离子注入非线性光学晶体光波导折射率改变模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
集成光学是现代信息技术中的重要研究内容之一。而光波导器件则是集成光学系统的基础和核心。目前,常用的形成光波导的方法有金属扩散法、离子交换法、薄膜生长技术法和离子注入法。其中,离子注入技术能够精确控制光波导的深度和光波导的折射率,能够保留晶体的原始特性,这使得离子注入技术成为一种有效的光波导制作方法。离子注入光波导的折射率分布规律不但与离子注入种类、能量、剂量等参数有关,还与注入晶体的特性有关,形成的机理较为复杂,目前,主要通过实验的方法来确定离子注入后的折射率分布规律,这使得离子注入光波导技术具有较大的随机性、不确定性,限制了该项技术的进一步应用。
     因此,研究离子注入晶体后的折射率变化模型具有重要意义。
     本论文研究的主要内容与结果如下:
     利用数值计算的方法研究了离子注入光波导棱镜耦合暗模特性。
     根据光在棱镜耦合系统中的传播特性,从光的Maxwell波动方程出发,得到了光在棱镜耦合法测量离子注入光波导中传播的场幅值关系,利用转移矩阵加以表示,得到了光在棱镜中的反射率表达式。给出符合实际情况的棱镜耦合系统参数,并假设波导折射率分布后,根据光在棱镜中的反射率表达式,利用数值计算的方法研究了不同折射率分布条件下的暗模特性曲线。研究结果表明,在暗模特性曲线中,暗模的特性由暗模幅值和暗模峰的尖锐程度来确描述,根据暗模幅值的大小和暗模峰的尖锐程度能够判断暗模所对应的波导模式是导模还是辐射模,真正的、限制良好的导模,其暗模幅值很大,同时暗模峰也十分尖锐,称这样的暗模具有很好的暗模特性。第0级暗模有效折射率与波导中波导层的表面折射率相关,其大小的变化趋势能够反映波导层表面折射率大小的变化趋势,当暗模特性很好时,能够利用第0级暗模有效折射率来近似波导层的表面折射率,但当暗模特性较差时,其有效折射率与表面折射率之间的误差较大;相邻暗模之间的横向间距与波导层的厚度有关,横向间距越小说明波导层厚度越大。衬底的变化对漏模的暗模特性影响较大。这对于利用棱镜耦合暗模谱分析离子注入光波导的性质具有指导意义。
     建立了离子注入铌酸锂光波导折射率改变模型。
     总结了离子注入LiNbO3晶体后关于应变测量的实验结果,提出了离子注入晶体后仅存在沿着注入方向的正应变而其它应变值为零、应变与晶格损伤率之间满足线性关系的假设,以此为基础,将弹光效应考虑在内,建立了以晶格损伤率为自变量,包含摩尔极化率摩尔体积、自发极化和弹光效应的折射率变化综合模型。利用已经报道的实验结果,对理论模型进行了验证,结果表明该模型与其它模型相比更能得到实验结果的支持。根据理论模型,研究了损伤率从0增大1时的折射率变化规律,研究了摩尔极化率摩尔体积、自发极化和弹光效应对折射率变化量的影响。结果表明,离子注入过程中,晶格损伤率与注入剂量之间满足Avrami公式,退火过程中,晶体损伤率与注入剂量之间满足线性关系,即离子注入过程中的晶格损伤动力学与退火处理中的晶格恢复动力学不同。随着损伤率的增加,寻常光折射率是单调下降的,异常光折射率先增加后减小。当离子注入不同切向的晶体时,在相同的损伤率处,折射率值不相同,即折射率变化规律还与离子注入方向有关。当损伤率由0增加到1时,摩尔极化率摩尔体积引起的折射率改变量是线性增加的,自发极化引起的折射率改变量是单调下降的,而弹光效应引起的折射率改变量先增加后减小,在较低损伤区域和较高损伤区域其作用可以忽略,在损伤率为50%时,其作用不可忽略,尤其是对于x切或y切晶体的异常光折射率改变量和z切的寻常光改变量,其引起的折射率改变量甚至占总改变量的15%左右。弹光效应是折射率变化规律与离子注入方向有关的根本原因。
     研究了高剂量低能量He离子注入KTP晶体后的相关特性。
     研究了300keV的He离子在4×1016、6×1016、8×1016、10×1016ions/cm2的剂量下注入到z切的KTP样品后的棱镜耦合暗模特性以及背散射/沟道(RBS/C)谱特性。研究了150keV的He离子在8×1016的剂量下注入到KTP样品在不同退火温度时的棱镜耦合暗模特性及背散射/沟道(RBS/C)谱特性。研究结果表明,在相同注入能量下,随着注入剂量的增加,样品中的暗模特性越来越差,样品中第0级暗模的有效折射率逐渐减小;在相同注入剂量下,nx的暗模特性最差,ny的次之,nz的最好。根据暗模特性与折射率之间的对应关系可知,随着注入剂量的增加,波导层表面折射率逐渐减小。在相同注入剂量下,nx的值最小,ny的次之,nz的最大。300keV的He离子注入KTP后会在晶体中形成非晶层,随着剂量的增加,样品表面损伤是逐渐增加的。150keV、8×1016的He离子注入KTP后,注入剂量达到饱和,其各向同性折射率值约为1.74。150keV的He离子注入KTP经过退火处理后,随着退火温度的升高表面有效折射率增加,当退火温度到400℃后,nx和ny逐渐增加到了未注入KTP晶体的折射率,而nz却相差很远,但是其趋势外延结果表明,当温度达到800℃时nz的值非常接近未注入KTP晶体的折射率。这与离子注入过程中相同剂量下的nx、ny、nz折射率的大小关系不同,表明离子注入过程的折射率变化规律与退火过程中的规律不同。RBS/C谱表明,经过退火处理后样品晶格得到稍微的恢复,未能消除非晶层。同时,研究了上述样品的退火后的表面气泡聚集情况。300keV、8×1016ions/cm2的He离子注入样品在400℃的退火温度退火1小时后,样品表面形成稀疏的、最大直径为10μm的He2气泡,再退火后气泡消失。150keV、8×1016ions/cm2的He离子注入的样品退火温度达到400℃后出现了气泡集聚,但仅局限在少数几个地方,最大直径约为30μm,而且比300keV样品的密集。离子其它剂量和退火温度下未见气泡集聚,在温度超过800℃后晶体出现部分析出物,超过900℃后晶体部分分解。因此,在z切KTP中,低于8×1016ions/cm2的He离子注入不能形成有效的He2气泡集聚。这对于晶体离子切割(CIS)技术应用于KTP具有重要的借鉴意义。
     建立了离子注入磷酸钛氧钾光波导折射率改变模型。
     以离子注入LiNbO3晶体后的应变分布假设为基础,建立了以晶格损伤率为自变量的离子注入KTP晶体后的折射率变化模型,该模型包含摩尔极化率摩尔体积、自发极化和弹光效应对折射率改变的影响。利用最小量的一阶近似展开,研究了摩尔极化率摩尔体积、自发极化和弹光效应对折射率改变量的影响,结果表明三个因素对折射率的作用与离子注入LiNbO3晶体后折射率改变模型的相同。根据300keV不同注入剂量样品背散射/沟道(RBS/C)谱得到了损伤提取曲线,估算了样品表面损伤率。根据300keV不同注入剂量下的棱镜耦合暗模特性曲线,得到了样品的表面有效折射率。将表面损伤率带入模型公式,计算得到了理论表面折射率,结果表明,在一定的范围内理论表面折射率与实验表面折射率相符合的较好。同时分析了其中可能的误差因素。离子注入LiNbO3晶体折射率改变模型,与离子注入KTP晶体的折射率改变模型具有相同的形式,只是模型参数不同,这说明当确定了模型参数后这种模型能够应用所有的光学晶体,这对于离子注入光波导的进一步应有具有重要意义。根据该模型,利用背散射/沟道(RBS/C)谱得到的损伤提取曲线,研究了300keV不同剂量注入下的折射率深度分布规律,这种分布曲线不同与反射率(RCM)计算法得到曲线,是一种真实的分布曲线。结果表明:在相同的注入剂量下,随着注入深度的增加,折射率nx、ny、nz的值逐渐减小,均在0.9gm处减小到了各向同性值1.74,形成了光学位垒,在nx、ny、nz形成的光波导结构中,nz中最容易形成有效的光波导结构。对于同一种折射率,如nx(ny或nz或),随着注入剂量的增加样品表面的折射率逐渐减小,波导层的有效厚度逐渐减小。这与棱镜耦合暗模特性曲线所反映的规律一致。同时分析了离子注入不同切向晶体后折射率的分布规律,结果表明:随着损伤率的增加,在x、y和z切KTP晶体中折射率均是减小的,其中,ny、n(?)是单调下降的,nx在x和y切KTP晶体中存在下降饱和区域,nx、nv的变化率比nz的变化率小很多。
Integrated optics is a hot topic of the modern information technology. The optical waveguide is the foundation and core of the integrated optical system. At present, there are several conventional techniques for fabricating optical waveguides, including metal diffusion, ion exchange, epitaxial grouth and ion implantation. Among them, ion implantation is an available method to fabricate optical waveguide. The structure of waveguide can be modulated by varying implantation parameters due to accurate control of both the depth of barrier beneath the surface and the refractive indices of the materials. Implantation shows advantages in waveguide fabrication also because the crystal properties in waveguide can be retained. Different from the waveguides formed by other methods, refractive index profile in implant-waveguide is more complicated and shows intimate dependence on the implantation parameters, such as ion species, energy, dose of implanted ions and the crystallographic orientation of crystal. At present, experiment is the main method to determine the refractive index profile in implant-waveguide. This makes the ion implantation as a method of fabricating waveguides, be random and uncertain, thus seriously limits its application.
     The investigation of the mechanism is needed and valuable for both research and applications of ion-implanted waveguide.
     The main reseach contents and results in this paper are as follows:
     The dark mode properties of ion-implantated waveguide are studied using numerical method.
     According to the characteristics of light propagation in prism coupling system, the amplitude relationship of electromagnetic field is obtained from the Maxwell wave equation. The reflectivity expression is also obtained based on the the amplitude relationship expressed by transfer matrix.The dark mode spectrum from the different refractive index distribution in waveguide has been studied using numerical method when the parameters of prism coupling system and the refractive index profile are assumed according to the reflectivity expression in prism coupling system. The results show that the charactristic of dark modes can be described by the amplitude and the sharpness of peak in each mode, and the transmission properties of guide-mode can be determined accordingly. For example, a real and well confined guide-mode is always corresponding to a measured dip with large amplitude and good sharpness. The effective refractive index of the zeroth dark mode is correspongding to the surface refractive index of waveguide, the change of effective index can also represente the change of the surface refractive index in waveguide. The effective refractive index of the zeroth dark mode can be approximated to the surface refractive index of the waveguide when the dark mode characteristic is very good, but there will have a larger error between the effective refractive index of the zeroth dark mode and the surface refractive index of the waveguide when the dark mode characteristic is bad. The lateral spacing between the adjacent dark modes is related to the thickness of waveguide layer, the smaller the lateral spacing, the bigger the thickness of waveguide layer. Substrate change has a great effect on the characteristic of the leak dark mode. This result is instructive for the analysis of ion-implanted waveguide based on the measured dark model spectrum using prism coupling.
     The theoretical model of refractive index in ion implanted LiNbO3waveguides is established.
     According to the measurement results of train induced by ion implantation in LiNbO3crystal, it is assumed that there only has the normal strain along the ion implanted direction and has a linear relation between the strain and the lattice damage ration. A theoretical model is presented to understand the respective contributions of spontaneous polarization, molar polarization and molar volume, and photoelastic effect to the refractive index changes in ion implanted LiNbO3crystal. Compared to previous work, our model yields a better agreement with the measured refractive index profiles in ion implanted LiNbO3crystal. According to the model, the refractive index change during the damage ratio increasing from0tol is caculated and the contributions of the spontaneous polarization, the molar polarization and molar volume in modifying the refractive index in ion implanted LiNbO3crystal are also discussed. The results show that the relationship between lattice damage rate and dose is coincided well with the Avrami formula during ion implantated process. A linear relationship between damage ratio and dose during annealing process is obtained. The result ahows that the lattice damage dynamics during ion implantated process is different from the lattice repairing dynamics dur annealing process. The ordinary index continually decreases with the lattice damage ratio. As for the extraordinary index, it first increases and then decreases with the damage ratio. The change of refractive index is different even at a same lattice damage ratio for the crystal with different crystal orientations, it means that the refractive index varies depending on the direction.of ion implantion. When damage ratio varies from0to1, the refractive-index change related to molar polarization and molar volume increases and that caused by spontaneous polarization decreases. The index change from strain-induced photoelastic effect has a parabolic relation with damage ratio, thus it can be ignored when the damage ratio too low or too high. Around a medium damage level, the contribution of photoelastic effect is not negligible, especially for the extraordinary index change in the x-/y-cut LiNbO3and the ordinary index change in the z-cut LiNbO3, where the strain induced photoelastic effect could account for~15%of the total index change. The refractive index is direction-depending because the strain-induced photoelastic effect depends on the implantation direction.
     The characters of KTP crystal formed by He+-ions implantation with high dose and low energy are studied.
     The dark mode characteristics by prism coupling and back scattering/channel (RBS/C) spectral characteristics of z cut KTP crystal formed with300keV He ions at dose of4×1016,6×1016,8×1016and10×l016ions/cm2are studied. The dark-mode spectrum and RBS/C spectral characteristics from z cut KTP crystal formed with150keV He ions at dose of8×1016ions/cm2after annealed at different temperature are also studied. The results show that the dark mode characteristics become worse and the effective refractive index of the zeroth dark mode decreases as the implanted dose increasing. After implantation with same dose, the dark mode measurement from nx shows the poorest property, a better result is obtained in ny measurement and the best result is got in nz. According to the correspondence between the dark mode characteristic and the refractive index, it can be seen that the surface refractive index decreases with the dose increasing and the change of refractive index value is minimal for nx, moderate in ny, and maximal on nz. The amorphous layer can be found in KTP crystal suffering300keV He ions implantation, and lattice damage at sample surface accumulates with the ion dose increasing. In150keV He ions implanted KTP crystal, the saturated dose is8×1016ions/cm2, and the average index of completely damaged (i.e., amorphous) KTP is about1.74. In the annealing process in KTP crystal implanted with He ions at energy of150keV, the surface effective refractive index increases with the annealing temperature. After the annealing temperature of400℃, nx and nz approach to the refractive index of substrate KTP crystal, while nz still much deviates from the value of substrate KTP. But the extrapolated calculated value shows that along with the annealing temperature increase that the index trends to the value of virgin KTP after annealing at800℃. Different behavior of nx, ny and nz in ion implantation indicates that the refractive index change during ion implantated progress is different from that in annealling progress. The RBS/C spectrum shows that the damage lattice gets slightly recovery after annealing treatment, but the amorphous layer can not be removed. At the same time, the surface bubble agglomeration is studies after annealing. The results show that bubbles distributes sparsely on some area of KTP crystal surface implanted by He ions at300keV and8×1016ions/cm2, and the size of the largest bubble is about10μ m in diameter when the sample annealed at400℃for60mins. Extending annealing time to120mins at400℃, surface blister disappears and a uniform surface is observed. In the suface of KTP crystal implanted by He ions at300keV and8×1016ions/cm2, the bubbles agglomerate when the annealing temperature reaches400℃, but they only appear in a few places, and more bubbles can be observed in150keV sample than that of300keV sample. The maximum diameter of bubbles is about30μm.There has no bubble agglomeration in surface of KTP crystal implantanted at other doses and annealed at other temperatures. The KTP crystal appears some precipitates when the annealed temperature above800℃and is partial decomposited when the temperature more than900℃. Therefore, in the z-cut KTP, the He2bubble can not be agglomerated availably when dose less than8×1016ions/cm2. It has an important significance to the crystal ion cutting (CIS) technology in KTP crystal.
     The model of refractive index in ion implanted KTP waveguides is established.
     Based on the assumption of strain distrubtion in ion-implanted in LiNbO3crystal, a refractive index change model in ion-implanted KTP crystal is established duiring the lattice damage ratio, the model includes the molar polarizability and molar volume, the spontaneous polarization and the photoelastic effects. Using the first-order approximation of small quality, the effects of the molar polarizability and molar volume, the spontaneous polarization and the photoelastic effect on the refractive index change of is discussed, the results show that the contributatins of the three factors on the refractive index in implanted KTP crystal is the same as in implanted LiNbO3crystal. According the back scattering/channel (RBS/C) spectra of300keV He ions implanted KTP crystal, the lattice damage curve is extracted. Based on it, the damage ratio of sample surface is estimated. According to the prism coupling dark mode of300keV He ions implanted KTP crystal at different dose, the sample surface effective refractive index is obtained. The theoretical refractive index is obtained according to the model fumulation using the estimated surface damage ratio and the results show a consistent with the experimental refractive index in a certain range.The error between theoretical value and experimental data is also analyzed. The fact that refractive index change model of ion implantated KTP crystal has a same form of LiNbO3crystal, but only different model parameters, indicates that the model could be applied to all optical crystal when the model parameters are determined. It is important to further application of ion implantation waveguide. According to the model, the profile of refractive index versus the depth of waveguide is obtained using the extracted damage curve from backscattered/channel (RBS/C) spectra. The result is different from that of Reflectivity Calculation Method (RCM), which is a real distribution curve. The results indicate that the values of nx, ny and nz decrease during the implanted depthe increasing, until to the average index of completely damaged (i.e., amorphous) KTP which is1.74at the depthe of0.9μm, and then the optical barrer is formed. Among the optical waveguide formed in nx, ny and nz, the waveguide in nz easily becomes an effective waveguide than the others. During the dose increasing, the surface refractive index and the effective thickness of waveguide layer decreases gradually in a same kind of refractive index, such as in nx(or ny or nz). It is concordant with the results from the prism coupling dark mode of300keV He ions implanted KTP crystal. The refractive index distribution is also calculated with increasingthe damage ratio for different cut KTP crystal by He ions implanted. The results show that the value of refractive index is reduced with the damage ratio increasing. The value of ny, nz decreases monotonely, but that of nx decreases at first and then reachs a saturation region in x/y-cut KTP crystal. The change ratio of nx,ny is much more smaller then that of nz
引文
1.唐天同,王兆宏编著,集成光学,科学出版社,2005.
    2. Miller S E, Intergrated Optics:An Introcuction. Bell System Technical Journal, 1969.48:p.2059-2061.
    3.汉斯伯格著,陈益新编译,集成光学:理论和技术,上海交通大学出版社,1985.
    4.吴重庆,光波导理论,清华大学出版社,2000.
    5. N. Grote, H. Venghaus著,王景山等译,光纤通信器件,国防工业出版社,2003.
    6. V.V.Atuchin, K. K. Ziling, D. P. Shipilova, Investigation of optical waveguides fabricated by titanium. Sov. J. Quantum Electron.,1984.14(5):p.671-674.
    7. R. J. Holmes, D. M. Smyth, Titanium Diffusion into. LiNbO.3. as a Function of Stoichiometry. J. Appl. Phys.,1984.55:p.3531-3535.
    8. M. DeSario, M. N. Armenise, C. Canali, A. Camera, P. Mazzoldi, G. Celotti, TiO2, LiNb3O8, and (TixNb1-x)O2 compound kinetics during Ti:LiNbO3 waveguide fabrication in the presence of water vapors. J. Appl. Phys.,1985.57(5):p. 1482-1488.
    9. R. V. Schmidt, I. P. Kaminow, Metal-diffused optical waveguides in LiNbO3. Appl. Phys. Lett.,1974.25(8):p.458-460.
    10. S. Fries, P. Hertel, H. P. Menzler, Extraordinary versus ordinary refractive index change in planar LiNbO3:Ti waveguides. Phys. Stat. Sol. (a),1988.108(1):p. 449-455.
    11. Salas-Montiel, R,Solmaz, M.E.,Eknoyan, O.and Madsen, C.K., Er-Doped Optical Waveguide Amplifiers in X-Cut Lithium Niobate by Selective Codiffusion, Photonics Technology Letters, IEEE,2010.22(6):p.362-364.
    12.胡卉,铌酸锂和钽酸锂光波导的机理研究,山东大学博士学位论文,2001.
    13. J.M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Muller, E. Dieguez, Hydrogen in LiNbO3. Adv. Phys.,1996.45:p.349-392.
    14. J.L. Jackel, C.E. Rice, J.J. Veselka, Proton exchange in LiNbO3. Ferroelectr., 1983.50:p.165-170.
    15. J.L. Jackel, Proton exchange:past, present, and future. Proc. SPIE,1991.1583:p. 54-63.
    16. V. A. Ganshin, Y.N. Korkishko, T. V. Morozova, V. V. Saraikin, The study of proton exchange in lithium tantalate crystals. Phys. Stat. Sol. (a),1989.114:p.457-465.
    17. E.Y.B. Pun, K.K. Loi, P.S. Chung, Proton-exchanged optial waveguides in Z-cut LiNbO3 using phosphoric-acid. IEEE Trans. Lightwave Technol.,1993.11:p. 277-284.
    18. K. Yamamoto, T. Taniuchi, Characteristics of pyrophos phoricacid proton-exchanged waveguide in LiNbO3. J. Appl. Phys.,1991.70(11):p. 6663-6668.
    19. J. T. Cargo, A. J. Filo, M. C. Hughes, V. C. Kannan, F. A. Stevie, J. A. Taylor, J. R. Holmes, Characterization of sulfuric acid proton-exchanged lithium niobate. J. Appl. Phys.,1990.67(2):p.627-633.
    20.郝寅雷等,低损耗离子交换玻璃基光波导制备与分析,无机材料学报,2009.24(5):p.1041-1044.
    21. R. R. Neurgaonkar, E. T. Wu, Epitaxial Growth of Ferroelectric T.B. Sr1-xBaxNb2 O6 Films for Optoelectronic Applications. Mater. Res. Bull.,1987.22:p. 1095-1102.
    22. A. Baudrant, H. Vial, J. Daval, Liquid phase epitaxial growth. of LiNbO3 thin films. J. Cryst. Growth,1978.43:p.197-200.
    23. F. Gitmans, Z. Sitar, P. Giinter, Growth of tantalum oxide and lithium tantalite thin films by molecular beam epitaxy. Vacuum,1995.46(8-10):p.939-942.
    24. R.A. McKee, F.J. Walker, J.R. Conner, E.D. Specht, D.E. Zelmon, Molecular beam epitaxy growth of epitaxial barium silicide, barium oxide, and barium titanate on silicon. Appl. Phys. Lett.,1991.59(7):p.782-784.
    25. F. Bruno, M. Guidice, R. Recca, F. Testa, Plasma-enhanced chemical vapor deposition of low-loss SiON optical waveguides at 1.5-um wavelength. Appl. Opt., 1991.30:p.4560-4564.
    26. B. Bihari, J. Kumar, G.T. Stauf, P.C. VanBushirk, C.S. Hwang, Investigation of barium titanate thin films on MgO substrates by second-harmonic generation. J. Appl. Phys.,1994.76(2):p.1169.
    27. H. Xie, W. H. Hsu, R. Raj, Nonlinear optical properties of epitaxial lithium tantalate thin films. J. Appl. Phys.,1995.77:p.3420-3425.
    28. M.J. Nystron, B.W. Wessels, W.P. Lin, G.K. Wong, D.A. Neumayer, T.J. Marks, Nonlinear optical properties of textured strontium barium niobate thin films prepared by metalorganic chemical vapor deposition. Appl. Phys. Lett.,1995. 66(14):p.1726-1728.
    29. W.S. Hu, Z.G. Liu, Y.Q. Lu, S.N. Zhu, D. Feng, Pulsed-laser deposition and optical properties of completely (001) textured optical waveguiding LiNbO3 films upon SiO2/Si substrates. Opt. Lett.,1996.21(13):p.946-948.
    30. A. Ito, A. Machida, M. Obara, Epitaxial Growth of BaTiO3 Optical Thin Films by Pulsed KrF Laser Deposition and in situ Pulsed Laser Annealing. Jpn. J. Appl. Phys.,1997.36:p. L805-L807.
    31. C. Zaido, D.S. Gill, R.W. Eason, J. Mendiola, P. J. Chandler, Growth of KNbO3 thin films on MgO by pulsed laser deposition. Appl. Phys. Lett.,1994.65(4):p. 502-504.
    32. D. Trivedi, P. Tayabati, M. Tabat, Measurement of large electro-optic coefficients in thin films of strontium barium niobate (Sr0.6Ba0.4Nb2O6). Appl. Phys. Lett., 1996.68(June 3):p.3227-3229.
    33. T. Hayashi, N. Ohji, K. Hirohara, T. Fukunaga, H. Maiwa, Preparation and Properties of Ferroelectric BaTIO3 Thin Films by Sol-Gel Process. Jpn. J. Appl. Phys.,1993.32:p.4092-4094.
    34. Y. Xu, C.J. Chen, R. Xu, J.D. Mackenzie, Ferroelectric Sr0.60Ba0.40Nb2O6 thin films by the sol-gel process:Electrical and optical properties Phys. Rev. B,1991. 44(1):p.35-41.
    35. Y. Jiang, K.M. Wang., X. L. Wang, C. L. Jia, L. Wang, Y. Jiao, Q. M. Lu, H. J. Ma, R. Nie, D. Y. Shen, Planar optical waveguide in potassium titanyl arsenate formed by oxygen ion implantation at low doses. Appl. Phys. Lett.,2006.88:p. 1114-1116.
    36. F.X. Wang, F. Chen, X.L. Wang, Q.M. Lu, K.M. Wang, D.Y. Shen, H.J. Ma, R. Nie, FabricationofopticalwaveguidesinKTiOAsO4 by He or Si ion implantation. Nucl. Instrum. Methods B,2004.215(3/4):p.389-393.
    37. F. Lu, G. Fu, C.L. Jia, K.M. Wang, H.J. Ma, D.Y. Shen, Lithium niobate channel waveguide at optical communication wavelength formed by multienergy implantation. Opt. Express,2005.13(23):p.9143.
    38. F. Lu, T.T. Zhang., G. Fu, X.L. Wang, K.M. Wang, D.Y. Shen, H.J. Ma, Investigation and analysis of a single-mode waveguide formed by multienergy-implanted LiNbO3. Opt. Express,2005.13(7):p.2256.
    39. J. Rams, J. Olivares, P.J. Chandler, P.D. Townsend, Mode gaps in the refractive index properties of low-dose ion-implanted waveguides LiNbO3. J. Appl. Phys., 2000.87:p.3199-3202.
    40. L. Zhang, P.J. Chandler, P.D. Townsend, Extra "strange " modes in ion implanted lithium niobate waveguides. J. Appl. Phys.,1991.70(3):p.1185.
    41. F. Chen, H. Hu, X.L. Wang, F. Lu, K.M. Wang, Property investigation of C+-ion-implanted LiNbO3 planar optical waveguides. J. Appl. Phys.,2005.98:p. 44507.
    42. P. Bindner, A. Boudrioua, J. C. Loulergue, P. Moretti, Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons. Appl. Phys. Lett.,2001.79(16):p.2558-2560.
    43. F. Schrempel, T. Opfermann, J.-P. Ruske, U. Grusemann, W. Wesch, Properties of buried waveguides produced by He-irradiation in KTP and Rb:KTP. Nucl. Instrum. Methods B,2004.218:p.209.
    44. K.M. Wang, H. Hu, F. Lu, F. Chen, B. R. Shi, C. Q. Ma, Q. M. Lu, D. Y. Shen, Refractive index profiles of LiB3O5 waveguides formed by MeV He ion irradiation. J.Appl.Phys.,2002.92(7):p.3551-3553.
    45. C. Bakhouya, A. Boudrioua, R. Kremer, P. Moretti, J. C. Loulergue, K. Polgar, Implanted waveguides in borate crystals (LTB, β-BBO and LBO) for frequency conversion. Opt. Mater.,2001.18:p.73-76.
    46. F.Chen, X.L. Wang, K.M.Wang, Q.M. Lu, D.Y. Shen, Ion-implanted Nd:YVO4 planar waveguide:refractive-index characterization and propagation mode reduction. Opt. Lett.,2002.27:p.1111-1113.
    47. G..V. Vazquez, M.E. Sanchez-Morales, H. Marquez, J. Rickards, R. Trejo-Luna, Analysis of ion implanted waveguides formed on Nd:YVO4 crystals. Opt.Commun.,2004.240:p.351-355.
    48. S. M. Kostritskii, O. G. Sevostyanov, P. Moretti, Optimization of photorefractive LiNbO3 waveguides fabricated by combined techniques of ion exchange and implantation. Opt. Mater.2001.18:p.77-80.
    49. Th. Opfermann, T. Bachmann, W. Wesch, M. Rottschalk, He+ implantation for waveguide fabrication in KTP and Rb:KTP. Nucl. Instr. and Meth. B 1999.148: p.710-714.
    50.王亮玲,离子交换平面和条形光波导的制备及其特性研究.山东大学博士学位论文,2008.
    51.张瑞峰,Cs-K离子交换结合离子注入技术制备KTiOPO4 (KTP)光波导.山东大学博士学位论文,2008.
    52.王晓梅,离子注入磷酸钛氧钾晶体光波导中的Rb-K离子交换.山东大学硕士学位论文,2009.
    53.秦振华,基于离子注入的Rb/Ba-K离子交换KTP晶体光波导特性研究.山东大学硕士学位论文,2011.
    54. P.D. Townsend, P.J. Chandler, L. Zhang, Optical Effects of Ion Implantation. Cambridge University Press, Cambridge, U.K.,1994 (Reprinted 2006).
    55.陈辉,强颖怀,欧雪梅,离子注入技术在高分子材料表面改性中的应用.煤矿机械,2004.12:p.93-94.
    56.戴达煌,周克菘,袁振海,现代材料表面技术科学冶金技术出版社,2004.
    57.王贻华,胡正琼,离子注入与分析基础航空工业出版社,1992.
    58. D.T.Y. Wei, W.W. Lee, L.R. Bloom, Large refractive index change induced by ion implantation in lithium niobate. Appl. Phys. Lett.1974.25:p.329-331.
    59. P.D. Townsend, inst. Of Physics, Conf. Series,1976.28:Chap.3.
    60. K. Wenzlik, J. Heibei, E. Voges, Refractive index profiles of helium implanted LiNbO3 and LiTaO3. physica status solidi (a),1980.61:p.207-211.
    61. P.D. Townsend, Optical effects of ion implantation. Rep. Prog. Phys.,1987.50: p.501-558.
    62. X.L. Wang, F. Chen, F. Lu, G. Fu, S.L. Li, K.M. Wang, Q.M. Lu, D.Y. Shen, H.J. Ma, R. Nie., Refractive index profiles of planar optical waveguides in β-BBO produced by silicon ion implantation. Opt. Mater.,2004.27:p.459-463.
    63. Y. Jiang, K.M. Wang, X.L. Wang, C.L. Jia, L. Wang, Y. Jiao, Q.W. Lu, Hu.J. Ma, R. Nie, D.Y. Shen, Planar optical waveguide in potassium titanylarsenate formed by oxygen ion implantation at low doses. Appl. Phys. Lett.,2006.88: p.1114-1116.
    64. L. Zhang, P.J. Chandler, P.D. Townsend, Extra 'strange' modes in ion implanted lithium niobate waveguides. J. Appl. Phys.,1991.70:p.1185-1189.
    65. J. Rams, J. Olivares, P. J. Chandler, P. D. Townsend, Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides. J. Appl. Phys., 2000.87:p.3199.
    66. S.P. Pogossian, H.L. Gall, Modeling planar leak optical waveguides. J. Appl. Phys.,2003.93:p.2337.
    67. H. Hu, F. Lu, F. Chen,B. R. Shi,K. M. Wang, D. Y. Shen, Monomode optical waveguide in lithium niobate formed by MeV Si ion implantation. J. Appl. Phys., 2001.89:p.5224.
    68. G. Fu, K. M. Wang, F. Chen, X. L. Wang, S. L. Li, D. Y. Shen, H. J. Ma, R. Nie, Extraordinary refractive-index increase in MeV B3+ ion-implanted LiNbO3 waveguide. Nucl. Instrum. Methods B,2003.211:p.346-350.
    69. S. L. Li, K. M. Wang, F. Chen, X. L. Wang, G. Fu, D. Y. Shen, H. J. Ma, R. Nie, Monomode optical waveguide excited at 1540 nm in LiNbO3 formed by MeV carbon ion implantation at low doses. Opt. Express,2004.12:p.747-752.
    70. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, R. Guzzi, Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3:Planar optical waveguide formation and characterization. J. Appl. Phys.2002.92: p.6477.
    71. X. L. Wang, K. M. Wang, F. Chen, G.Fu, S. L. Li, H. Liu, L. Gao, D. Y. Shen, H. J. Ma, R. Nie, Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation. Appl.Phys.Lett.,2005.86:p.041103.
    72. H. Ahlfeldt, J. Webjorn, P. A. Thomas, and S. J. Teat, Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3. J. Appl. Phys.1995.77:p.4467.
    73. V.V. Atuchin, Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides. Nucl. Instrum. Methods B,2000.168:p.498-502
    74. H. Hu, F. Lu, F. Chen, B. R. Shi, K. M. Wang, and D. Y. Shen, Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation. Appl. Opt.,2001.40:p.3759-3761.
    75. Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, Y. Jiao, and F. Lu, Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation. Phys. Rev. B,2007.75:p.195101.
    76. Feng Chen, Xue-Lin Wang, Ke-Ming Wang., Development of ion-implanted optical waveguides in optical materials:A review. Optical Materials,2007.29: p.1523-1542.
    1. Tsai C. S., Guided-Wave Acousto-Optics:Interaction, Devices and Applications. New York:Springer-Verlag,1990.
    2.唐天同,王兆宏编著,集成光学.科学出版社,200
    3.曹庄琪,导波光学中的矩阵转移方法.上海交通大学出版社,2000.
    4.许政权,介质光波导器件原理.上海交通大学出版社,1989.
    5.李玉权,崔敏,光波导理论与技术.人民邮电出版社,2002.
    6.马春生,刘式墉,光波导模式理论.吉林大学出版社,2006.
    7.范崇澄,彭吉虎,导波光学.北京理工大学出版社,1988.
    8.陈临新,集成光学上海交通大学出版社,1985.
    9.李家泽,阎吉祥,光电子学基础北京理工大学出版社.1998.
    10.赵策洲,高勇,半导体硅基材料及其光波导.电子工业出版社,1997.
    11. S.O. Kasap, Optoelectronics and Photonics:Principles and Practices, Publishing House of Electronic Industry,2003
    12. YarivA, Optical Electronics in Moden Communication. Publishing House of Electronics Indsutry,2002.
    1.王贻华,胡正琼,离子注入与分析基础.航空工业出版社,1992.
    2.戴达煌,周克菘,袁振海,现代材料表面技术科学.冶金技术出版社,2004.
    3.黄拿灿,现代模具强化新技术新工艺.国防工业出版社,2008.
    4. J.Lindhard and M.Scharff,Energy Dissipation by Ions in the keV Region.Phys. Rev.,1961.124:p.128-130.
    5. J.Lindhard,M.Scharff,and H.E.Schiott,Dan.Vidensk.Seksk.Mat.Fys.Medd., 1963.33:p.1.
    6. Chakrabarti P.,Shrestha N.L.,Srivastava S,Khemka,V.,AN improved model of ion-implanted GaAs OPFET.IEEE Trans. Electron. Dev.,1992.39(9): p.2050-2059.
    7. Suzuki,K.,Sudo,R.,Feudel,T.,Fichtner,W.,Compact and comprehensive database for ion-implanted As profile.IEEE Trans.Electron.Dev.,2000,47(1): p.44-49.
    8. James F.Ziegler,SRIM-2003.Nucl.Instrum.Methods Phys.Res.,Sect.B,2004. 219-220:p.1027-1036.
    9.王广厚,粒子同固体相互作用物理学.科学出版社,1991.
    10.赵国庆,核分析技术.原子能出版社,1989.
    11.朱唯干,背散射分析技术.原子能出版社,1978.
    12.L.C. Feldman,J,M,Mayer and S.T. Picraux,Materials Analysis by Ion Channeling.Academic Press,1994.
    13.陆家和,陈长彦主编,现代分析技术.清华大学出版社,1995.
    14.E.B(?)gh,Defect studies in crystals by means of channeling.Can.J.Phys.,1968. 46:p.653-662.
    15.K Sato,Y Fujino,S.Yamaguchi,H.Naramoto.K Ozawa,Ion channeling studies of C+ irradiated TiC single crystala.Nucl.Instrum.Meth.B,1990.47:p.421-426.
    1. P.D. Townsend, P.J. Chandler, L. Zhang, Optical Effects of Ion Implantation. Cambridge University Press, Cambridge, UK,1994 (Reprinted 2006).
    2. P.K. Tien, R. Ulrich, P.J. Martin, Modes of propagating light waves in thin deposited semiconductor films. Appl. Phys. Lett.,1969.14 p.291-294.
    3. J.H. Harris, R. Shubert, J. N. Polky, Beam coupling to films. J. Opt. Soc. Amer., 1970.60 p.1007-1016.
    4.张玲芬,周骏,蒋文晓,沈欢欢,朱军,棱镜耦合法测量聚合物薄膜波导的参数.物理实验,2009. Vol.29(8)p.40-41.
    5.吴啟宏,利用泄漏波导测量低折射率薄膜的折射率和厚度.光学学报,1987.7(9)p.838-843.
    6.哀一方,消逝波和棱镜薄膜耦合器.天津大学学报,1980.03 p.113-143.
    7. L.C. Feldman, J.M. Mayer, S.T. Picraux, Materials Analysis by Ion Channeling. Academic Press,1994.
    8. P. J. Chandler, F.L. Lama, A new approach to the determination of planar waveguide profiles by means of non-stationary mode index calculation. Opt. Acta, 1986.33:p.127-143.
    9. D. Fluck, D.H. Jundt, P. Gunter, Modeling of refractive index profiles of He ion-implanted KNbO3 waveguides based on the irradiation parameters. J. Appl. Phys.,1993.74(10):p.6023.
    1. G. L. Destefanis, J. P. Gailliard, E. L. Ligeon, S. Valette, B. W. Farmery, P. D. Townsend, and A. Perez, The formation of waveguides and modulators in LiNbO3 by ion implantation. J. Appl. Phys.,1979.50:p.7898-7905.
    2. X. L. Wang, F. Chen, L. Wang, and Y. Jiao, Channel waveguides of LiNbO3 crystals fabricated by low-dose oxygen ion implantation. J. Appl. Phys.,2006. 100:p.056106.
    3. G. Fu, K. M. Wang, F. Chen, X. L. Wang, S. L. Li, D. Y. Shen, H. J. Ma, and R. Nie, Extraordinary refractive-index increase in MeV B3+ ion-implanted LiNbO3 waveguide. Nucl. Instrum. Methods Phys. Res. B,2003.211:p.346-350.
    4. H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation. J. Appl. Phys.,2001.89:p.5224-5226.
    5. F. Lu, T. Zhang, X. Wang, S. Li, K. Wang, D. Shen, and H. Ma, Formation of waveguides by implantation of 3.0 MeV Ni. J. Appl. Phys.,2004.96:p.3463-3466.
    6. H. Hui, C. Feng, L. Fei, Z. Jian-Hua, L. Ji-Tian, W. Ke-Ming, S. Bo-Rong, S. Ding-Yu, and W. Xue-Mei, Optical Waveguide Formation in LiNbO3 by the 2.6 MeV Nickel Ions Implantation. Chin. Phys. Lett.,2001.18:p.242-244.
    7. C.L Jia, Y. Jiang, X.L. Wang, F. Chen, L. Wang, Y. Jiao, K. M. Wang, F. Lu, D. Y. Shen, H. J. Ma, and R. Nie, Formation of waveguides in LiNbO3 by 6.0 MeV F3+ implantation. J. Appl. Phys.,2006.100:p.033505
    8. C.L. Jia, K.M. Wang, F. Lu, X.L. Wang, Y. Jiang, L. Wang, Y. Jiao, J.H. Zhang, X.F. Qin, D.Y. Shen, H.J. Ma, and R. Nie, Single-mode optical waveguides fabricated in LiNbO3 by multienergy C2+ implantations. Opt.& Las. Tech.,2007. 39:p.749-753.
    9. P.D. Townsend, P.J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge,1994).
    10. L. Zhang, P.J. Chandler, and P.D. Townsend, Extra "strange" modes in ion implanted lithium niobate waveguides. J. Appl. Phys.,1991.70:p.1185-1189.
    11. J. Rams, J. Olivares, P.J. Chandler, and P.D. Townsend, Mode gaps in the refractive index properties of low-dose ion-implanted LiNbO3 waveguides. J. Appl. Phys.,2000.87:p.3199.
    12. D.T.Y. Wei, W.W. Lee, and L.R. Bloom, Large refractive index change-induced by ion implantation in lithium niobate. Appl. Phys. Lett.,1974.25:p.329-331.
    13. V.V. Atuchin, Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides. Nucl. Instrum. Methods Phys. Res. B,2000.168:p.498-502.
    14. H. Hu, F. Lu, F. Chen, B.R. Shi, K.M. Wang, and D.Y. Shen, Extraordinary Refractive-Index Increase in Lithium Niobate Caused by Low-Dose Ion Implantation. Appl.Opt.,2001.40:p.3759-3761.
    15. Y.Jiang, K.M. Wang, X.L. Wang, F. Chen, C.L. Jia, L. Wang, and Y. Jiao, Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation. Phys. Rev. B,2007.75:p.195101.
    16.陆明万,张雄,葛东云,工程弹性力学与有限元法,清华大学出版社,2005.
    17. J.W.Mcpherson and C. F.Dunn, A model for stress-induced metal notching and voiding in very large-scale-integrated Al-Si (1%) metallization. J. Vac. Sci. Technol.,1987.5 p.1321-1325.
    18. M. Kato,H.Niwa,H. Yagi and H. Tsuchikawa, Stress distribution in an aluminum interconnect of very large scale integration. J. Appl. Phys.,1990.68 p.328-333.
    19. T. Kwok,K. K. Chan,H. Chan and J. Simko, Thermal stress-induced and electromigration-induced void-open failures in Al and Al-Cu fine lines. J.Vac. Sci. Technol.,1991.9:p.2523-2526.
    20.马德录,韩宇,双束注入的晶格应变辽宁大学学报(自然科学版),1999.26(4):p.328-333.
    21. E. Zolotoyabko, Y. Avrahami, W. Sauer, T. H. Metzger, and J. Peisl, Strain profiles in He-implanted waveguide layers of LiNbO3 crystals. Mater. Lett.,1996. 27:p.17-20.
    22. Y. Avrahami, and E. Zolotoyabko, Structural modifications in He-implanted waveguide layers of LiNbO3. Nucl. Instrum. Methods Phys. Res. B,1996.120: p.84-87.
    23. D. Shilo, E. Lakin, and E. Zolotoyabko, Comprehensive strain analysis in thin films based on high-resolution x-ray diffraction:Application to implanted LiNbO3. Phys. Rev. B,2001.63:p.205420.
    24. G.G. Bentini, M. Bianconi, A. Cerutti, M. Chiarini, G. Pennestri, C. Sada, N. Argiolas, M. Bazzanc, P. Mazzoldi, R. Guzzi, Structural and compositional characterization of X-cut LiNbO3 crystals implanted with high energy oxygen and carbon ions. Nucl. Instrum. Methods Phys. Res. B,2005.240:p.174-177.
    25.英敏菊,董西亮,用拉曼光谱测量离子注入引起的晶格应变强激光与粒子束,2008.20(4):p.671-674.
    26. M. Bianconi, N. Argiolas, M. Bazzan, G. G. Bentini, M. Chiarini, A. Cerutti, P. Mazzoldi, G. Pennestri, and C. Sada, On the dynamics of the damage growth in 5 MeV oxygen-implanted lithium niobate. Appl. Phys. Lett.2005.87:p.072901,
    27. M. DiDomenico and S. H. Wemple, Oxygen-Octahedra Ferroelectrics. Ⅰ. Theory of Electro-optical and Nonlinear optical Effects. J. Appl. Phys.,1969.40: p.720-734.
    28. S. H. Wemple and M. DiDomenico, JR., Theory of the Elasto-Optic Effect in Nonmetallic Crystals. Phys. Rev. B,1970.1:p.193-202.
    29. R. S. Weis and T. K. Gaylord, Lithium Niobate:Summary of Physical Properties and Crystal Structure. Appl. Phys. A,1985.37:p.191-203.
    30. R.W. Dixon, Photoelastic Properties of Selected Materials and Their Relevance for Applications to Acoustic Light Modulators and Scanners. J. Appl. Phys.,1967. 38:p.5149-5153.
    31. H. Ahlfeldt, J. Webjorn, P. A. Thomas, and S. J. Teat, Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3. J. Appl. Phys.,1995.77:p.4467-447
    1. X. Gu, M. Makarov, Y. J. Ding, J. B. Khurgin, and W. P. Risk, Backward second-harmonic and third-harmonic generation in a periodically poled potassium titanyl phosphate waveguide. Opt. Lett.,1999.24:p.127-129.
    2. B. Agate, E. U. Rafailov, W. Sibbett, S. M. Saltiel, P. Battle, T. Fry, and E. Noonan, Highly efficient blue-light generation from a compact, diode-pumped femtosecond laser by use of a periodically poled KTP waveguide crystal. Opt. Lett.,2003.28:p.1963-1965.
    3. L. Ma, O. Slattery, T. Chang, and X. Tang, Non-degenerated sequential time-bin entanglement generation using periodically poled KTP waveguide.Opt. Express,2009.17:p.15799-15807.
    4. B. Brecht, A. Eckstein, and C. Silberhorn, Controlling the correlations in frequency upconversion in PPLN and PPKTP waveguides. Phys. Status Solidi (c),2011.8:p.1235-1238.
    5. A. Ecksteinl, A. Christ, P. J. Mosley, and C. Silberhorn, Highly Efficient Single-Pass Source of Pulsed Single-Mode Twin Beams of Light. Phys. Rev. Lett.,2011.106:p.013603.
    6. K. M. Wang, M. Q. Meng, F. Lu, X. Wang, W. Wang, P. J. Ding, and Y. G. Liu, Analysis of refractive index profile in KTiOPO4 waveguide formed by 3.0MeV He+ implantation. Opt. Commun.,1997.134:p.55-58.
    7. K. M. Wang, W. Li, F. Lu, M. Q. Meng, B. R. Shi, X. Wang, D. Y. Shen, and Y. G. Liu, Double barred waveguides in KTiOPO4 formed by MeV He ion implantation. Solid State Commun.,1998.106:p.173-175.
    8. K. M. Wang, M. Q. Meng, F. Lu, X. D. Liu, T. B. Xu, P. R. Zhu, D. Y. Shen, and Y. H. Tian, Waveguide investigation in Er-implanted KTiOPO4 by MeV He ion implantation. Mater. Sci. Eng. B,1998.52:p.8-11.
    9. P. Bindner, A. Boudrioua, P.Moretti, and J. C.Loulergue, Refractive index behaviors of helium implanted optical planar waveguides in LiNbO3, KTiOPO4 and Li2B4O7. Nucl. Instr. and Meth. in Phys. Res. B,1998.142: p.329-337.
    10. F. Chen, Y. Tan, L. Wang, D. C. Hou, and Q. M. Lu, Optical channel waveguides with trapezoidal-shaped cross sections in KTiOPO4 crystal fabricated by ion implantation. Appl. Surf. Sci.,2008.254:p.1822-1824.
    11. C.C. Griffioen, J.H. Evans, P.C. De Jong, A. Van Veen, Helium desorption/permeation from bubbles in silicon:A novel method of void production. Nucl. Instr. and Meth. in Phys. Res. B,1987.27:p.417-420.
    12. D. M. Follstaedt, S. M. Myers, and S. R. Lee, Cavity-dislocation interactions in Si-Ge and Implications for Heterostructure Relaxation. Appl. Phys. Lett., 1996.69:p.2059-2061.
    13. V. Raineri, P. G. Fallica, G. Percolla, A. Battaglia, M. Barbagallo, S. U. Campisano, Gettefing of Metals by Voids in Silicon. J. Appl. Phys.,1995.78: p.3727-3735.
    14. S.H. Christiansen, R. Singh, I. Radu, M. Reiche, U. Gosele, D. Webb, S. Bukalo, B. Dietrich, Strained Silicon on Insulator(SSOI) by Waferbonding. Mater. Sci. Semicond. Process.,2005.8:p.197-202.
    15. M. Levy, R. M. Osgood, R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett.,1998.73:p.2293.
    16. A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, H. Bakhru, C. Tian, and C. Evans, Large etch-selectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films. Appl. Phys. Lett.,1999.74:p.3197.
    17. Tarek A. Ramadan, M. Levy, and R. M. Osgood, Jr., Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films. Appl. Phys. Lett.,2000.76: p.1407-1409.
    18. A.M.Radojevic, R.M.Osgood, Jr., M. Levy, A. Kumar, and H. Bakhru, Zeroth-Order Half-Wave Plates of LiNbO3 for Integrated Optics Applications at 1.55μm. IEEE PHOTONICS TECHNOLOGY LETTERS,2000.12: p.1653-1655.
    19. A. M. Radojevic, R. M. Osgood, Jr., N. A. Roy, and H.Bakhru, Prepatterned Optical Circuits in Thin Ion-Sliced Single-Crystal Films of LiNbO3. IEEE PHOTONICS TECHNOLOGY LETTERS,2002.14:p.322-324.
    20. Djordje Djukic, Ryan Roth, James T. Yardley, Richard M. Osgood, Jr., Low-voltage planar-waveguide electrooptic prism scanner in Crystal-Ion-Sliced thin-film LiNbO3. Opt. Express,2004.12:, p.6159-6164.
    21. Payam Rabiei, and Peter Gunter, Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding. Appl. Phys. Lett.,2004.85:p.4603-4605.
    22. Payam Rabiei, and William H. Steier, Lithium niobate ridge waveguides and modulators fabricated using smart guide. Appl. Phys. Lett.,2005.86: p.161115.
    23. David W. Ward, Eric R. Statz, Keith A. Nelson, Ryan M. Roth and Richard M. Osgood, Terahertz wave generation and propagation in thin-film lithium niobate produced by crystal ion slicing. Appl. Phys. Lett.,2005.86:p.022908.
    24. Ryan M. Roth, Djordje Djukic,Yoo Seung Lee, Richard M. Osgood, Jr., Sasha Bakhru, Bryan Laulicht, Kathleen Dunn, Hassaram Bakhru, Liqi Wu, and Mengbing Huang, Compositional and structural changes in LiNbO3 following deep He+ ionimplantation for film exfoliation. Appl. Phys. Lett., 2006.89:p.112906.
    25. Andrea Guarino, Gorazd Poberaj, Daniele Rezzonico, Riccardo Degl'Innocenti and Peter Gunter, Electro-optically tunable microring resonators in lithium niobate. Nat. Photonics,2007.1:p.407-410.
    26. Gorazd Poberaj, Manuel Koechlin, Frederik Sulser, Andrea Guarino, Jaroslav Hajfler and Peter Gunter, Ion-sliced lithium niobate thin films for active photonic devices. Opt. Mater.2009.31:p.1054-1058.
    27. H. Lu, B. Sadani, N. Courjal, G. Ulliac, N. Smith, V. Stenger, M. Collet, F. I. Baida, and M.-P. Bernal, Enhanced electro-optical lithium niobate photonic crystal wire waveguide on a smart-cut thin film. Opt. Express,2012.20: p.2974-2981.
    28. M.Levy, R. M. Osgood, Jr., A. S. Bhalla, R. Guo, L. E. Cross, A. Kumar, S. Sankaran, and H.Bakhru, Stress tuning in crystal ion slicing to form sjngle-crystal potassium tantalite films. Appl. Phys. Lett.,2000.77: p.2124-2126.
    29.T.Izuhara,R.M.Osgood,J r.,M.Levy,M.E.Reeves,Y. G. Wang,A.N.Roy and H.Bakhru,Low-loss crystal-ion-sliced single-crystal potassium tantalite films.Appl.Phys.Lett.,2002.80:p.1046-1048.
    30.T.Izuhar,I.-L.Gheorma,R.M.Osgood,Jr.,A.N.Roy,H.Bakhru,Yiheli M. Tesfu and M.E.Reeves,Single-crystal barium titanate thin films by ion slicing.Appl.Phys.Lett.,2003.82:p.616-618.
    31.Jonathan E.Spanier,Miguel Levy,Irving P.Herman,Richard M.Osgood,Jr., Amar S.Bhalla,Single-crystal, mesoscopic films of lead zinc niobate-lead titanate:Formation and micro-Raman analysis.Appl.Phys.Lett.,2001.79: p.1510-1512.
    32.F.J.Rachford,M.Levy,R.M.Osgood,J r.,A.Kumar and H.Bakhru, Magnetization and FMR Studies of crystal-ion-Sliced narrow linewidth gallium-doped yttrium iron garnet.J.Appl.Phys.,2000.87:p.6253-6255.
    33.Yoo Seung Lee,Djordje Djukic,Ryan M.Roth,Robert L aibowitz,Tomoyuki Izuhara, Richard M. Osgood, Jr., Sasha Bakhru, Hassaram Bakhru, Weidong Si,and,David Welch,Fabrication of patterned single-crystal SrTiO3 thin films by ion slicing and anodic bonding.Appl.Phys.Lett.,2006.89: p.122902.
    34.贾传磊,离子注入法与射频溅射法制备光波导的研究,山东大学博士学位论文,2006.
    35.北京市辐射中心,北京师范大学低能核物理研究所离子注入研究室,离子注入原理与技术,北京出版社,1982.
    36.David N.Nikogosyan,Nonlinear Optical Crystals:A Complete Survey. Springer Science+Business Media,Inc.2005
    37.Mark L.F.Phillips,W illiam T.A.Harrison,Galen D.Stucky,Eugene M. McCarron Ⅲ,Joseph C.Calabrese,and Thurman E.Gier,Effects of Substitution Chemistry in the KTiOPO4 Structure Field. Chem. Mater.,1992.4: p.222-233.
    1. P. D. Townsen, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, Cambridge, UK) (1994).
    2. P. Bindner, A. Boudrioua, J. C. Loulergue, and P. Moretti, Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons. Appl. Phys. Lett.,2001.79:p.2558-2560.
    3. K. M. Wang, M. Q. Meng, F. Lu, X. Wang, W. Wang, P. J. Ding, and Y. G. Liu, Analysis of refractive index profile in KTiOPO4 waveguide formed by 3.0MeV He+ implantation. Opt. Commun.,1997.134:p.55-58.
    4. K. M. Wang, W. Li, F. Lu, M. Q. Meng, B. R. Shi, X. Wang, D. Y. Shen, and Y. G. Liu, Double barred waveguides in KTiOPO4 formed by MeV He ion implantation. Solid State Commun.,1998.106:p.173-175.
    5. K. M. Wang, M. Q. Meng, F. Lu, X. D. Liu, T. B. Xu, P. R. Zhu, D. Y. Shen, and Y. H. Tian, Waveguide investigation in Er-implanted KTiOPO4 by MeV He ion implantation. Mater. Sci. Eng. B,1998.52:p.8-11.
    6. P. Bindner, A. Boudrioua, P.Moretti, and J. C.Loulergue, Refractive index behaviors of helium implanted optical planar waveguides in LiNbO3, KTiOPO4 and Li2B4O7. Nucl. Instr. and Meth. in Phys. Res. B,1998.142:p.329-337.
    7. Th. Opfermann, Bachmann, W. Wesch, and M. Rottschalk, He+ implantation for waveguide fabrication in KTP and Rb:KTP. Nucl. Instr. and Meth. in Phys. Res. B, 1999.148:p.710-714.
    8. F. Schrempel, Ch. Beeker, J. Fick, and W. Wesch, Waveguide barriers with adjustable refractive index produced in KTP by irradiation with He- and Li-ions. Nucl. Instr. and Meth. in Phys. Res. B,2007.257:p.484-487.
    9. F. Chen, Y. Tan, L. Wang, D. C. Hou, and Q. M. Lu, Optical channel waveguides with trapezoidal-shaped cross sections in KTiOPO4 crystal fabricated by ion implantation. Appl. Surf. Sci.,2008.254:p.1822-1824.
    10. K. M. Wang, F. Lu, H. Hu, F. Chen, B. R. Shi, D. Y. Shen, X. M. Wang, and Y. G. Liu, Planar waveguide formation in KTiOPO4 by MeV Ni+ ion implantation. Opt. Commun.,2000.182:p.357-360.
    11. F. Chen, H. Hu, Q. M. Lu, K. M. Wang, F. Lu, B. R. Shi, and D. Y Shen, Refractive index profiles of MeV phosphor ion implanted planar waveguide in KTP. Appl. Surf. Sci.,2001.183:p.39-42.
    12. F. Schrempel, Th. Hoche, J. P. Ruske, U. Grusemann, and W. Wesch, Depth dependence of radiation damage in Li-implanted KTiOPO4. Nucl. Instr. and Meth. in Phys. Res. B,2002.191:p.202-207.
    13. F. Chen, X. L. Wang, K. M. Wang, B. R. Shi, Q. M. Lu, D. Y. Shen, and N. Rui, Analysis of refractive index profile in a silicon ion-implanted KTiOPO4 waveguide. Mater. Lett.,2003.57:p.1197-1201.
    14. L. L. Wang, K. M. Wang, Q. M. Lu, and H. J. Ma, Enhanced refractive index well-confined planar and channel waveguides in KTiOPO4 produced by MeV C3+ ion implantation with low dose. Appl. Phys. B,2009.94:p.295-299.
    15. Y. Jiang, K. M. Wang, X. L. Wang, F. Chen, C. L. Jia, L. Wang, Y. Jiao, and F. Lu, Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation. Phys. Rev. B,2007.75:p.195101.
    16. S. H. Wemple, M. DiDomenico, and JR., Theory of the elasto-optic effect in Nonmetallic crystals. Phys. Rev. B,1970.1:p.193-202.
    17. Z. W. Hu, P. A. Thomas, and P. Q. Huang, High-resolution x-ray diffraction and topographic study of ferroelectric domains and absolute structural polarity of KTiOPO4 via anomalous scattering. Phys. Rev. B,1997.56:p.8559-8565.
    18. G. Rosenman, A. Skliar, M. Oron, and M. Katz, Polarization reversal in KTiOPO4 crystals. Phys. D:Appl. Phys.,1997.30:p.277-282.
    19. P. Bernasconi, M. Zgonik, and P. Gunter, Temperature dependence and dispersion of electro-optic and elasto-optic effect in perovskite crystals. J. Appl. Phys.,1995. 78:p.2651-2658.
    20. M. C. Gupta and J. Ballato, the handbook of photonics (second ed.) (CRC Press, Boca Raton) (2007).
    21. J. D. Bierlein and H. Vanherzeele, Potassium titanyl phosphate:properties and new applications. J. Opt. Soc. Am. B,1989.6:p.622-633.
    22.王继扬,施路平,刘耀岗,魏景谦,邵宗书,Rb0.3K0.7TiOPO4晶体弹光系数的相对法和绝对法测量,人工晶体学报.1995.24:p.347-352.
    23. I. I. Zubrinov, V. K. Sapozhnikov, E. V. Pestrykov, and V. V. Atuchin, Elastic and elastooptic properties of KTiOPO4. Proc. of SPIE,2003.5129:p.249-254.
    24. M. Zgonik, R. Schlesser, I. Biaggio, E. Voit, J. Tscheny, and P. Giinter, Materials constants of KNbO3 relevant for electro-and acousto-optics. J. Appl. Phys.,1993. 74:p.1287-1297.
    25. S. Haussiihl, S. Luping, W. Baolin, W. Jiyang, J. Liebertz, A. Wostrack, and Ch. Fink, Physical properties of single crystals of KTiPO4, KxRb1-xTiOPO4 (x=0.85; 0.75), KGeOPO4 and KTiOAsO4. Cryst. Res. Technol.,1994.29:p.583-589.
    26. H. Ahlfeldt, J. Webjorn, P. A. Thomas, and S. J. Teat, Structural and optical properties of annealed proton-exchanged waveguides in z-cut LiTaO3. J. Appl. Phys.,1995.77:p.4467-4476.
    27. M. Bianconi, N. Argiolas, M. Bazzan, G. G. Bentini, M. Chiarini, A. Cerutti, P. Mazzoldi, G. Pennestri, and C. Sada, On the dynamics of the damage growth in 5 MeV oxygen-implanted lithium niobate. Appl. Phys. Lett.,2005.87:p.072901
    28. L. C. Feldman and J. W. Rodgers, Depth Profiles of the Lattice Disorder Resulting from Ion Bombardment of Silicon Single Crystals. J. Appl. Phys.,1970. 41:p.3776-3782.
    29. R. S. Weis and T. K. Gaylord, Lithium Niobate:Summary of Physical Properties and Crystal Structure. Appl. Phys. A,1985.37:p.191-203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700