analysis(PCA) was proposed. It can evaluate the suitability of regions quantitatively and makes the selection problem more simple, intuitive, and effective.
     When geomagnetic anomaly is chosen as the characteristic variable for matching, the changes of geomagnetic anomaly values are small in some local areas, and that will lead to low precision and accuracy. To solve this problem, multifractal dimension spectrum is introduced for the extracting characteristic variable for matching. By describing the local features of the geomagnetic anomaly and the different features of the forming process of geomagnetic anomaly, multifractal dimension spectrum can distinguish the differences between the data from the similar geomagnetic anomaly areas correctly. In most of the published research reports about the geomagnetic matching algorithms, the terrain matching or image processing methods were generally applied for geomagnetic matching navigation. There are no special geomagnetic navigation matching algorithm. In terms of the characteristics of less samples, nonlinearity, high-dimension, high global optimality of geomagnetic anomaly, a geomagnetic matching algorithm based on support vector machine is proposed for pattern classification of latitude and longitude in this paper.. As self-similarity fractal parameter H can reflect the degree of the self-similarity and irregularity of geomagnetic anomaly surface, H was used as the initial value of Gaussian kernel width s. To improve search efficiency and real-time of algorithm, s and penalty factor C were selected together by heuristic search. The steps of the matching algorithm is given. Simulation results show that the algorithm performs effectively.
     The integrated technology of INS and geomagnetic matching is also studied. The integrated positioning filter is designed. Error of longitude and latitude and other parameters are set as state variables, and the difference of INS output position and geomagnetic location are set as observables so the INS position error can be estimated by filter. The results of integrated positioning simulation on regions of three different characteristics show that INS/geomagnetic matching integrated positioning can inhibit the reducing of INS positioning accuracy for a long time.
引文
[1]孙枫,袁赣南,张晓红.组合导航系统[M]:哈尔滨:哈尔滨工程大学出版社,1996
    [2]张树侠,孙静.捷联式惯性导航系统[M]:北京:国防工业出版社,1992
    [3]秦永元.惯性导航[M]:北京:科学出版社,2006
    [4]房建成,万德钧.GPS组合导航系统在车辆导航中的应用[J].东南大学学报.1996,26(3):96-102页
    [5]陈晶,袁书明.GPS的发展及在精确制导武器中的应用[J].全球定位系统.2005,30(1):22-27页
    [6]李艳华,房建成,贾志凯.INS/CNS/GPS组合导航系统仿真研究[J].中国惯性技术学报.2002,10(6):6-11页
    [7]刘美生.全球定位系统及其应用综述(一)—导航定位技术发展的沿革[J].中国测试技术.2006,32(5):1-7页
    [8]刘大军,陈宇.捷联惯导+G/G接收机+星光组合导航应用研究[J].现代防御技术.2003,31(6):38-40页
    [9]郭有光,钟斌,边少锋.地球重力场确定与重力场匹配导航[J].海洋测绘.2003,23(5):61-64页
    [10]冯浩楠,杨照华,房建成.地磁辅助导航系统发展及应用研究[J].仪器仪表学报.2008,29(4):640-643页
    [11]徐文耀.地磁学[M]:地震出版社,2003
    [12]彭富清.地磁模型与地磁导航[J].海洋测绘.2006,26(02):73-75页
    [13]张纯学.地磁导航技术及其应用[J].飞航导弹.2004(02)
    [14]王建琦,曹喜滨.利用地磁场测量的小卫星自主导航设计[J].航天控制.2002,20(3):39-43页
    [15]宋时轮,萧克.中国军事百科全书[M]:北京:军事科学出版社,1997
    [16]刘洪学扬诺夫斯基(苏)著,周兆秀译.地磁学[M]:北京:地质出版社,1982
    [17]M. N. Filipski, E. J. Abdullah. Nanosatellite navigation with the WMM2005 geomagnetic field model[J]. Turkish Journal of Engineering and Environmental Sciences.2006,30(1):43-55P
    [18]J. B. Phillips. Magnetic Navigation[J]. Journal of Theoretical Biology.1996, 180(4):309-319P
    [19]中国科技大学地球物理教研室北京大学.地磁学教程[M]:地震出版社,1986
    [20]谢仕民,李邦清,刘峰,et al.地磁匹配导航关键技术浅析[J].飞航导弹.2008(2):35-37页
    [21]蔡兆云,魏海平,任治新.水下地磁导航技术研究综述[J].国防科技.2007,28-29(03)
    [22]高金田,安振昌,顾左文,et al.地磁正常场的选取与地磁异常场的计算[J].地球物理学报.2005,48(1):56-62页
    [23]李豫泽,石志勇,杨云涛.地磁辅助惯性导航匹配算法研究[J].兵工自动化.2008,27(6):25-26页
    [24]P. PAL F. Martel, M. Psiaki,. Three-axis attitude determination via Kalman filtering of magnetometer data[J]. Journal of Guidance, Control, and Dynamics.1990, 13(3):506-514P
    [25]J. Deutschmann, I. Bar-Itzhack. Attitude and trajectory estimation using Earth magnetic field data. AIAAP AAS Astrodynamics Conference, San Diego,1996
    [26]J. Deutschmann, M. Greenbelt, R. Harman, et al. An innovative method for low cost, autonomous navigation for low Earth orbit satellites. P P Proc. of the 1998 AIAAP AAS Astrodynamics Specialist Conf., Boston Massachusetts,1998
    [27]J. K. Thienel, R. R. Harman, I. Y. Bar-Itzhack, et al. Results of the Magnetometer Navigation(MAGNAV) Inflight Experiment. AIAAP AAS Astrodynamics Specialist Conference and Exhibit, Providence,Rhode Island,2004
    [28]左文辑,宋福香.微小卫星磁测自主导航方法[J].宇航学报.2000,21(2):100-104页
    [29]王淑一,杨旭,杨涤,et al.近地卫星磁测自主导航算法研究[J].宇航学报.2003,24(6):634-637+660页
    [30]周军,葛致磊,施桂国,et al.地磁导航发展与关键技术[J].宇航学报.2008,29(05):1467-1472页
    [31]刘颖,吴美平,胡小平,et al.基于等值线约束的地磁匹配方法[J].空间科学学报.2007,27(06):505-511页
    [32]Felix Goldenberg. Geomagnetic navigation beyond the magnetic compass, San Diego, CA, United States,2006:Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States:684-694P
    [33]C. Tyren. Magnetic anomalies as a reference for ground-speed and map-matching navigation[J]. Journal of Navigation.1982,35(2):242-254P
    [34]C Tyren, KB NAV-MATE, C Lund. Magnetic terrain navigation. Proceedings of the 1987 5th Int.Symp.on Unmanned Untethered Submersible Technology, 1987:245-256P
    [35]D. G. Polvani. Magnetic marker position fixing system for underwater vehicles, US Patent 5357437[P].1994-10-18
    [36]乔玉坤,王仕成,张琪.地磁匹配制导技术应用于导弹武器系统的制约因素分析[J].飞航导弹.2006(8):39-41页
    [37]葛致磊;周军;刘莹莹;施桂国;高智刚.地磁场线图匹配自主导航方法,200910021806.8[P].2009-9-2
    [38]房建成,冯浩楠,黄学功,韩晓英.一种基于匹配度的地磁辅助导航方法,200810119969.5[P].2009-1-28
    [39]房建成,冯浩楠,杨照华,黄学功.一种基于地磁熵的匹配区选择方法:中国,200810119964.2[P].2009.2.4
    [40]房建成,冯浩楠,韩晓英,黄学功.一种基于多尺度估计的地磁辅助导航算法,200810119963.8[P].2009-1-28
    [41]杨云涛,石志勇,关贞珍,et al.地磁场在导航定位系统中的应用[J].中国惯性技术学报.2007,15(06):686-692页
    [42]乔玉坤,王仕成,张琪.地磁匹配特征量的选择[J].地震地磁观测与研究.2007,28(01):42-47页
    [43]晏登洋,任建新,宋永军.惯性/地磁组合导航技术研究[J].机械与电子.2007(01):19-22页
    [44]王仕成,王哲,张金生,et al.总磁场强度梯度模作为匹配特征量的基准图制备技术[J].系统工程与电子技术.2009,31(4):881-885页
    [45]A. Schuster, H. Lamb. The diurnal variation of terrestrial magnetism[J]. Philosophical Transactions of the Royal Society of London. A.1889,180:467-518P
    [46]M. D. Altschuler, G. Newkirk. Magnetic fields and the structure of the solar corona[J]. Solar Physics.1969,9(1):131-149P
    [47]S. Macmillan, S. Maus. International Geomagnetic Reference Field-The tenth generation[J]. Earth, Planets, and Space.2005,57(12):1135-1140P
    [48]NGDC. WMM2010 Report[CA],2010
    [49]白春华,徐文耀,康国发.地球主磁场模型[J].地球物理学进展.2008,23(4):1045-1057页
    [50]S. Maus, H. Luhr, G. Balasis, et al. Introducing pomme, the potsdam magnetic model of the earth[J]. Earth Observation With CHAMP.2005:293-298P
    [51]S. Maus, S. McLean, D. Dater, et al. NGDC/GFZ candidate models for the 10 th generation International Geomagnetic Reference Field[J]. Earth, Planets, and Space.2005,57(12):1151-1156P
    [52]S Maus, M Rother, C Stolle, et al. Third generation of the Potsdam Magnetic Model of the Earth (POMME)[J]. Geochem. Geophys. Geosyst.2006,7(7):1-9P
    [53]T. J. Sabaka, N. Olsen, R. A. Langel. A comprehensive model of the near-Earth magnetic field:Phase 3[J]. Geophys. J. Int.2002,151(1):32-68P
    [54]徐文耀.地磁场的三维巡测和综合建模[J].地球物理学进展.2007,22(4):1035-1039页
    [55]T. J. Sabaka, R. T. Baldwin. Modeling the Sq magnetic field from POGO and Magsat satellite and contemporaneous hourly observatory data[CA],1993
    [56]R. A. Langel, T. J. Sabaka, R. T. Baldwin, et al. The near-Earth magnetic field from magnetospheric and quiet-day ionospheric sources and how it is modeled[J]. Physics of the earth and planetary interiors.1996,98(3-4):235-267P
    [57]T. J. Sabaka, N. Olsen, M. E. Purucker. Extending comprehensive models of the Earth's magnetic field with Orsted and CHAMP data[J]. Geophysical Journal International.2004,159(2):521-547P
    [58]安振昌.中国地磁测量、地磁图和地磁场模型的回顾[J].地球物理学报.2002,45(增刊):189—196页
    [59]安振昌.1950-2000年中国地磁测量地磁图与地磁研究[J].地球物理学进展.1999,14(04):75—88页
    [60]王亶文.地磁场模型研究[J].国际地震动态.2001(04):1-4页
    [61]徐文耀,白春华,康国发.地壳磁异常的全球模型[J].地球物理学进展.2008,23(3):641-651页
    [62]N. Olsen, R. Holme, G. Hulot, et al.(?)rsted Initial Field Model[J]. Geophysical Research Letters.2000,27(22):3607-3610P
    [63]S. Maus, R.H.Tyler, H. Luhr. Ocean tidal dynamo identified in CHAMP satellite magnetic data. American Geophysical Union, Fall Meeting 2002, abstract 2002:1017P
    [64]S. Maus, M. Rother, C. Stolle, et al. Third generation of the Potsdam Magnetic Model of the Earth (POMME)[J]. Geochem. Geophys. Geosyst.2006,7(7)
    [65]S. Maus, H. Luhr, M. Rother, et al. Fifth-generation lithospheric magnetic field model from CHAMP satellite measurements[J]. Geochem. Geophys. Geosyst.2007, 8(5):1-8P
    [66]S. Maus, Y. Fan, C. Manoj, et al. Sixth generation lithospheric magnetic field model, MF6, from CHAMP satellite magnetic measurements. American Geophysical Union, Fall Meeting 2007, abstract,2007:1599P
    [67]S. Maus, M. Rother, K. Hemant, et al. Earth's lithospheric magnetic field determined to spherical harmonic degree 90 from CHAMP satellite measurements[J]. Geophysical Journal International.2006,164(2):319-330P
    [68]S. Maus, D. Fairhead, K. Hemant, et al. A near-surface geomagnetic field model to spherical harmonic degree 720. American Geophysical Union, Fall Meeting,abstract,2006
    [69]S. Maus. The National Geophysical Data Center's ellipsoidal harmonic model of the Earth's internal magnetic field to degree and order 720. American Geophysical Union, Fall Meeting, abstract,2009
    [70]S. Maus, T. Sazonova, K. Hemant, et al. National geophysical data center candidate for the world digital magnetic anomaly map[J]. Geochem. Geophys. Geosyst.2007, 8(6):1-10P
    [71]张昌达.世界磁异常图[J].物探与化探.2008,32(6):581-585页
    [72]郭才发,胡正东,张士峰,et al.地磁导航综述[J].宇航学报.2009,30(4):1314-1319 贝
    [73]张万清李素敏.地磁场资源在匹配制导中的应用研究[J].制导与引信.2004,25(03):19-21页
    [74]林沂,晏磊,高伟,et al.辅助导航二维标量场模拟生成的组合改进算法[J].应用基础与工程科学学报.2008,16(4):472-477页
    [75]王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999
    [76]孙洪泉.地质统计学及其应用[M]:徐州:中国矿业大学出版杜,1990
    [77]侯景儒,胡平昭,黄竞先,et al.实用地质统计学[M].北京:地质出版社,1998
    [78]D. G. Krige. A statistical approach to some basic mine evaluation problems on the Witwateround[J]. J Chim Min Soc South-Africa.1951,52:119-139P
    [79]G. Matheron. Principles of geostatistics[J]. Economic geology.1963, 58(8):1246-1266P
    [80]刘兆平,杨进,武炜.地球物理数据网格化方法的选取[J].物探与化探.2010,34(1):93-97页
    [81]杨功流,张桂敏,李士心.泛克里金插值法在地磁图中的应用[J].中国惯性技术学报.2008,16(2):162-166页
    [82]谢和平,薛秀谦.分形应用中的数学基础与方法[M].北京:科学出版社,1997
    [83]李水根.分形[M]:北京:高等教育出版社,2004
    [84]M. F. Barnsley. Fractal functions and interpolation [J]. Constructive Approximation.1986,16(2):303-329P
    [85]B. B. Mandelbrot. The fractal geometry of nature[M]. New York:Wh Freeman,1982
    [86]陈颞,陈凌.分形几何学[M]:北京:地震出版社,2005
    [87]张顺燕.数学的源与流[M]:北京:高等教育出版社,2005
    [88]赵健,雷蕾,蒲小勤.分形理论及其在信号处理中的应用[M]:北京:清华大学出版社,2008
    [89]张济忠.分形[M].北京:清华大学出版社,1995
    [90]A. Spector, F. S. Grant. Statistical models for interpreting aeromagnetic data[J]. Geophysics.1970,35:293-302P
    [91]B. B. Mandelbrot. An introduction to multifractal distribution functions[J]. Fluctuations and Pattern Formation, Stanley H.E., Ostrowsky N.(Eds.), Kluwer Academic, Dordrecht, The Netherlands.1988
    [92]J. Feder. Fractals[M]:Plenum Press, New York,1988
    [93]K. J. Falconer. Fractal Geometry:Mathematical Foundations and Applications. [M]:Wiley, Chichester,1990
    [94]杨新李俊,朱菊华,王建琦,邓雁萍,李介谷.一种选择适配区的算法[J].数据采集与处理.2000,15(4):495-499页
    [95]王学民.应用多元分析[M].第2版.上海:上海财经大学出版社,2003
    [96]向东进,李宏伟,刘小雅.实用多元统计分析[M]:武汉:中国地质大学出版社,2005
    [97]肯德尔.M.多元分析[M]:北京:科学出版杜,1983
    [98]陈述云,张崇甫.对多指标综合评价的主成分分析方法的改进[J].统计研究.1995(1):35-39页
    [99]A. P. Pentland. Fractal-based description of natural scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1984,6(6):661-674P
    [100]邹宁,柳健.基于分形的地形分类技术及其在导航中的应用[J].华中理工大学学报.1999,27(5):3-5页
    [101]谢仕民,李邦清,李文耀,et al.地磁匹配技术及其基本匹配算法仿真研究[J].航天控制.2008,26(05):55-58,69页
    [102]Y. Chen, G. Medioni. Object modeling by registration of multiple range images, 1991:2724-2729P
    [103]P. J. Besl, N. D. McKay. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1992,14(2):239-256P
    [104]PJ Besl, ND McKay. A method for registration of 3-D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.1992,14(2):239-256P
    [105]朱海,王顺杰,蔡鹏.基于iccp的水下直线段地磁匹配[J].中国惯性技术学报.2009,17(02):153-155页
    [106]任治新,罗诗途,吴美平,et al.基于改进icp算法的地磁图匹配技术[J].计算机应用.2008,28(S1):351-354页
    [107]李豫泽,石志勇,杨云涛,et al.基于iccp算法的地磁匹配定位方法[J].现代电子技术.2008(20):122-124,127页
    [108]孙大为,王仕成.基于等值线匹配的巡航导弹地磁匹配方法研究[J].飞航导弹.2009(09):53-55页
    [109]杨功流,张桂敏,李士心,et al.基于电子海图显示信息系统的惯性/地磁组合导航[J].中国惯性技术学报.2007,15(05):555-558页
    [110]吴美平,刘颖,胡小平.Icp算法在地磁辅助导航中的应用[J].航天控制.2007,25(06):17-21,26页
    [111]任治新,杨功流,李士心.基于向量搜索的地磁导航匹配算法[J].中国惯性技术学报.2008,16(4):424-427页
    [112]刘飞,周贤高,杨晔,et al.相关地磁匹配定位技术[J].中国惯性技术学报.2007,15(01):59-62页
    [113]VN Vapnik. The nature of statistical learning theory[M]:Springer Verlag,1999
    [114]张学工.关于统计学习理论与支持向量机[J].自动化学报.2000,26(1):32-42页
    [115]周绮凤.基于支持向量机的若干分类问题研究[D].厦门大学.2007
    [116]V. N. Vapnik. The nature of statistical learning theory. Statistics for Engineering and Information Science[M].2nd edition. New York::Springer,1999
    [117]唐发明.基于统计学习理论的支持向量机算法研究[D].华中科技大学.2005
    [118]V. N. Vapnic,张学工译.统计学习理论的本质[M]:北京:清华大学出版社,2000
    [119]V. N. Vapnik, A. Lerner. Pattern recognition using generalized portrait method[J]. Automation and Remote Control.1963,24(6):774-780P
    [120]V. N. Vapnik, A. Chervonenkis. A note on one class of perceptions [J]. Automation and Remote Control.1964,25
    [121]V. N. Vapnik. Statistical learning theory. [M]:Wiley, New York,1998
    [122]V.Vapnik. The nature of statistical learning theory[M]. New York:Springer,1995
    [123]张学工.统计学习理论的本质[M]:北京:清华大学出版社,2000
    [124]M. P. Dubuisson, R. C. Dubes. Efficacy of fractal features in segmenting images of natural textures[J]. Pattern Recognition Letters.1994,15(4):419-431P
    [125]T. Kasparis, N. S. Tzannes, M. Bassiouni, et al. Texture description using fractal and energy features[J]. Computers & Electrical Engineering.1995,21(1):21-32P
    [126]S. Knerr, L. Personnaz, G. Dreyfus, et al. Single-layer learning revisited:Astepwise procedure for building and training a neural network[J]. Optimization Methods and Software.1990,1:23-34P
    [127]U. H. G. KreBel. Pairwise classification and support vector machines,1999:MIT Press Cambridge, MA:255-268P
    [128]J. Friedman. Another approach to polychotomous classification[CA]. Department of Statistics, Stanford University,1996
    [129]许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策.2004,19(005):481-484页
    [130]J. Mercer. Functions of positive and negative type, and their connection with the theory of integral equations[J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character.1909, 209:415-446P
    [131]N. Aronszajn. Theory of reproducing kernels[J]. Transactions of the American mathematical society.1950,68(3):337-404P
    [132]T. Poggio. On optimal nonlinear associative recall [J]. Biological Cybernetics.1975, 19(4):201-209P
    [133]T. Poggio, F. Girosi, C. MIT. Networks for approximation and learning[J]. Proceedings of the IEEE.1990,78(9):1481-1497P
    [134]N. Cristianini, J. Shawe-Taylor. An introduction to support Vector Machines:and other kernel-based learning methods [M]:Cambridge Univ Pr,2000
    [135]V. N. Vapnik. Universal learning technology:Support vector machines[J]. NEC Journal of Advanced Technology.2005,2(2):137-144P
    [136]S. S. Keerthi, C. J. Lin. Asymptotic behaviors of support vector machines with Gaussian kernel[J]. Neural computation.2003,15(7):1667-1689P
    [137]R. Debnath, H. Takahashi. Kernel selection for the support vector machine[J]. IEICE TRANSACTIONS on Information and Systems.2004,87(12):2903-2904P
    [138]李盼池,许少华.支持向量机在模式识别中的核函数特性分析[J].计算机工程与设计.2005,26(2):302-304页
    [139]郑小霞,钱锋.高斯核支持向量机分类和模型参数选择研究[J].计算机工程与应用.2006,42(1):77-79页
    [140]K. Duan, S. S. Keerthi, A. N. Poo. Evaluation of simple performance measures for tuning SVM hyperparameters[J]. Neurocomputing.2003,51:41-59P
    [141]常群.支持向量机的核方法及其模型选择[D].哈尔滨工业大学.2007
    [142]O. Chapelle, V. N. Vapnik. Model selection for support vector machines[J]. Advances in neural information processing systems.1999,12:230-236P
    [143]Chih-Chung Chang Chih-Wei Hsu, and Chih-Jen Lin. A practical guide to support vector classification[CA]. Citeseer,2003
    [144]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,1998
    [145]R. E. Kalman. A new approach to linear filtering and prediction problems[J]. Journal of Basic Engineering.1960,82(1):35-45P
    [146]马云峰.Msins/Gps组合导航系统及其数据融合技术研究[D].东南大学.2006
    [147]M. Athans, R. Wishner, A. Bertolini. Suboptimal state estimation for continuous-time nonlinear systems from discrete noisy measurements [J]. Automatic Control, IEEE Transactions on.1968,13(5):504-514P
    [148]H. Tanizaki, R. S. Mariano. Nonlinear filters based on taylor series expansions [J]. Communications in Statistics-Theory and Methods.1996, 25(6):1261-1282P
    [149]RE Kalman, RS Bucy. New results in linear filtering and prediction problems[J]. J. Basic Eng.Ser.D.1961,83:95-108P
    [150]Y Sunahara, K Yamashita. An approximate method of state estimation for non-linear dynamical systems with state-dependent noise[J]. International Journal of Control.1970,11(6):957-972P
    [151]PS Maybeck, RL Jensen, DA Harnly. An Adaptive Extended Kalman Filter for Target Image Tracking[J]. Aerospace and Electronic Systems, IEEE Transactions on.1981:173-180P
    [152]Q Meng, Y Sun, Z Cao. Adaptive extended Kalman filter (AEKF)-based mobile robot localization using sonar[J]. Robotica.2001,18(05):459-473P
    [153]Y Iiguni, H Sakai, H Tokumaru. A real-time learning algorithm for a multilayered neural networkbased on the extended Kalman filter[J]. Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on].1992,40(4):959-966P
    [154]G Chen, J Wang, LS Shieh. Interval Kalman filtering[J]. Aerospace and Electronic Systems, IEEE Transactions on.1997,33(1):250-259P
    [155]I Ashokaraj, A Tsourdos, P Silson, et al. Sensor based robot localisation and navigation:using interval analysis and extended Kalman filter,2004
    [156]SJ Julier, JK Uhlmann. A new extension of the Kalman filter to nonlinear systems, 1997
    [157]SJ Julier, JK Uhlmann, I Ind, et al. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE.2004,92(3):401-422P
    [158]SJ Julier. The scaled unscented transformation,2002
    [159]S Julier, J Uhlmann, HF Durrant-Whyte, et al. A new method for the nonlinear transformation of means andcovariances in filters and estimators[J]. Automatic Control, IEEE Transactions on.2000,45(3):477-482P
    [160]JJ La Viola Jr. A comparison of unscented and extended Kalman filtering for estimating quaternion motion,2003
    [161]Qi Wang, Xiaosu Xu. Application of unscented Kalman filter to novel terrain passive integrated navigation system[J]. Journal of Southeast University (English Edition).2007,23(4):545-549P
    [162]James Fisher, S. R. Vadali. Gyroless attitude control of multibody satellites using an unscented Kalman filter[J]. Journal of Guidance, Control, and Dynamics.2008, 31(1):245-251P
    [163]Stefano Mariani, Aldo Ghisi. Unscented Kalman filtering for nonlinear structural dynamics[J]. Nonlinear Dynamics.2007,49(1-2):131-150P
    [164]黄琳.非线性滤波理论在航天器姿态确定中的应用[D].哈尔滨工业大学.2007
    [165]李涛.非线性滤波方法在导航系统中的应用研究[D].国防科学技术大学.2003
    [166]宋迎春.动态定位中的卡尔曼滤波研究[D].中南大学.2006
    [167]刘星,赵黎平,赵光恒.UKF与EKF在卫星姿态估计应用中的比较[J].计算机仿真.2008,25(3):48-51页
    [168]徐慧娟,吴美平,罗兵.EKF和UKF在INS/GPS组合导航申的应用分析[J].航 天控制.2006,24(6):7-10页
    [169]赵思浩,陆明泉,冯振明.EKF与UKF在紧耦合组合导航系统中的应用[J].系统工程与电子技术.2009(010):2450-2454页
    [170]EA Wan, R Van Der Merwe. The unscented Kalman filter for nonlinear estimation. Adaptive Systems for Signal Processing, Communications, and Control Symposium, Lake Louise, Alta,2000:Citeseer:153-158P
    [171]R Van Der Merwe, E Wan. The square-root unscented Kalman filter for state and parameter-estimation. Acoustics, Speech, and Signal Processing,2001. Proceedings, Salt Lake City, UT,2001:Citeseer:3461-3464P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700