桥梁结构分析的广义变分原理—Daubechies条件小波法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小波理论是20世纪80年代出现的一个新兴数学分支,是近年来在工具及方法上的重大突破,它已被广泛地应用在科学技术和工程计算等各个领域。其中,以Daubechies小波使用最广,影响最为深远,在解决诸如应力大梯度等奇异问题中,较其它小波函数有明显的优势。基于Daubechies小波的小波Ritz法、小波Galerkin法以及小波有限元法近年来一直受到国内外学者的高度重视。但直到目前为止,小波理论在结构工程中的应用还很不完善,尤其是Daubechies小波在诸如联系系数的计算精度不高、位移转换矩阵奇异、高阶消失矩基函数无法使用以及高精度小尺度函数空间难以应用等方面遇到很大困难。因此,如何应用小波理论,特别是Daubechies小波进行结构工程计算,提高计算精度,克服上述缺陷,发挥其独特的优势,具有重要的理论意义和显著的实用价值。
     本文在系统研究小波数值计算方法及已有小波有限元的基础上,以Daubechies小波为切入点,以桥梁结构工程计算为主要应用方向,以传统Ritz法和Galerkin法为主要手段,将小波分析的多分辨思想与条件变分原理相结合,成功构造出可直接用于工程结构分析的全求解域条件小波Ritz法和条件小波Galerkin法,并进一步构造出基于条件变分和二类变量广义变分的单元刚度矩阵的条件小波有限元法。
     本论文首先简要介绍了小波理论的发展现状及其在数值计算领域的应用情况,并系统介绍了小波分析的基础理论及Daubechies小波的数学特性,推导了Daubechies小波尺度函数、小波函数及其相关导数、积分、内积和现有联系系数的计算过程,阐明了现有联系系数计算方法中存在的问题,提出了提高联系系数计算精度的有效方法。
     现有的Daubechies小波有限元法中,为方便边界条件的引入,均在小波待定系数与单元内部节点位置之间设置了位移转换矩阵,从而将小波有限元问题转化为常规有限元问题,方便了小波单元的使用。但也正是由于位移转换矩阵的存在,使得Daubechies小波单元难以实现高精度计算,在结构工程计算方面的应用受到限制。本文在分析传统Daubechies小波有限元法所存在问题的基础上,结合传统Ritz法、Galerkin法和广义变分原理,首次提出了条件小波Ritz法和条件小波Galerkin法,并构造出基于条件变分和二类变量广义变分的单元刚度矩阵的条件小波有限元法和条件小波混合有限元法,构建出条件小波单元求解矩阵,给出条件小波总体刚度求解矩阵的组装方法。从而避免了由于转换矩阵奇异而造成精度下降且计算结果不易收敛的问题,提升了小波Ritz法和小波Galerkin法的求解精度,使小波分析的“显微”特性得以充分发挥,并为应力大梯度问题和工程奇异问题的有效求解提供了强有力的计算手段。同时,编制典型算例,从各个方面对条件小波分析方法在计算精度、稳定性、求解速度以及在处理应力大梯度等奇异问题上的有效性进行全面测试。
     桥梁桩基础是桥梁工程中典型构件,其内力计算的准确与否将直接关系到整个桥梁结构的安全。本文针对桥梁桩基础计算模型的特点,首次提出并推导了一类可用于桩基础计算的联系系数,同时首次将二类变量的混合能量原理引入Daubechies小波小波有限元法中,以进一步提高结构内力的求解精度。最后,利用上述结果,对桥梁桩基础的典型模型进行了计算。
     本文还编制了大量的数值计算子程序和计算例程,几乎囊括了Daubechies小波有关结构工程数值计算的所有方面,这些程序的编制,不仅验证了本文的相关结论,同时,也为后续进一步拓展Daubechies小波在结构工程数值计算领域的应用空间打下坚实的基础。
Wavelet theory is a new developing branch in mathematics appeared in the 1980's. In recent years, it is considered as an important breakthrough in methods and tools. And it has been employed in various fields of science and technology and engineering calculation. Especially, Daubechies wavelet has been used the most widely and has the most far-reaching influence because it has obvious superiority in solving some odd state problems, for example, high stress gradient. Wavelet Ritz, wavelet Galerkin and wavelet Finite Element Method (FEM) which are based on Daubechies wavelet have been attached high importance by scholars both at home and abroad in recent yeas. But until now, the application of wavelet theory in structure engineering is far from perfect. Quite a lot difficulties exist in the employing of Daubechies wavelet, such as low computation accuracy of connection coefficients, odd state of displacement transformation matrix, unable to use primary function of higher order vanishing moments, and hard to employ small scaling function space of high accuracy. So how to use wavelet theory, especially Daubechies wavelet to conduct structural computation, improve computation accuracy, overcome the above shortcomings, exploit its special advantages, has significant theoretical importance and obvious practical value.
     The thesis first briefly introduces the present developing situation of wavelet theory and its application process in numerical calculation; and also systematically introduces the basic theory of wavelet analysis and the mathematic properties of Daubechies wavelet; and then infers the scaling function, wavelet function and correlation derivative, integral, and inner product and the calculating process of existing connection coefficient. Then it clarifies the problem in the existing calculatoin methods of connection coefficients, and also puts forward the effective methods to improve the computation accuracy of connection coefficients.
     In the present Daubechies wavelet FEM, the displacement transformation matrix has been set between undetermined wavelet coefficients and element internal nodes for the convenience of leading boundary condition. It will transfer the wavelet finite element problem to normal finite element problem, so make the using of wavelet elements convenient. But just because of the existing of displacement transformation matrix, high accuracy computation of Daubechies wavelet elements is hard to achieve, so its application in structural computation has been greatly limited.
     Based on analyzing the problems existing in traditional Daubechies wavelet FEM, combining traditional Ritz method , Galerkin method with generalized variational principle, this thesis for the first time puts forward conditional wavelet Ritz method and conditional wavelet Galerkin method, and constructs conditional wavelet FEM of element stiffness matrix based on conditional variational principle and Hu-Washizu generalized variational principle. Furthermore, the author also constructs stiffness matrix of conditional wavelet and provide the assembling methods of massive stiffness matrix. So it can be avoided that the computation accuracy is lowered and the calculation result is hard to be convergent for the odd state of transformation matrix.
     The computation accuracy of wavelet Ritz method and wavelet Galerkin method has been improved so the special 'microscopic' property could be fully expressed. An effective method is offered also to solve the problem of high stress gradient and some other odd state problems in engineering. At the same time, the author presents the typical examples to exam the accuracy, stability, calculating speed and its effectiveness for solving the odd state problems like high stress gradient from all respects.
     Pile is a typical member in bridge structure. The precision of calculating its internal force will affect the whole bridge structure's safety. This thesis for the first time presents a new kind of connection coefficient which can be used in computation of pile foundation; and it also leads the Hu-Washizu principle into Daubechies wavelet FEM to increase the computation accuracy of structural internal force. At last it calculates the typical model of bridge pile foundation using the above methods.
     The author also writes a great amount of numeric computational sub-programs and programs too, almost include all respects of structural numeric computation using Daubechies wavelet. These programs not only test and verify the correlation results in this thesis, but also lay a strong foundation for expanding the application space of Daubechies wavelet in structural numeric computation.
引文
[1]刘明才.小波分析及其应用[M].北京:清华大学出版社,2005
    [2]韩建刚.小波有限元理论及其在结构工程中的应用[D].西安:西安建筑科技大学,2003
    [3]孙延奎.小波分析及其应用[M].北京:机械工业出版社,2005
    [4]陈荣平.小波理论与应用[D].长沙:湖南师范大学,2006
    [5]Jaffard S, Meyer Y, Ryan R D.科学技术中的小波分析[M].李建平.译.北京:国防工业出版社,2006: 17-19
    [6]成礼智,王红霞,罗永.小波的理论与应用[M].北京:科学出版社,2004
    [7]Ingrid Daubechies.小波十讲[M].李建平,杨万年.译.北京:国防工业出版社,2004
    [8]Goodman T N,Lee S L, Tang W S. Wavelets in wandering subspaces[J]. Trans. American Math.Soc., 1994,338: 639-654
    [9]Geronimo J S, Hardin D P, Massopust P R. Fractal functions and wavelet expansions based on several scaling functions[J].J.Approx.Theory, 1994, 78: 373-401
    [10]Xia X G,Hardin D,Geronimo J,et al .Design of prefilters for discrete multiwavelet transform[J].IEEE Trans. Signal Processing, 1996, 44: 25-35
    [11]Vetterli M. filter banks allowing perfect reconstruction[J].Signal processing, 1986, 10: 219-244
    [12]Vetterli M. Wavelets and filter banks aheory and design[J].IEEE Trans.Signal Processing, 1992, 40: 2207-2232
    [13]Xia X G.A new prefilter design for discrete multiwavelet transforms[J].IEEE Trans. Signal Processing, 1998, 46: 1558-1570
    [14]Strang G,Strela V. Short wavelets and matrix dilation equtions[J]. IEEE Trans. Signal Processing,1995,43:108-115
    [15]Strela V. Multiwaveletsaheory and application[D].Ph.D.thesis, 1996, MIT.
    [16]Strela V. Multiwavelets:regularity,orthogonality and symmetry via two-scale similarity transform [J].Studies in Applied Math.,1997, 98: 335-354
    [17]Strang G .Eigenvalues(↓ )H and convergence of the cascade algorithm[J].IEEE Trans. Signal Processing, 1996, 44: 233-238
    [18]Plonka G. Approximation oder provied by refinable function vectors[J].Constr. Approx.,1997,221-244。
    [19]Jiang Q. On the design of multifilter banks and orthonomal multiwavelet bases[J].IEEE Trans. Signal Processing, 1998, 46: 3292-3303
    [20]Tao X,Jiang Q T. Optimal multifilter banks:Design.related symmetric extention transform and application to image copression[J]. IEEE Trans.Signal Processing, 1999, 47: 1878-1889
    [21]Selesnick L W. Multiwavelet bases with extra approximation properties[J].IEEE Trans. Signal Processing, 1998, 46: 2898-2980
    [22]Selesnick L W. Balanced Multiwavelet bases based on symmetric FIR filters[J].IEEE Trans. Signal Processing, 2000, 48: 184-191
    [23]Vaidyanathan P P .Quadrature mirror filter banks,M-band extension and perfect reconstruction technique[J].IEEE ASSP Mag.,1987, 4: 4-20
    [24]Vaidyanathan P P, Hoang P Q. Lattice structures for optimal design and robust implementation of two-band perfect reconstruction QMF banks[J]. IEEE Trans..Acoust.Speech,signal processing, 1988,36: 81-94
    [25]Chui C K, LianJ A. Study on orthonormal multiwavelets[J].J.Applied Numerical mathmatics, 1996,20(3):273-298
    [26]Chui C K, LianJ A .Construction of compactly supported symmetric and antisymmetric orthonormal wavelets with scale=3[J].Applied Comput Hazmonanal, 1995,2: 68-84
    [27]Peng L Z, Wang Y G. The parameterization and algebraic structure of 3-bank wavelets system [J].Science in China(Series A),2001,31(7):602-614
    [28]Han B .Symmetric orthonormal scaling functions and wavelets with dilation factor 4[J].Adv.Comput.Math.,1998, 8: 221-247
    [29]Wang G. Q. 4-bank compactly supported Bi-symmetric orthogonal wavelets bases[J].Opt.Eng.,2004,43(10):2362-2368
    [30]Wang G.Q. Matrix methods of constructing wavelet filters and discrete hyper-wavelet transforms [J].Opt.Eng., 2000, 39 (4):1080-1087
    [31]Sweldens W. The lifting scheme:A custom-design construction of biorthogonal wavelets[J].Appl. Comput. Harmon. Anal.,1996, 3:186-200
    [32]Sweldens W. The lifting scheme:A construction of second generation wavelets[J].SIAM. J. Math. Anal, 1997, 29: 511-546
    [33]Daubechies I,Sweldens W. Factoring wavelet transform into lifting steps[J].J. Fourier Anal. Appl.,1998, 4: 247-269
    [34]Christopoulos C .JPEG-2000 verification model 2.0 (technical description) [M].ISO/IEC JTC 1/SC 29/WG 1 N988, 1998
    [35]Taubman D S, Marcellin M W. JPEG 2000 image compression fundamentals,standards and practice [M].Klwer Academic publishers, 2002
    [36]Kingsbury N G. Image processing with complex waveletss[J].Phil.Trans.on Royal Society London Ser.,1999, A357: 2543-2560
    [37]Kingsbury N G. Complex wavelets for shift invariant analysis and filtering of signalss[J].J. Appl.Comp. Harmon. Anal, 2001,10: 234-253
    [38]Candes E J. Ridgelets:Theory and Applications[D]. Ph.D.Thesis, Stanford University, 1998
    [39]Candes E J, Donoho D L. Curvelets-a surprisingly effective nonadaptive representation for objects with edges,curves and surfaces[M].L.L.Schumaker et al.(eds), Nashville: Vanderbilt University Press,1999
    [40]李建平,张万萍,陈廷槐,等.小波分析的一些有前景的应用领域[J].重庆大学学报,1999,22(1):121-125
    [41]薛继军.非线性有限元和小波有限元理论研究及其在钻机井架中的应用[D].西安:西安交通大学,2003
    [42]Hirabyashi T, Takayasu H,Miura H,et al.The behavior of a threshold model of market price in stock exchanges[J].Fractalc, 1993. 1(1):29-40
    [43]Ameedo A .On the wavelet transform of multifractalss[M].In: Wavelets Combes et al.Eds New York:Spring Verlag, 1988
    [44]Qian S,Weiss J .Wavelets and numerical solution of partial differential equationss[J].J.of Computational Physics, 1993,106: 155-175
    [45]何正嘉,陈雪峰.小波有限元理论研究与工程应用的进展[J].机械工程学报,2005, 41 (3):1-11
    [46]何正嘉,陈雪峰,李兵,等.小波有限元理论及其工程应用[M].北京:科学出版社,2006
    [47]Gopinath R A,Lawton W M, Burros C S. Wavel et-Gal erkin approximation of linear translation invariant operators[G].ICASSP91,1991,3:2021-2023
    [48]Latto A, Resnikoff H, Tenenbaum E. The Evaluation of Connection Coefficients of Compactly Supported Wavelets[R].Aware Inc.,Technical Report AD910708
    [49]Beylkin G,Coifman R,Rokhlin V .Fast wavelet transforms and numerical algorithms [J].Communications on Pure and Applied Mathematics, 1991,ⅫV:141-183
    [50]Beylkin G. .On the representation of operators in bases of compactly supported wavelets[J].SIMA Journal Numerical Analysis, 1992, 6(6):1716-1740
    [51]Jaffard S.Wavelet methods for fast resolution of elliptic problems[J].SIAM Journal on Numerical Analysis, 1992,29(4):965-986
    [52]Dahmen W, Micchelli C .Using the refinement equation for evaluating integrals of wavelets[J].SIAM journal on numerical analysis, 1993,30(2):507-537
    [53]Chen M, Temam R. Nonlinear Galerkin method in the finite difference case and wavelet-like incremental unknowns[J].Numerische Mathematik, 1993,64: 271-294
    [54]Dahmen W, Kurdila A,Oswald P. Multiscale Wavelet for Partial Differential Equtions[M].San Diego: Academic Press Inc.,1997
    [55]Dahlke S, Dahmen W, Hochmuth R. Stable multiscale bases and local error estimation for elliptic problems[J].Applied Numerical Mathematics, 1997, 23(1):21-47
    [56]Dahmen W. Wavelet methods for PDEs—some recent developments[J].Journal of Computational and Applied Mathematics, 2001,128: 133-185
    [57]Bertoluzza S. A posteriori error estimates for the wavelet Galerkin method[J].Applied Mathematics Letters, 1995,8(5):1-6
    [58]Bertoluzza S, Naldi G,Ravel J C. Wavelet methods for the numerical solution of boundary value problems on the interval[M]//Chui C K. Wavelets:Theory,Algorithms,and Applications, New York:Academic Press, 1992
    [59]Bertoluzza S. Interior estimates for the wavelet Galerkin method[J].Numerische Mathematik, 1997,78(1):1-20
    [60]Bertoluzza S,Verani M .Convergence of nonlinear wavelet algorithm for the solution of PDEs [J].Applied Mathematics Letters, 2003,16(1):113-118
    [61] Cohen A, Dyn N, Kaber S M, et al. Multiresolution schemes on triangles for scalar conservation laws[J]. Journal of Computational Physics, 2000, 161 (1): 264-286
    [62] Cohen A, Kaber S M, Postel M. Adeptive multiresolution for volume solutions of gas dynamics [J]. Computers and Fluids, 2003, 32 (1): 31-38
    [63] Berrone S, Dmmel L. Towards a realization of a wavelet Galerkin method on non-trivial domins [J]. Journal of Scientific Conputing, 2002, 17: 307-317
    [64] Radha N . Molecular simulation fo liquid crystal polymer flow:a wavelet-finite element analysis. Massachusetts Institute of Technology, 1998
    [65] Williams J R, Amaratunga K. Introduction to wavelets in engineering. International Journal for Numerical Methods in Engineering[J], 1994, 37: 2365-2388
    [66] Chen 2, Micchelli C A. Discrete wavelet Petrov-Galerkin methods[J]. Advances in computational Mathematics, 2002, 16: 1-28
    [67] Sweldens W, Piessens R. Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions[J]. SIAMJ.Numer.Anal., 1994, 31 (4): 1240-1264
    [68]Dumont S, Lebon F. Wavelet-Galerkin method for periodic heterogeneous media [J]. Computers and Structures, 1996, 61 (1): 55-65
    [69] Ameratunga K, Williams R J, Sam Q. Wavelet-Galerkin solutions for one-dimensional partial differential equations[J]. International Journal for Numerical Methods in Engineering, 1994,37( 16):2703-2716
    [70] Dianfeng L, Ohyoshi T, Miura K. Treatment of boundary conditions in one-dimensional Wavelet-Galerkin method[J]. JSME International Journal, Series A (Solid Mechanics and Material Engineering), 1997, 40 (4): 382-388
    [71] Diaz A R . A Wavelet-Galerkin scheme for analysis of large-scale problems on simple domains[J]. International Journal for Numerical Methods in Engineering, 1999, 44: 1599-1616
    [72] Ho S L, Yang S Y. Wavelet-Galerkin method for solving parabolic equations in finite domains [J]. Finite Elements in Analysis and Design, 2001, 37: 1023-1037
    [73] Fujii M, Hoefer W J R. Interpolating wavelet Galerkin model of time dependent inhomogeneous electrically-large optical waveguide problems[J]. Microwave Symposium Digest, IEEE MTT-S International, 2001, 2: 1045-1048
    [74] Kim Y Y, Jang G W. Hat interpolation wavelet-based multi-scale Galerkin method for thin-walled box beamanalysis[J]. International Journal for Numerical Methods in Engineering, 2002, 53: 1575-1592
    [75] Nam Z C, Chang J P. Wavelet theory for solution of the neutron diffusion equation[J]. Nuclear Science and Engineering, 1996, 124: 417-430
    [76] Phoon K K, Huang S P, Quek S T. Implementation of Karhunen-Loeve expansion for simulation using a wavelet-Galerkin scheme[J]. Probabilistic Engineering Mechanics, 2002, 17(3): 293-301
    [77] Dumont S, Lebon F. Representation of plane elastostatics operators in Daubechies wavelets [J]. Computers and Structares, 1996, 60 (4): 561-569
    [78] Pernot S, Lamarque C H. A wavelet-Galerkin procedure to investigate time-periodic systems:transient vibration and stability analysis[J].Journal of Sound and Vibration, 2001,245(5):845-875
    [79]Yang S Y, Ni G Z. Wavelet-Galerkin method for computations of electromagnetic fields[J].IEEE Transactions on Magnetics, 1998, 34(5):2493-2396
    [80]Fujii M, Hoefer W J R. Application of biorthogonal inter polating wavelets to the Galerkin scheme of time dependent Maxwell's equations[J].IEEE Microwave and Wireless Components Letters, 2001,Ⅱ(1):22-24
    [81]Fujii M, Hoefer W J R. Time-domain wavelet galerkin modeling of two-dimensional electrically large dielectric waveguides[J].IEEE Transactions on Microwave Theory & Techniques, 2001,49(5):886-892
    [82]杨仕友,倪光正.小波伽辽金有限元法及其在电磁场数值计算中的应用[J].中国电机工程学报,1999, 19(1):56-61
    [83]石陆魁,沈雪勤,颜威利.小波插值Galerkin法解二维静态电磁场中的边值问题[J].中国电机工程学报,2000, 20 (9): 13-16
    [84]Wang G F .Application of wavelets on the interval to the analysis of thin-wire antennas and scatterers[J].IEEE Transactions on Antennas and Propagation, 1997, 45(5):885-893
    [85]Chen W S, Lin W. Galerkin trigonometric wavelet methods for the natural boundary integral equations[J].Applied Mathematics and Computation, 2001(121):75-92
    [86]Bertoluzza S .An adaptive collocation method bsded on interpolating wavelets[M]//Dahmen W. Multiscale Wavelet Methods for PDEs, New York: Academic Press, 1997
    [87]Chen Z, Xu Y. The Petrov-Galerkin and iterated Petrov-Galerkin methods for second kind integral equations[J]. SIAM J. Numer. Anal.,1998, 35: 406-434
    [88]Chen Z,Micchelli C A,Xu Y .Discrete wavelet Petrov-Galerkin methods[J].Advanced in ComputationalMathematics, 2002, 16: 1-28
    [89]Ko J,Kurdila A J, Pilant M S.A class of finite element methods based on orthonormal, compactly supported wavelets[J].Computational Mechanics, 1995,16: 235-244
    [90]Chen W H,Wu C W .Spline wavelets element method for frame structuresvibration [J].Computational Mechanics, 1995, 16(1):1-21
    [91]Chen W H, Wu C W. Adaptable spline element for membrave vibration analysis[J].International Journal for Numerical Methods in Engineering, 1996, 39: 2457-2476
    [92]Amaratunga K, Williams J R. Wavelet-Galerkin solution of boundary value problems[J].Archives of Computational Methods in Engineering, 1997,(3):243-285
    [93]Sudarshan R, Heedene S, Amaratunga K. A multiresolution finite element method using second generation Hermitelnultiwavelets[J].Second MIT Conference on Computational Fluid and Solid Mechanics 2003:1-6
    [94]Patton R D, Marks P C .One-dimensional finite elements based on the Daubechies family of wavelets. AIAA Journal, 1996, 34(8):1696-1698
    [95]Mei H, Agrawal O P. Wavelet-based model for stochastic analysis of beam structures[J].AIAA Journal, 1998, 36(3):465-470
    [96]Castro L, Freitas J. Wavelets in hybrid-mixed stress elemets[J]. Computer Methods in Applied Mechanics and Engineering, 2001,190: 3977-3998
    [97]Ho S L, Yang S Y, Wong H C, Weak formulation of finite element method using wavelet basis function[J]. IEEE Transactions on Magnetics, 2001,37(5):3203-3207
    [98]Christon M A, Roach D W. The numerical performance of wavelets for PDEs: the multi-cale finite element[J].Computational Mechanics, 2000, 25: 230-244
    [99]Canuto C, Tabacco A,Urban K. The wavelet element method Part Ⅰ: construction and analysis [J].Applied and Computational Harmonic Analysis, 1999, 6: 1-52
    [100]Canuto C, Tabacco A,Urban K. The wavelet element method Part Ⅱ: realization and additional features in 2D and 3D[J].Applied and Computational Harmonic Analysis, 2000, 8: 123-165
    [101]徐长发,冯勇,裴月琴.B小波有限元法数值稳定性分析[J].华中理工大学学报,1996, 24(6):105-112
    [102]周又和,王记增,郑晓静.小波伽辽金法有限元法在梁板结构中的应用[J].应用数学和力学,1998, 19(8):697-706
    [103]骆少明,张湘伟.一类基于小波基函数插值的有限元方法[J].应用数学和力学,2000, 21 (1):11-16
    [104]杜守军,赵国景.多分辨率样条平面单元[J].工程力学,1999, 16 (5): 3340
    [105]梅树立,张森文,雷廷武.Burgers方程的小波精细积分算法[J].计算力学学报,2003, 20 (1):49-52
    [106]韩建刚,石智,黄义,等.有限长梁的B-样条小波解[J].西安科技学院学报,2003, 23 (4):481-484
    [107]韩建刚,黄义.小波伽辽金有限元法及其应用[J].西安建筑科技大学学报(自然科学版),2004,36 (4):413-416
    [108]黄义,韩建刚.中厚板问题的多变量小波有限元法[J].工程力学,2005, 22 (2): 73-78
    [109]黄义,韩建刚.薄板小波有限元理论及其应用[J].计算力学学报,2006, 23 (1): 76-80
    [110]杨胜军.区间B样条小波有限元理论及工程应用研究[D].西安:西安交通大学,2002
    [111]马军星.Daubechies小波有限元理论及工程应用研究[D].西安:西安交通大学,2003
    [112]马军星,薛继军,杨胜军,等.Daubechies小波基梁单元的构造及其应用研究[J].小型微型计算机系统,2004, 25 (4): 663-666
    [113]马军星,王进.弹性地基梁小波有限元分析[J].系统仿真学报,2007, 19 (10): 2183-2185
    [114]薛继军,杨龙,王新虎.基于小波有限元的裂纹损伤梁分析[J].系统仿真学报,2005, 17 (8):1816-1819
    [115]陈雪峰.小波有限元理论与裂纹故障诊断[D].西安:西安交通大学,2004
    [116]陈雪峰,杨胜军,马军星,等.小波有限元的研究及其工程应用[J].西安交通大学学报,2003,37(1):1-4
    [117]李兵,陈雪峰,卓颉,等.小波伽辽金方法及其工程应用研究[J].机械科学李兵.基于小波有限元理论的裂纹故障诊断[D].西安:西安交通大学,2005
    [118]向家伟,陈雪峰,何育民,等.一种区间B样条小波平板壳单元及应用[J].固体力学学报, 2005,26(4):453-458
    [119]向家伟,陈雪峰,李兵,等.一维区间B样条小波单元的构造研究[J].应用力学学报,2006,23(2):222-227
    [120]向家伟,陈雪峰,董洪波,等.薄板弯曲和振动分析的区间B样条小波有限法[J]. 工程力学,2007, 24 (2):56-61
    [121]何育民,陈雪峰,向家伟,等.基于第二代小波的自适应有限元构造研究[J]西安交通大学学报,2000, 40 (9): 1092-1095
    [122]周瑞忠,周小平,缪圆冰.小波基无单元法及其工程应用[J].工程力学,2003, 20 (6): 70-74
    [123]周小平,周瑞忠.无单元法研究现状及展望[J].工程力学,2005, 22 (1): 12-20
    [124]吴琛,周瑞忠.小波基无单元法及其与有限元法的比较[J].工程力学,2006, 23 (4): 28-32
    [125]Candela V. Computation of shift operators in orthonormal compactly supported wavelet bases [J].SIAM Journal of Numerical Analysis, 1994, 31(3):768-787
    [126]Chen M Q, Hwang C, Shih Y P. The computation of wavelet-Galerkin approximation on a bounded interval. International [J].Journal for Numerical Methods in Engineering,1996, 39: 2921-2944
    [127]Yang S Y,Ni G Z.Wavelet-Galerkin method for computalions of electromagnetic fields-computation of connection coefficients[J].IEEE Transactions on Magnetics, 2000, 36(4):644-648
    [128]Feng J, Ye T Q. Instability analysis of prismatic members by wavelet-Galerkin method[J].Advances in Engineering Software, 1999, 30: 361-367
    [129]Monasse P, Perrier V. Orthonormal wavelet bases adapted for partial differential equations with boundary conditions[J].SIAM Journal on Mathematical Analysis 1998, 29(4):1040-1065
    [130]Lin E B,Zhou X. Connection coefficients on an interval and wavelet solutions of Burgers equation [J].Journal of Computational and Applied Mathematics, 2001,135:63-78
    [131]Ma J X, Xue J J,Yang S J, et al.A study of the construction and application of a Daubechies wavelet-based beam element[J].Finite Elements in Analysis and Design, 2003,39(10):965-975
    [132]Chen X F, Yang S J, He Z J, et al. The construction of wavelet finite element and its application [J].Finite Elements in Analysis and Design, 2004, 40: 541-554
    [133]南京工学院数学教研组.积分变换[M]. 3版.北京:高等教育出版社,1989
    [134]程正兴.小波分析与应用实例[M].西安:西安交通大学出版社,2006
    [135]程其襄,张奠宙,魏国强,等.实变函数与泛函分析[M]. 2版.北京:高等教育出版社,2003
    [136]侯友良.实变函数基础[M].武汉:武汉大学出版社,2002
    [137]程云鹏.矩阵论[M]. 2版.西安:西北工业大学出版社,1999
    [138]王勖成.有限单元法[M].北京:清华大学出版社,2003
    [139]刘明才.小波分析中的若干数值计算问题[D].长春:吉林大学,1999: 14
    [140]Mcwlliam S, Knappett D J, Fox C H J.Numerical solution of the stationary FPK equation using Shannon wavelets[J].Journal of Sound and Vibration, 2000, 232 (2):405-430
    [141]Vasilyev O V, Bowman C. Second-generation wavelet collocation method for the solution of partial differential equations[J].Journal of Computational Physics,2000,165:660-693
    [142]吴永清,贾向红,张国雄.小波配置法中对边界处理的改进[J].天津大学学报,2000, 33 (3 ):324-327

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700