电场辅助离子交换波导的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渐变折射率光波导是光通信和集成光电子学领域中的关键元件之一。目前,已有多种成熟的工业技术,特别是扩散、离子交换和离子注入等技术,可以制备低损耗的渐变折射率光波导。在光放大器、激光器、通信器件、传感器、分束器及其他器件中,渐变型光波导已获得了愈来愈广泛的应用。而K离子交换制备渐变折射率波导因其损耗小,成本低,备受人们关注。
     本文主要面向用于生产玻璃波导的电场辅助K离子交换技术的研究和实验。文章首先较为全面的介绍了离子交换理论。包括平板波导线光学模型,电磁场理论以及离子交换的机理,产生折射率变化的原因。然后再较为详细介绍一些基本数学分析方法基础上推导出离子交换波导的折射率分布理论模型。
     本文的实验工作主要集中在新的电场辅助交换装置方面。本文对电场辅助下K~+离子交换的波导制备方法进行了研究。传统电场辅助K~+离子交换方法须用到硅胶粘合玻璃与交换容器,受制于粘合材料温度限制,只能采用低温加热K~+混合物,得到的折射率变化较小。本文中新的制备方法通过在玻璃片上镀金膜构成电极,交换温度控制在350 OC,并使用纯KNO_3为熔盐,通过电场辅助用普通载玻片制成了损耗为0.61dB/cm的多模光波导。通过对银离子交换和电场辅助钾离子交换所制成的波导片进行比较,进一步说明采用电场辅助K~+离子交换是制备低损耗、多模、低成本光波导的重要方法。
With the development of integrated optics, people have paid more attention to the graded-index optical waveguides formed by ion exchange, diffusion, and other techniques owing to its wide applications in optical amplifier, laser, communication, sensor, power division, and other related areas. K~+ ion exchange with the help of an electric field attract more and more concern due to the small loss and low cost.
     In the paper, it is focused on researches and experiments of K~+ ion exchange with the help of an electric field. Firstly, it introduced the fundamental theories of ion exchange thoroughly, including planar waveguide theories, and the principle resulting in the refractive index change. Then on the base of some essential mathematical methods in analyzing ion exchange waveguide, the theoretical model of the refractive index founded.
     This report focuses on research into waveguide prepared by K~+ ion exchange with the electric field assistance, in order to get well transported wave guide. Because the temperature limitation of agglutinate material, in traditional method, chemical mixture with K~+ was heated up in low temperature and small change of refractive index was gotten. In new method, adopting pure KNO_3, normal glass is exchanged in 350 OC with the electric field assistance and becomes the multimode waveguide whose loss is 0.61dB/cm. By compared K~+ ion exchange with the electric field assistance with Ag+ ion exchange, it is shown that K~+ ion exchange with the help of an electric field is the important method to produce small loss, multimode and low cost waveguide.
引文
[1] T. H. Maiman, R. H. Hoskins, I. J. D’Haenens, C. K. Asawa and V. Evtunov, “Stimulated optical emission in solids”, Phys. Rev., Vol. 123, pp. 1151, 1961.
    [2] F. P. Kapron, D. B. Keck and R. D. Maurer, “Radiation losses in glass optical waveguides ”, Appl. Phys. Lett., Vol. 17, pp. 423, 1970.
    [3] I. Hayashi, P. B. Panish, P. W. Foy, and S. Sumski, ”Junction lasers which operate continuously at room temperature”, Appl. Phys. Lett., Vol. 17, pp. 109, 1970.
    [4] G. H. B. Thompson and P. A. Kirkby, “Low threshold-current density in five-layer-heterostructure (GaAl)As/GaAs localized-gain-region injection lasers”, Electron. Lett., Vol. 9, pp. 295, 1973.
    [5] B. C. Deloach, Jr., B. W. Hakki, R. L. Hartman and L. A. D’Asaro, “Degradation of CW GaAs double heterojuction lasers at 300K”, Proc. IEEE (lett.), Vol. 61, pp. 1042, 1973.
    [6] D. B. Keck, R. D. Maurer and P. C. Shultz, “On the ultimate lower limit of attenuation in glass optical wavelenghth”, Appl. Phys. Lett., Vol. 22, pp. 307, 1973.
    [7] M. Horiguchi and H. Osanai, “Spectral losses of low-OH-content optical fiber”, Electron Lett., Vol. 12, pp. 310, 1976.
    [8] T. Miya, Y. Terunuma, T. Hosaka, and T. Miyashita, ”An ultimately Low-loss single-mode fiber at 1.55 μ m”, Electron Lett., Vol. 15, pp. 106, 1979.
    [9] T. Moriyama, O. Fukuda, K. Inada, T. Edhiro and K. chida, “Ultimately low OH content VAD optical fibers”, Electron. Lett., Vol. 16, pp. 698, 1990.
    [10] M. Kawachi, A. Kawana and T. Miyashita, “low-loss single-mode fiber at the material-dispersion-free wavelength of 1.27 μ m”, Electron. Lett., Vol. 13, pp. 442, 1977.
    [11] D. N. Payne and W. A. Gambling, “Zero material dispersion in optical fibers”, Electron. Lett., Vol. 11, pp. 8, 1975.
    [12] J. J. Hsieh, J. A. Rossi and J. P. Donnelly, “Room-temperature CW operation of GaInAsP/InP double-hetero structure diode laser emitting at 1.1 μ m”, Appl. Phys. Lett., Vol. 28, pp.709, 1976.
    [13] K. Oe and K. Sugiyama, “GaInAsP/InP double-hetero structure lasers prepared by a new LPE apparatus”, Japan. J. Appl. Phys., Vol. 15, pp. 740, 1976.
    [14] T. Yamamoto, K. Sakai, S. Akiba and Y. Suematsu, “Fast pulse behaviour of GaInAsP/InP double-hetero structure diode laser emitting at 1.27 μ m”, Electron. Lett., Vol. 13, pp. 142, 1977.
    [15] Y. Itaya Y. Suematsu and K. Iga. ”Carrier lifetime measurement of GaInAsP/InP double-hetero structure lasers”, Japan J. Appl. Phys., Vol.16, pp.1057-1058, 1977.
    [16] S. Akiba, K. Sakai, Y. Matsushima and T. yamamoto, “Room-temperature C.W. operation of InGaAsP/InP heterostructure lasers emitting at 1.56 μ m”, Electron. Lett., Vol. 15, pp. 606, 1979.
    [17] H. Kawaguchi, T. Takahei, Y. Toyoshima, H. Nagai and G. Iwane, “Room-temperature C. W. Operation of InP/InGaAsP/InP double heterostructure diode lasers emitting at 1.55 μ m”, Electron. Lett., Vol. 15, pp. 669, 1979.
    [18] K. Utaka, K. Kobayashi, K.Kishino and Y. Suematsu, “1.5-1.6 μ m GaInAsP/InP integrated twin-guide lasers with first-order distributed Bragg reflectors”, Electron. Lett., Vol. 16, pp. 455, 1980.
    [19] T. P. Pearsall, B. I. Miller, R. J. Capik and K. J. Bachmann, ”Efficient lattice-matched double-heterostructure LEDs at 1.1 μ m from GaxIn1-xAsyP1-y”, Appl. Phys. Lett., Vol. 28, pp.449, 1976.
    [20] N. Nagai and Y. Noguchi, “InP/ GaAsP/InP double heterostructure LED’s at the 1.1 μ m wavelength region”, IOCC ’77 Tokyo, B 2-2,1977.
    [21] H. Melchior and W. T. Lynth, “Singnal and Noise response of high speed germanium avalanche photo-diode”, IEEE Trans. Eletron. Devices, Vol. ED-13, pp.829, 1966.
    [22] H. Ando, H. Kanbe, T.Kimura, T. Yamaoka and T. Kaneda, “Characteristics of germanium avalanche photodiodes in the wavelength region of 1-1.6 μ m”, IEEE J. Quantum Electorn., Vol. QE-14, pp. 804, 1978.
    [23] R. J. Mears, L. Reekie, and I. M. Jauncey, et al., “Low-noise Erbium-doped fiber amplifier operating at 1.54 μ m,” Electron. Lett, Vol. 23, pp. 1026, 1987.
    [24] E. Desurvire, J. R. Simpson, and P. C. Becker, “High-gain Erbium-doped traveling-wave fiber amplifier,” Opt. Lett., Vol. 12, pp. 888, 1987.
    [25] F. K. Reinhart, R. A. Logan, “GaAs-AlGaAs double heterostructure lasers with taper-coupled passive waveguides”, Appl. Phys. Lett., Vol. 26, pp. 516, 1975.
    [26] K. Iga and B. I. Miller, “GaInAsP/InP laser with monolithically integrated monitoring detector”, Electron. Lett., Vol. 16, pp. 342, 1980.
    [27] J. L. Merz and R. A. Logan, “Integrated GaAs-AlxGa1-xAs injection lasers and detectors with etched reflectors”, Appl. Phys. Lett., Vol. 30, pp. 530, 1977.
    [28] Y. Suematsu, “Monolithic integratin of optical circuits and related twin-guide lasers”, Int. Conf. Int. Opt. and Opt. Comm., Vol. B 1-1, 1977.
    [29] 曹庄琪,《导波光学中的转移矩阵方法》,上海交通大学出版社 2000.
    [1] M.玻恩, E.沃耳夫,《光学原理》 科学出版社,1978.
    [2] T.Tamir, Integrated Optics, Second Edition, Spring-Verlag, Berlin, 1975.
    [3] H. Kogelnik, V. Ramaswamy “Scaling rules for thin-film optical waveguides” Appl. Opt., Vol.13, pp. 1857, 1974.
    [4] P. K. Tien and R. Ulrich, “Theory of prism-film coupler and thin-film light guides,” J. Opt. Soc. Am., Vol 60, pp. 1325, 1970.
    [5] M. L. Dakss, L. Kuhn, and P. F. Heidrich, et al., “Grating coupler for efficient excitation of optical guided waves in thin films,” Appl. Phys. Lett., Vol. 16, pp. 144, 1970.
    [6] I. P. Kaminow, L. W. Stulz, “Loss in deaved Ti-diffused LiNbO3 waveguides,” Appl. Phys. Lett., Vol. 33, pp. 62, 1978.
    [7] H. P. Weber, F. A. Dunn, and W. N. Leibolt, “Loss measurement in thin film optical waveguides,” Appl. Opt., Vol. 12, pp. 755, 1973.
    [8] Y. Jiang, Z. Cao, and Q. S. Shen, et al, “Digital measurements and fabrication of low loss optical organic polymer waveguides,” ACTA OPTICA SINICA, Vol. 19, pp. 1142, 1999.
    [9] H. Nishihara, M. Haruna,T. Suhara, Optical Integrated Circuits, McGraw-Hill Book Company, pp. 242, 1989.
    [10] A. K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, p244, 1989.
    1 Kistler, S. S., "Stresses in Glass Produced by Nonumiform Exchange of Monovalent Ions," J. Am. Ceram. Soc, Vol. 45,1962, pp. 59-68.
    2 Ramaswamy, R. V., and R. Srivastava, "Ion-Exchanged Glass Optical Waveguides: A Review," IEEE J. Lightwave Technol, Vol. LT-6,1988, pp. 984-1002.
    3 Izawa, T., and H. Nakagome, "Optical Waveguide Fromed by Electrically Induced Migration of Ions in Glass Planes," Appl. Phys. Lett, Vol. 21,1972, pp. 584-586
    4 Giallorenzi, T. G., E. J. West, R. Ginther, and R. A. Andrews, "Optical Waveguides Formed by Thermal Migration of Ions in Glass." Appl. Opt., Vol. 12, 1973, pp. 1240-1245. s Ross. L., "Integrated Optical Components in Substrate Glasses," Glastech. Ben, Vol. 62,1989, pp. 285-297.
    6 Albert, J., and G. L. Yip, "Wide Single-Mode Channels and Directional Coupler by Two-Step Ion-Exchange in Glass," IEEE J. Lightwave TechnoL, Vol. LT-6,1988,
    7 Albeit, J,, and G. L, Yip, "Insertion Loss Reduction Between Single-Mode Fibers and Diffused Channel Waveguides," Appl. Opt, Vol. 27,1988, pp. 151-153.
    8 Najiafi, S. Iraj, J. Albert, S. Honkanen, A. Tervonen, and M. Li, "Introduction to Glass Integrated Optics," ARTECH HOUSE, Boston, 1992.
    9 Yip, G. L, Noutsios. P., and K. Kishioka, "Characteristics of Optical Waveguides Made by Electric-Field-Assisted K+-Ion Exchange," Opt. Lett., Vol. 15, 1990, pp. 789-791.
    10 Fantone, S. D., "Refractive Index and Spectral Models for Gradient-Index Materials," Appl. Opt., Vol. 22,1983, pp. 432-440.
    11 Albert, J., and G. L. Yip, "Stress-Induced Index Change for K+-Na+ Ion-Exchange in Glass," Electron. Lett., Vol. 23,1987, pp. 737-738.
    12 Haum N, Kindred D etal, ”Index profile control using Li+ exchange in alum into silicate glasses. ” Appl Opt, 1990, 29
    13 王德强,陈玮,程继健, ”玻璃光波导研究进展.” 材料导报, 2000 年 1 月第 14 卷
    14 Peter G, Noutsios and Gar Lam Yip, ”Characterization and modeling of planar surface and buried glass waveguides made by field-assisterd K+ ion exchange. ” Appl Opt, Volume 31,1992
    15 Kosikova Jitka, Schrofel Josef , ”Planar optical waveguides prepared in GIL49 and BK7 glass substrates by K+-Na+ ion exchange with the electric field assistance. ” Journal of Electronic Materials, Oct 1999
    [1] J.M. White and P.F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis”, Applied Optics. Vol.15, pp.151, 1976.
    [2] Xiangmin Liu, Qishun Shen, and Zhuangqi Cao, et al; "Determination of refractive index profile of polymer waveguide by photobleaching", ACTA OPTICA SINICA, Vol.20, pp.991, 1999.
    [3] Garcia-Valenzuela Augusto, Pena-Gomar M, Fajardo-Lira C; "Measuring and sensing a complex refractive index by laser reflection near the critical angle", Optical Engineering Vol. 41, pp.1704, 2002.
    [4] Ray Mina, Sarkar Samir K, Basuray Amitabha, Biswas Nisha S; "Measurement of refractive index profile of GRIN glasses", Proc. SPIE Vol. 4417, pp. 483-488, 2000.
    [5] Fukano Takashi, Yamaguchi Ichirou; "Wavelength scanning confocal interference microscope for separate measurement of refractive index and geometrical thickness", Proc. SPIE Vol. 3740, pp. 30, 1999.
    [6] Biswas Nisha S, Sarkar Samir K, Basuray Amitabha; "Measurement of gradient refractive index profile using a birefringent lens", Optical Engineering Vol. 35, pp. 470, 1996.
    [7] Shakher, Chandra, Nirala, Anil Kumar; "A review on refractive index and temperature profile measurements using laser-based interferometric techniques", Optics and Lasers in Engineering Vol: 31 pp. 455, 1999.
    [8] Jochen Steffen, Andreas Neyer, Edgar Voges, and Norbert Hecking, "Refractive index profile measurement techniques by reflectivity profiling: vidicon imaging, beam scanning, and sample scanning", Applied Optics Volume: 29, pp. 4468, 1990.
    [9] Shiuh Chao, Yun-Chiao Chen, and Huai-Yi Chen, “Determination of ordinary refractive index profile for a planar waveguide by transmission spectrum analysis”, Journal of Applied Physics, Vol.83, pp. 5650, 1998.
    [10] Alexei A. Podviaznyi, Dmitry V. Svistunov, “Improved interferometric method for determination of refractive index profile parameters in single-mode waveguides”, Opt.Commun. Vol. 201, pp. 325, 2002.
    [11] Wang, Haiming; "Propagation-mode near-field method for measuring optical waveguides of graded index profile: some considerations on TM-modes", Optics and Lasers in Engineering Volume: 29, pp. 499, 1998.
    [12] Dragoman, D., Meunier, J.P.; "Recovery of longitudinally variant refractive index profile from the measurement of the Wigner transform", Optics Communications Vol. 153, pp. 360, 1998.
    [13] Gonella, F., Quaranta, A., Sambo, A., Caccavale, F., Mansour, I.; "Construction of glass waveguide refractive index profiles by the effective-index finite-difference method", Optical Materials Vol. 5, pp. 321, 1996.
    [14] K. Morishita, “Index profiling of three-dimensional optical waveguides by the propagation-mode near-field method,” J. Lightwave Technol., Vol. 4, pp. 1120, 1986.
    [15] D. Tonova, A. Paneva, and B. Pantchev, “Determination of refractive index profiles of gradient optical waveguides by ellipsometry,” Opt. Commun., Vol.150, pp. 121, 1998.
    [16] S. A. Poling, and S. N. Houde-Walter, “Measurement of phenomenological cross terms by radioactive co-tracer diffusion in glass," J. Non-Cryst. Solid, Vol. 255, pp. 78, 1999.
    [17] P. Hertel, and H. P. Menzler, ``Improved inverse WKB procedure to reconstruct refractive index profiles of dielectric planar waveguides," Appl. Phys. B, Vol. 44, pp. 75, 1987.
    [18] K. S. Chiang, ”Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes," J. Lightwave Technol., Vol. 3, pp. 385, 1985.
    [19] K. S. Chiang, C. L. Wong, H. P. Chan, and Y. T. Chow, ``Refractive-index profiling of graded-index planar waveguides from effective indexes measured for both mode types and at different wavelengths," J. Lightwave Technol. Vol. 14, pp. 827, 1996.
    [20] K. S. Chiang, C. L. Wong, S. Y. Cheng, and H. P. Chan, ``Refractive-index profiling of graded-index planar waveguides from effective indexes with different external refractive indexs," J. Lightwave Technol. Vol. 18, pp. 1412, 2000.
    [21] R. Oven, S. Batchelor, D. G. Ashworth, D. Gelder, and J. M. Bradshaw, ``Iterative refinement technique for reconstructing refractive index profiles from mode indices," Electron. Lett. Vol. 31, pp. 229, 1995.
    [22] Y. Ding, Z. Q. Cao, and Q. S. Shen, ``Determination of optical waveguide refractive-index profiles with the inverse analytic transfer matrix method," Opt. And Quant. Electron., Vol. 36, pp. 489, 2004.
    [23] Lu Desen, Ding Yuan, Cao Zhuangqi, et al; “Graded refractive index profile reconstructions by the Inversed Analytic Transfer Matrix Method”, Proc. SPIE Vol. 4904, pp. 189, 2002.
    [24] 陆德森,丁渊,曹庄琪等;“渐变折射率平板光波导的逆分析转移矩阵方法”,光学学报,Vol. 23, pp.307, 2003.
    [25] P. Mathey, P. Jullien, “Numerical analysis of a WKB inverse method in view of index profile reconstruction in diffused waveguides”, Opt. Commun. Vol. 122, pp.127, 1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700