氩/氨混合气体放电的模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ar/NH3混合气体放电在便携式氢气发生装置、保护环境、氮化硅薄膜沉积、磁性液体制备和纳米碳管改性等方面都有极其重要的应用。尽管存在关于Ar/NH3混合气体放电等离子体的部分实验和理论结果,但是由于成分复杂,粒子密度变化迅速等原因,测量等离子体参数需要复杂的实验设备。当前大气压等离子体放电的实验诊断手段仍旧十分有限。本项研究采用流体模型求解不同放电机制下Ar/NH3混合气体放电中的电子、离子和中性粒子的连续性方程,电子能量守恒方程和泊松方程,主要研究了等离子体参数对氨的主要中性产物和氨离子密度空间分布的影响。
     本论文的研究内容概括如下:
     第一章叙述了Ar/NH3混合气体放电的应用及理论和实验的研究进展,并阐述了本项研究的意义和主要内容。
     第二章采用一维流体模型对大气压直流平板电极Ar/NH3混合气体放电进行模拟,探讨了在该放电模式时,氨气浓度和压强对粒子密度的影响。模拟发现,最主要的离子是Ar2+和Ar+,Ar2+的密度比Ar+的密度约高一个数量级。发现NH2的密度随着压强的增加而增加的趋势比NH的密度随着压强的变化更明显。随着氨气浓度的增加和压强的增大,NH4+在氨离子中所占的比例变大,-而NH2-变化的趋势相反。NH+的密度比氨的其它正离子的密度低得多。并采用二维流体模型的结果与一维流体模型的结果进行比较。
     第三章采用一维流体模型对大气压同轴电极介质阻挡Ar/NH3混合气体放电进行模拟,探讨了氨气中间态粒子密度的空间分布和氨气浓度对粒子密度、气体温度和电子温度的影响。模拟发现,在该放电模式下,H2的密度大于H的密度。NH4+成为最主要的氨离子。氨气的浓度较低时,Ar2+离子的密度高于Ar+离子的密度。随着氨气浓度的增加,氨气分解产生大量的NH,H2和NH2分子,Ar2+离子与其反应被大量消耗,使得Ar+离子的密度高于Ar2+离子的密度。随着氨气浓度的增加,气体温度略升高,而电子温度则略降低。
     第四章采用二维轴对称的流体方程对低压微波电子回旋共振Ar/NH3混合气体放电进行模拟。探讨了压强和微波功率对粒子密度的影响。模拟发现,随着微波功率的增加,电子和氨离子的密度均增加,然而其空间分布的均匀性变差。在低压下,NH3+离子的密度依次高于NH2+, NH4+和NH+离子的密度。
     第五章采用二维混合模型模拟了氨气浓度对低压磁控直流平板电极设备中Ar/NH3混合气体放电的影响。模拟发现,在压强为5mTorr时,Ar+密度明显高于Ar2+密度,在氨离子中NH3+的密度最大,然后依次是NH2+, NH4+和NH+。当氩气和氨气的体积比为1:1时,主要带电粒子的密度减小,其空间分布的均匀性变好。电子温度略有增加。
Ar/NH3admixture plasma discharge has an extremely important role in portable hydrogen generating device, environment protection, silicon nitride thin film deposition, magnetic fluid preparation and nanotube modification and so on. Although there were the partial experimental results and theoretical calculation results on Ar/NH3admixture plasma discharge, complex components and the densities significantly changed with time, and the complex equipments have been to measure the spatial and temporal parameters. The direct experimental diagnosis on the atmospheric pressure plasma discharge is still limited at present. The fluid model of the Ar/NH3admixture plasma discharges has been developed to solve the continuity equations for electron, ions and radials and the electron energy conservation equation and Poisson's equation at the different discharge mechanism. The plasma parameters how to influence on the spatial distribution of the main radicals and ions of ammonia are studied by simulation.
     The research contents of the thesis are summarized as follows:
     In chapter one, the applications and the research progress of theory and experiment on argon and ammonia admixture discharge are described, and the significance and the main content of the research are introduced.
     In chapter two, the one-demonsional fluid model is adopted to simulate Ar/NH3admixture direct current discharge in planar electrode at atmospheric pressure. The ammonia concentration and the pressure how to effect on the particle density in the discharge mode are discussed. It found that the main ions are Ar2+and Ar+, the Ar2+density is about one order higher than the Ar+density.The density of NH2increases with pressure increased which is more obvious than that of NH. The proportion of NH4+density to that of ammonia ions becomes larger, while the NH2-density has an opposite trend when the ammonia concentration and pressure increased. And the density of NH+is significantly lower than that of the other positive ammonia ions. The results of two-dimensional fluid model are compared with those of one-dimensional fluid model.
     In chapter three, the one-demonsional fluid model is used to calculate an atmospheric pressure Ar/NH3admixture dielectric barrier discharge between the coaxial electrodes. The spatial distribution of the ammonia radials and the impact of ammonia concentration on the particle density, gas temperature and electron temperature are discussed respectively. It found that in the discharge mode the H2density is more than that of H. NH4+becomes the most important ammonia ion. The Ar2+ion density is higher than that of Ar+ion as ammonia concentration is low.Along with ammonia concentration increased, a large number of NH, H2and NH2are generated by the ammonia decomposition, and then Ar2+is consumed by reaction with them, it makes the Ar+ion density is higher than that of Ar2+ion. Along with ammonia concentration increased, gas temperature slightly increased, while electron temperature is slightly lower.
     In chapter four, the two-dimensional axisymmetric fluid model is used to simulate Ar/NH3admixture microwave electron cyclotron resonance discharge at low pressure. The impact of pressure and microwave power on the particle density is discussed. It found that the density of electron and the ammonium ions increased with the microwave power increased, while the uniformity of the spatial distribution is decreased. The NH3+density sequentially higher than that of the NH2+, NH4+and NH+ions at low pressure.
     In chapter five, the two-dimensional hybrid model is adopted to investigate ammonia concertion how to influence on the Ar/NH3admixture discharge in the magnetized direct current planar device at low pressure.lt found that the Ar+density is signficantly higher than the Ar2+density at5mTorr, and the most ammonia ion is NH3+, sequentially followed by NH2+, NH4+and NH+. The main charged particles density is lower, and the spatial distribution is slightly uniform, and the electron temperature is slightly increase as the volume ratio of argon and ammonia is1:1.
引文
[1]刘春阳.等离子体催化氨气裂解制氧的研究[D]:(硕士学位论文).大连:大连理工大学,2006.47-48.
    [2]Qiu H., Martus K., Lee W. Y., et al. Hydrogen generation in a microhollow cathode discharge in high-pressure ammonia-argon gas mixtures[J]. Int J Mass Spectrom.,2004,233:19-24.
    [3]张强,耿冠楠,王斯文等。卫星遥感观测中国1996-2010年氮氧化物排放变化[J].科学通报,2012,57(16):1446-1453.
    [4]Fateev A., Leipold F., Kusano Y., et al. Plasma Chemistry in an Atmospheric Pressure Ar/NH3 Dielectric Barrier Discharge[J]. Plasma Process. Polym.,2005,2:194,197-198.
    [5]Van den Oever P. J., Van Helden J. H. Lamers, C. C. H., et al. Density and production of NH and NH2 in an Ar-NH3 expanding plasma jet[J]. J. Appl.Phys.,2005,98:093301.
    [6]Van den Oever P. J., Van Hemmen J. L., Van Helden J. H., et. al. Downstream ion and radical densities in an Ar-NH3 plasma generated by the expanding thermal plasma technique[J]. Plasma Sources Sci.Technol.,2006,15:546-555.
    [7]Xuehui L.,Zhisheng L., Hong A.,et al. Preparation of nano-magnetic fluid using plasma technique and its application in safety valves[J]. Surf. Coat. Technol.,2007,201:5371-5373.
    [8]Changlun C., Bo L., Di L., et al. Amino group introduction onto multiwall carbon nanotubes by NH3/Ar plasma treatment[J]. Carbon,2010,48:939-948.
    [9]Hayama M., Chang J.S.,Yamada M.,et. al. Plasma and free radical parameters in an Ar-NH3 molecular beam plasma processing system[C]. International Symposium on Plasma Chemistry, Tokyo,1987:2156-2161
    [10]Arakoni R., Bhoj A., Kushner M..H2 generation in Ar/NH3 microdischarges[J]. J. Phys.D Appl. Phys.,2007,40:2476-2490.
    [11]Kloc P., Wagner H-E., Trunec D., et al. An investigation of dielectric barrier discharge in Ar and Ar/NH3 mixture using cross-correlation spectroscopy[J]. J. Phys. D:Appl. Phys.,2010,43:345205
    [12]尚万里.大气压射频辉光放电模式转换机制的流体力模拟[D]:(博士学位论文).大连:大连理工大学,2009.2-9
    [13]Farouk T. I..Modeling and Simulations of DC and RF Atmospheric Pressure Non^thermal Micro Plasma Discharges:Analysis and Applications[D]. Drexel:Drexel Univ.,2009.25-28
    [14]Balcon N. Hagelaar, G. J. M., Boeuf J. P.. Numerical Model of an Argon Atmospheric Pressure RF Discharge[J]. IEEE Trans. Plasma Sci.,2008,36(5):2782
    [15]Balcon N., Aanesland A., Hagelaar G. J. M.,et al. Atmospheric pressure RF discharge in argon:optical diagnostic, fluid model and applications[C].28th ICPIG, Prague, Czech Republic,2007:15-20.
    [16]Park J.,Henins P. I., Herrmann W., et al.Gas breakdown in an atmospheric pressure radio-frequency capacitive plasma source[J]. J.Appl. Phys.,2001,89:15.
    [17]Park J., Henins I., Herrmann H. W., et al. Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source[J]. J.Appl. Phys.,2001,89:20-28.
    [18]Yonesu A., Takemoto H., Hirata M., et al. Development of a cylindrical DC magnetron sputtering pparatus assisted by microwave plasma[J]. Vacuum,2002,66:275-278.
    [19]Kim H., Kwon D., Yoon N.. A one-dimensional fluid simulation of a magnetized DC discharge including the non-uniform effects of the magnetic field[J].Curr Appl Phys.,2009,9:647-650.
    [20]Rafatov I. R., Akbar D..Bilikmen S..Modelling of non-uniform DC driven glow discharge in argon gas[J]. Phys Lett A,2007,367:114-119.
    [21]Hash D. B., Bell M. S., Teo K. B. K., et al. An Investigation of Plasma Chemistry for dc Plasma Enhanced Chemical Vapor Deposition of Carbon Nanotubes and Nanofibers[R]. California:NAS Technical Report NAS-05-002,2005.12-13.
    [22]Kolev I..Bogaerts A..Detailed Numerical Investigation of a dc Sputter Magnetron[J]. IEEE Trans. Plasma Sci.,2006,34(3):886-894.
    [23]Koleva I.,Bogaerts A..Numerical study of the sputtering in a dc magnetron[J]. J. Vac.Sci. Technol.,2009,27:20-28.
    [24]赵永莉.变气压直流辉光放电的数值模拟[D]:(硕士学位论文).大连:大连理工大学,2008.19-22.
    [25]Konnov A. A., Ruyck J. D.. Kinetic Modeling of the Decomposition and Flames of Hydrazine[J]. Combustion and Flame,2001,124:108-109.
    [26]Kushner M. J.. Simulation of the gas-phase processes in remote-plasma-activated chemical-vapor deposition of silicon dielectrics using rare gas-silane-ammonia mixtures[J]. J. Appl. Phys.,1992,71:4173-4189.
    [27]Bogaerts A., Yan M.,Gijbels R..Modeling of ionization of argon in an analytical capacitively coupled radio-frequency glow discharge[J]. J. Appl. Phys.,1999,86(6):2993-2994.
    [28]Tanaka Y..Thermally and chemically non-equilibrium modelling of Ar-N-H inductively coupled plasmas at reduced[J]. Thin Solid Films,2009,518(3):936-942.
    [29]Bogaerts A.. Hybrid Monte Carlo-Fluid model for studying the effects of nitrogen addition to argon glow discharges[J]. Spectrochimica Acta Part B,2009,64:126-140.
    [30]Mankelevich Y. A.,Ashfold M. N. R.,Jie M.. Plasma-chemical processes in microwave plasma-enhanced chemical vapor deposition reactors operating with C/H/Ar gas mixtures[J]. J. Appl.phys.,2008,104:113304.
    [31]Capitelli M., Ferreira C. M., Gordiets B. F., et al. Plasma Kinetics in Atmospheric Gases[M]. New York:Springer-Verlag,2000:159-181.
    [32]Davies D. K., Kline L. E., and Bies W.E.. Measurements of swarm parameters and derived electron collision cross sections in methane[J]. J. Appl. Phys.,1989,65:3311.
    [33]Dbhoj A. N.. Multiscale simulation of atmospheric pressure pulsed discharges used in polymer surface functionalization[D]. Illinois:University of Illinois,2006. 49,51,53,54,276-282,299-308.
    [34]Van Helden J. H.. The Generation of Molecules through Plasma-Surface Interactions [D]. Eindhoven:Technische Universiteit Eindhoven,2006.47-51,81,84,86,118,120,142.
    [35]Dorai R..Modeling of Plasma Remediation of NOx Using Global Kinetic Models Accounting for Hydrocarbons[D]. Urbana-Champaign:University of Illinois,2000.71-83.
    [36]Yanguas-Gil A..Cotrino J., Gonzolez-Elipe A. R.. Measuring the electron temperature by optical emission spectroscopy in two temperature plasmas at atmospheric pressure:A critical approach[J]. J. Appl. phys.,2006,99:033104.
    [37]Fridman A.,Kennedy L.A..Plasma physics and Engineering[M]. New York:Taylor&Francis Books,Inc.,2004:18,39,40,49,55.
    [38]Lymberopoulos D. P., Economou. D. J. Two-Dimensional Self-Consistent Radio Frequency Plasma Simulations Relevant, to the Gaseous Electronics Conference RF Reference Cell [J]. Volume,1995,100(4):473-494.
    [39]Pancheshnyi S., Eismann B., Hagelaar G. J. M., et al. Computer code ZDPlasKin[CP/OL]. France:University of Toulouse,2008. http://www. zdplaskin. laplace.univ-tlse.fr
    [40]Karoulina E. V., Lebedev Y. A.. Computer simulation of microwave and DC plasmas: comparative characterization of plasmas[J]. J. Phys. D:Appl.Phys.,1992,25:401412.
    [41]Xudong X..Dynamics of high-and-low-pressure plasma remendiation[D]. Urbana-Champaign:University of Illinois,2000:81,182-202.
    [42]Brok W. J. M.. Modelling of Transient Phenomena in Gas Discharges[D]. Eindhoven:Technische Universiteit Eindhoven,2005:84,105,131,150.
    [43]Gentile A. C..Kinetic Processes and Plasma Remediation of Toxic Gases. University of Illinois at Urbana-Champaign[D]. Urbana:Univ. of Illinois,1995:27,151-173.
    [44]Bogaerts A., R. Gijbels. Hybrid Monte Carlo-fluid modeling network for an argon hydrogen direct current glow discharge[J], Spectrochimica Acta Part B,2002,57:1071-1099.
    [45]Nowling G. R., Babayan S. E. Yang, X.,et al.The reactions of silane in the afterglow of a helium-nitrogen plasma[J]. Plasma Sources Sci. Technol.,2004,13:160.
    [46]Guerra V.,S'a P. A., Loureiro J.. Kinetic modeling of low-pressure nitrogen discharges and post-discharges[J]. Eur. Phys. J. Appl. Phys.,2004,28:125-152.
    [47]Herrebout D..Modeling of methane, acetylene and silane plasmas:study of the plasma chemistry[D].Antwerpen:Universiteit Antwerpen,2003:26-28,36,38,92,107.
    [48]Deconinck T., Raja L. L.. Modeling of Mode Transition Behavior in Argon Microhollow Cathode Discharges[J]. Plasma Process. Polym.,2009,6:339.
    [49]Neyts E., Yan M., Bogaerts A., et al. PIC-MC simulation of an RF capacitively coupled Ar/H2 discharge[J].Nucl. Instr. and Meth. in Phys. Res. B,2003,202:300-304.
    [50]Anicich V.G..An Index of the literature for bimolecular gas phase cation-Molecule reaction kinetics[J]. J. P. L. Publication,2003,19:03-19.
    [51]Janev R. K..Reiter D., and Samm U..Collision Processes in Low-Temperature Hydrogen Plasmas[R]. Julich:Forschungszentrum Julich,2003.11,34,37,41,71,97,137.
    [52]Hagelaar G..Modeling of Microdischarges for Display Technology[D]. Eindhoven:University of Technology,2000:21,23.
    [53]Soloshenko I. A., Tsiolko V. V., Khomich V. A., et al. Sterilization of Medical Products in Low-Pressure Glow Discharges[J]. Plasma phys rep+,2000,26:792-800.
    [54]Bandyopadhyay M.. Studies of an inductively coupled negative hydrogen ion radio frequency source through simulations and experiments[D]. Munchen:Technische Universitat,2004:60.
    [55]Salabas A.. Fluid model for charged particle transport in capacitively coupled radio-frequency discharges[D]. Lisboa:University of Lisboa,2003:47-49,55,56.
    [56]Van den Oever P. J.. In Situ studies of Silicon-based thin film growth for crystalline silicon solar cells[D]. Eindhoven:Technische Universiteit Eindhoven,2007:34-37,56.
    [57]Tarnovsky V.,Deutsch H.,Becker K..Cross-sections for the electron impact ionization of NDx (x=1-3)[J].Int. J. Mass Spectrom. Ion Process,1997,69:167-168.
    [58]Yuan X., Raja L. L.. Computational study of capacitively coupled high pressure glow discharges in Helium[J]. IEEE Trans. Plasma Sci.,2003,31(4):495-503.
    [59]Martens T..Numerical simulations of dielectric barrier discharges[D]. Antwerpen:Universiteit Antwerpen,2010:63.
    [60]Meeks E., Larson R. S., Ho P., et al. Modeling High-Density-Plasma Deposition of SiO2 in SiH4/O2/Ar[R]. Livermore:Sandia national laboratories,1997.14-19.
    [61]Barreto P. R. P.. Desenvolvimento de Mecanismo Cinetico para o Crescimento de Nitreto de Boro, Relatorio de Pesquisa[R]. Relatorio de Pesquisa:INPE-8701-PRP/227,2002.19-20,50-70.
    [62]Bultinck E.,Mahieu S.,Depla D., et al. Reactive sputter deposition of TiNx films, simulated with a particle-in-cell/Monte Carlo collisions model[J]. New J. Phys., 2009,11:023039.
    [63]Frignani M. and Grasso G.. Argon cross sections for PIC-MCC codes[R]. University of Bologna:Technical Report No. LIN-ROl,2006,3-7.
    [64]Phelps A. V.. Cross sections and swarm coefficients for H+, H2+, H3+, H, H2, and H in H2 for energies from 0.1 eV to 10 keV[J].J. Phys. Chem. Ref. Data,1990,19:656.
    [65]Hagelaar G. J. M., Pitchford L. C.. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Sci. Technol.,2005, (14):722-733.
    [66]Govindan T. R., Meyyappan M.. One-Dimensional Modeling Studies of the Gaseous Electronics Conference RF Reference Cell[J]. J. Res. Natl. Inst. Stand. Technol.,1995,100:463-472.
    [67]Kim S.. An Improved Global Model for Electronegative Discharge and Ignition Conditions for Peripheral Plasma Connected to a Capacitive Discharge[R].Berkeley:Electrical Engineering and Computer Sciences University of California,2006.152-153.
    [68]Fridman A. Plasma Chemistry[M]. Cambridge:Cambridge University Press,2008:107,110.
    [69]Tsay M. M. Numerical Modeling of a Radio-Frequency Micro Ion Thruster[D]. Massachusetts Massachusetts Institute of Technology,2006.96.
    [70]Smirnov B. M.. Plasma Processes and Plasma Kinetics[M]. Weinheim:Verlag GmbH&Co. KGaA,2007:538,552,556-561.
    [71]Herrebout D., Bogaerts A., Yan M., et al. One-dimensional fluid model for an rf methane plasma of interest in deposition of diamond-like carbon layers[J]. J.Appl. Phys.,2001,90:570-579.
    [72]Perrin J., Leroy 0., and Bordage M. C.. Cross-Sections, Rate Constants and Transport Coefficients in Silane Plasma Chemistry[J]. Contrib. Plasma Phys.,1996,36:1,15,16,24,25.
    [73]Ivanov Y. V.. Model ing of ICP reactive discharges and numerical investigation of related nonlinear[D].Bochum:Ruhr-Universitat,2004:133.
    [74]Chen F. F., Change J. P.. Lecture notes on principles of plasma processing[M].New York:Kluwer Academic/Plenum Publishers,2003:30-31,130.
    [75]Kee R. J., Dixon-Lewis G., Warnatz J.,et al.A fortran computer code package for the evaluation of gas-phase, multicomponent transport properties[CP]. Livermore:Sandia national laboratories,1998.42-43.
    [76]Salabas A., Marques L.,Jolly J., et al. Systematic characterization of low-pressure capacitively coupled hydrogen discharges[J]. J.Appl.phys.,2004,95:4605-4620.
    [77]Sockalingam S.. Coupling of Fluid Thermal Simulation for Nonablating Hypersonic Reentry Vehicles Using Commercial Codes FLUENT and LS-DYNA[D]. Cincinnati:Univ.of Cincinnati,2008:7.
    [78]Capitelli M., Ferreira C. M., Gordiets B. F., et al. Plasma Kinetic in Atmospheric Gases[M]. Germany:Springer-Verlag Berlin Heidelberg,2000:97.
    [79]Ellis H. W.,Pai R. Y., McDaniel E.W.,et al. Atomic Data & Nucl Data Tables[DB].1976,17:177.
    [80]Stafford D. S.. Modeling of singlet-delta oxygen yields in flowing electric discharges[D]. Urbana:Univ. of Illinois,2004.11.
    [81]Arakoni R. A.. Simulation of flowing plasma discharges with applications to lasers, fuel cells, and microthrusters[D]. Urbana-Champaign:University of Illinois,2003:17,28,31,217-225.
    [82]Sonntag R. E., Gordon C. B.,Wylen J. V.. Fundamentals of Thermodynamics[M].6th ed. New York:John Wiley&Sons Inc,2003:13.13-13.26.
    [83]迈克尔.A.力伯曼,阿伦.J.里登伯格(著).蒲以康(译).等离子体放电原理与材料处理[M].北京:科学出版社,2007:12-15.
    [84]Jimenez F.,Ekpe S. D., and Dew S. K.. Modeling of Low Pressure Magnetron Plasma Discharge[C].the Proceedings of the COMSOL Conference,Boston,2007.
    [85]王颖鑫.微波电子回旋共振等离子体数值模拟[D]:(硕士学位论文).大连:大连理工大学,2007.24-28.
    [86]Clyne M. A. A., and Stedman D. H..Rate of recombination of nitrogen atoms[J].J. Phys. Chem.,1967,71:3071.
    [87]Smith J.A.,Wills J. B.,Moores H. S., et al. Effects of NH3 and N2 additions to hot filament activated CH4/H2 gas mixtures[J].J. Appl. Phys.,2002,92:672-681.
    [88]Bogaerts A., R. Gijbels. Role of Ar2+ and Ar2+ ions in a direct current argon glow discharge:A numerical description[J]. J. Appl. Phys.,1999,86(8):4125-4126.
    [89]Wan-Yu D., Jun X., Wen-Qi L., et al. The effect of N2 flow rate on discharge characteristics of microwave electron cyclotron resonance plasma[J]. Phys. plasmas,2009,16:053502.
    [90]Petrovi'c D.,Martens T.,Dijk J.v.,et al. Fluid modelling of an atmospheric pressure dielectric barrier discharge in cylindrical geometry[J].J. Phys. D:Appl. Phys.,2009,42: 205206.
    [91]赵青,刘述章,童洪辉.等离子体技术及应用[M].北京:国防工业出版社,2007:90-124.
    [92]Petrovi'c D., Martens T., Dijk J. v., et al. Modeling of a dielectric barrier discharge used as a flowing chemical reactor[J].J J. Phys.:Conference Series,2008,133:012023.
    [93]Kim G. J., Iza F., K. Lee J.. Electron and ion kinetics in a micro hollow cathode discharge[J].J. Phys. D:Appl. Phys.,2006,39:4386-4392.
    [94]Bie C. D., Martens T., Petrovi6 D., et al. The plasma chemistry in an atmospheric pressure CH4 dielectric barrier discharge described using a two dimensional fluid model[C]. Proceedings 19th International symposium on plasma chemistry, Bochum,2009.26-31.
    [95]Bogaerts A.,Bie C. D., Eckert M., et al. Modeling of the plasma chemistry and plasma-surface interactions in reactive plasmas[J], Pure Appl. Chem.,2010,82(6):1283-1299.
    [96]Jiang T.,Li Y., Liu C.J.,et al. Plasma Methane Conversion Using Dielectric-barrier Discharges with Zeolite A[J]. Catal. Today,2002,72:229.
    [97]Pietruszka B., Anklam K., and Heintze M.. Plasma-assisted partial oxidation of methane to synthesis gas in a dielectric barrier discharge[J]. Appl. Catal. A:Gen.,2004,261:984.
    [98]Song H. K., Choi J. W., Yue S.H., et al. Synthesis Gas Production via Dielectric-Barrier Discharges over Ni/γ-Al2O3 Catalyst[J]. Catal. Today,2004,89:27.
    [99]Koh W. H.. Numerical Simulation of a Pulsed Corona Discharge Plasma[J].J Korean Phys Soc.,2003,42:S920-S924.
    [100]张远涛.大气压介质阻挡放电时空演化行为理论研究[D]:(博士学位论文).大连:大连理工大学,2006.11.
    [101]Golubovskii Y.B., Maiorov V., Behnke J. F.. Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen[J]. J. Phys. D:Appl. Phys.,2002,35:751.
    [102]Jia C., Linhong J., Yu Z., et al. Fluid model of inductively coupled plasma etcher based on COMSOL[J].J. Semicond.,2010,31(3):032004-2.
    [103]Bhoj A.N.,Kushner M. J.. Avalanche process in an idealized lamp:Ⅱ. Modelling of breakdown in Ar/Xe electric discharges[J]. J.Phys. D:Appl. Phys.,2004,37:2510-2526.
    [104]Kushner M.J.. Modeling of microdischarge devices:Pyramidal structures[J]. J. Appl. Phys.,2004,95(3):847-848.
    [105]Kessels W.M. M., Van den Oever P. J., Hoex B., et al. Controlling the silicon nitride film density for ultrahigh rate deposition of top quality anti reflection coatings[C]. Proc. 31st IEEE Photovoltaic Specialists Conf., Lake Buena Vista,2005:1253-1256.
    [106]Naddaf M., Hullavarad S. S., Bhoraskar V. N., et al. Nitridation of steel using a microwave ECR plasma[J]. Vacuum,2002,64:163-168.
    [107]Hong R. Y.,Feng B., Ren Z. Q., et al. Preparation of kerosene-based magnetic fluid under microwave irradiation via phase-transfer method[J]. Chem Eng J.,2008,144:329-335.
    [108]Felizardo E., Tatarova E., Dias F. M., et. al. Microwave Air-Water Plasma Torch-Experiment and Theory[C].36th EPS Conference on Plasma Phys,Sofia,2009,33E:P-2.111.
    [109]Mahalingam P., Dandy D. S.. A plasma discharge model of a microwave plasma diamond CVD reactor[J]. J. Vac.Sci. Technol.,2002, (A20):1247-1256.
    [110]Porteous R. K.,Wu H-M., and Graves D. B.,A two-dimensional, axisymmetric model of a magnetized glow discharge plasma[J]. Plasma Sources. Sci. Technol.,1994,3:25-39.
    [111]Bardos L., Barankova H., Gustavsson L. E., et al. New microwave and hollow cathode hybrid plasma sources[J].Surface & Coatings Technology,2004,177-178:651-656.
    [112]Geoffroy 0., Rouch H.. Microwave plasma modeling with COMSOL multiphysics[C]. the COMSOL Users Conference, Grenoble,2007.
    [113]Tsuji A., Yasaka Y., Kang S. Y., et al. A practical simulation scheme for slot-excited microwave plasma reactor equipped with dual shower plate[J]. Thin Solid Films,2008,516:4368-4373.
    [114]Huang Z. P., Xu J. W., Ren Z. F., et al. Growth of highly-oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition[J]. Appl. Phys. Lett.,1998,73:3845-3847.
    [115]Chhowalla M., Teo K. B. K., Ducati C., et al. Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition[J]. J. Appl. Phys.,2001,90:5308.
    [116]Bradley J.W., Lister G.. Model of the cathode fall region in magnetron discharges[J]. Plasma Sources Sci. Technol.,1997,6:524.
    [117]Pekker L..Longitudinal distribution of plasma density in the low-pressure glow discharge with transverse magnetic field[J]. Plasma Sources Sci. Technol.,1995,4:31.
    [118]Costin C., Marques L., Popa G.,et al.2D fluid approaches of DC magnetron discharge[J]. Plasma Source Sci. Technol.,2005,14:168-176.
    [119]Bradley J. W.. Study of the plasma pre-sheath in magnetron discharges dominated by Bohm diffusion of electrons[J]. Plasma Sources Sci. Technol.,1998,7:572.
    [120]Cramer N. F.. Analysis of a one-dimensional, steady-state magnetron discharge[J]. J. Phys. D:Appl. Phys.,1997,30:2573.
    [121]Kolev I.. and Bogaerts A.. Numerical Models of the Planar Magnetron Glow Discharges[J].Contrib. Plasma Phys.,2004,44(7-8):582-588.
    [122]Kim H-J., Kwon D-C., and Yoon N-S. An Efficient Method for One-Dimensional Fluid Simulation of DC Discharge[J]. J Korean Phys Soc.,2007,51(2):633-636.
    [123]Ivanov V.,Proshina 0., Rakhimova T., et al. Comparison of a one-dimensional particle-in-cell-Monte Carlo Model and a one-dimensional fluid model for a CH4/H2 capacitively coupled radio frequency discharge[J].J. Appl. Phys.,2002,91:6296-6302.
    [124]Nanbu K., Kageyama J..Detailed structure of dc glow discharges-effects of pressure, applied voltage, and γ-coefficient[J]. Vacuum,1996,47:1031-1033.
    [125]Shidoji E., Nemoto M., Nomura T., et al. Three-Dimensional Simulation of Target Erosion in DC Magnetron Sputtering[J].Jpn. J. Appl. Phys.,1994,33:4281-4284.
    [126]Ershov A., Pekker L.. Model of d. c. magnetron reactive sputtering in Ar-O2 gas mixtures[J].Thin Solid Films,1996,289:140-146.
    [127]Pekker L.. Plasma chemistry model of DC magnetron reactive sputtering in Ar-O2 gas mixtures[J]. Thin Solid Films,1998,312:341-347.
    [128]Goeckner M. J., Goree J. A., and Sheridan T.E.Monte Carlo Simulation of Ions in a Magnetron Plasma[J]. IEEE Trans. Plasma Sci.,1991,19(2):301-308.
    [129]Shon C. H., Lee J.K.,Lee H. J., et al. Velocity Distributions in Magnetron Sputter[J]. IEEE Trans. Plasma Sci.,1998,26(6):1635-1644.
    [130]Park J., Henins I., Herrmann H. W.,et al.Gas breakdown in atmospheric pressure radiofrequency capacitive plasma source[J]. J. Appl.phys.,2001,89:15-19.
    [131]Kondo S.,Nanbu K..A self-consistent numerical analysis of a planar dc magnetron discharge by the particle-in-cell/Monte Carlo method[J]. J. Phys.D:Appl. Phys.,1999, 32:1142-1152.
    [132]Nanbu K., Segawa. S., Kondo. S.. Self-consistent particle simulation of three-dimensional dc magnetron discharge[J]. Vacuum,1996,47:1013-1016.
    [133]Lin C., Sun D. C., Liu-Ming S.,et al. Magnetron facing target sputtering system for fabricating single-crystal films[J]. Thin Solid Films,1996,279:49-52.
    [134]Hippler R., Wrehde S., Stranok V.,et al. Characterization of a Magnetron Plasma for Deposition of Titanium Oxide and Titanium Nitride Films[J]. Contrib. Plasma Phys.,2005,45:348-357.
    [135]Choi Y. W., Bowden M., and Muraoka K..A Study of Sheath Electric Fields in Planar Magnetron Discharges using Laser Induced Fluorescence Spectroscopy[J]. Jpn. J.Appl. Phys.,1996,35(11):5858-5861.
    [136]Sheridan T. E., Gloeckner M. J., Goree J.. Observation of two-temperature electrons in a sputtering magnetron plasma[J]. J. Vac. Sci. Technol.,1991,A9:688.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700