金属及氧化物复合纳米材料的制备与电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型金属与金属氧化物复合纳米材料作为锂离子电池负极材料与燃料电池催化剂具有独特的结构优势,因而表现出了优越的电化学性能,被认为是新一代动力电池电极材料的理想选择。
     本论文提出了多种制备手段,包括湿化学法、化学气相沉积法、射频溅射法、电化学沉积法以及水热法等,合成了一系列金属和过渡金属氧化物的新型复合纳米材料,包括Co2SnO4@C复合纳米颗粒、Zn2Sn04@C复合纳米棒、Co3O4@SnO2@C复合纳米棒、CoO-Cu复合纳米棒阵列、CoO-NiSi复合纳米线阵列、CoO-graphene复合纳米片、Pt-Cu/C合金纳米晶、Rh-Pd/C合金纳米晶以及Pd-Cu/C合金纳米颗粒。由于上述复合纳米材料独特的结构与形貌特征,它们都表现出了优异的电化学性能,总结全文的工作,取得了以下主要创新结果:
     (1)采用简便的两步水热法合成了Co2SnO4@C复合纳米颗粒以及Zn2Sn04@C复合纳米棒并将其应用于锂离子电池负极材料中。由于碳层的体积缓冲效应与较高的电导率,包碳后的Co2SnO4@C复合纳米颗粒以及Zn2Sn04@C复合纳米棒负极材料与未包碳的纳米材料相比其循环性能有了较大的改善。
     (2)采用层层包覆的思想,通过水热反应结合后续的热处理合成了Co3O4@SnO2@C复合纳米棒并将其应用于锂离子电池负极材料中。由于碳层的体积缓冲效应与较高的电导率,包碳后的Co3O4@SnO2@C复合纳米棒负极材料与未包碳的纳米棒相比其循环性能有了较大的改善。
     (3)采用化学气相沉积与射频溅射的方法合成了CoO-Cu复合纳米棒以及CoO-NiSi复合纳米线阵列电极并将其应用于锂离子电池负极材料中。由于其独特的一维阵列化结构导致的充足的体积缓冲空间与较高的电导率,上述复合纳米阵列电极与平板电极相比其大电流下循环性能有了极大的改善。
     (4)采用油胺中原位生长的方法合成了高负载率的CoO-graphene复合纳米材料并将其应用于锂离子电池负极材料中。由于石墨烯复合结构的体积缓冲效应与极高的电导率,制备的CoO-graphene(9:1)复合纳米材料表现出优异的循环性能与极高的质量比容量,同时在大电流下电池的快速充放电性能也获得了较大的提高。
     (5)采用油胺共还原法合成了一系列不同组分的Rh-Pd合金纳米枝晶以及Pt-Cu合金纳米晶并将其作为催化剂应用于甲醇氧化与氧还原反应中。我们发现还原速率以及表面活性剂对于特定形貌纳米晶的成功合成起到至关重要的作用。由于它们独特的具有高指数晶面的微观结构以及双金属间的协同作用,上述合金纳米晶表现出优于商用铂碳催化剂的催化活性与稳定性。
     (6)采用油胺中共还原法合成了一系列不同尺寸的Pd-Cu合金纳米颗粒并将其制成了Pd-Cu/C催化剂。我们发现通过控制反应中加入十六烷基三甲基溴化铵(CTAB)的量能够实现对Pd-Cu产物尺寸的调控。我们同时还发现三辛基氧磷(TOPO)作为络合剂对于单分散合金纳米颗粒的成功合成起到至关重要的作用。由于其均匀的合金结构与较大的比表面积,Pd-Cu/C催化剂期望能在甲酸氧化反应中表现出良好的催化性能。
Due to the unique nano-structural properties, novel metal and metal oxide hybrid nanomaterials as anodes for lithium-ion batteries and catalysts for fuel cells are expected to exhibit excellent electrochemical performance, and therefore have been considered to be one of the most promising candidates as the electrode materials for the next generation of power batteries.
     In this dissertation, we propose various synthetic methods to obtain a rich variety of novel metal and metal oxide hybrid nanomaterials, including hydrothermal method, chemical vapor deposition (CVD), RF-sputtering, electrochemical deposition, and wet chemical method. By using hydrothermal method and subsequent calcination, Co2SnO4@C core-shell nanoparticles, Zn2SnO4@C core-shell nanorods, and Co3O4@SnO2@C core-shell nanorods have been prepared. By using electrochemical deposition and RF-sputtering methods, CoO-Cu nanorod arrays and CoO-NiSi nanowire arrays have been fabricated. In addition, CoO-graphene nanosheets, Pt-Cu/C alloy nanocrystals, Rh-Pd/C alloy nanodendrites, and Pd-Cu/C alloy nanoparticles have also been generated by using wet chemical method. Owing to their unique nano-structural properties, the above-mentioned hybrid nanomaterials exhibit excellent electrochemical performance. The main innovative results are displayed as follows:
     (1) Co2SnO4@C core-shell nanostructures and Zn2SnO4@C core-shell nanorods have been synthesized through a simple glucose hydrothermal and subsequent carbonization approach. These core-shell nanostructures remarkably improved the cyclic performance compared to pure Co2SnO4and Zn2SnO4nanocrystals, which can be attributed to the uniform and continuous carbon buffering matrix.
     (2) Co3O4@SnO2@C core-shell nanorods have been fabricated through a facile hydrothermal and subsequent carbonization approaches. These core-shell nanorods exhibited good cycling and enhanced power rate performances, which can be ascribed to the synergetic effect between CO3O4and SnO2, as well as the structural stability and improved electronic conductivity of the carbon matrix.
     (3) Nanostructured hybrid CoO/Cu and CoO/NiSiX core-shell nanowire array electrodes have been synthesized through chemical deposition and RF-sputtering. When applied as the anode material for lithium-ion batteries, the electrochemical performance of the nanostructured hybrid electrode is much better than planar electrode, which can be attributed to the large accessible surface area and improved electronic/ionic conductivity of the nanostructured electrodes.
     (4) Highly loaded CoO/graphene nanocomposites have been synthesized through a thermal decomposition process in a mixture containing Co(acac)3and graphene with oleylamine (OAm) as both solvent and reducing agent. The as-prepared highly loaded CoO/graphene nanocomposites were evaluated as anodes for lithium-ion batteries, which exhibited superior electrochemical performances including large reversible capacity, excellent cyclic performance, and high rate capability. We believed that the robust composite structures, large quantity of accessible active sites, and synergistic effects between CoO NCs and graphene may be responsible for the significantly enhanced performance.
     (5) Pt-Cu alloy concave nanocubes and Rh-Pd alloy nanodendrites with high-index facets in high qualities and yields have been synthesized through a facile oil-phase method under kinetic control. When supported on carbon, the alloy nanocrystals showed enhanced electrocatalytic activity and durability for methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) relative to the commercial Pt/C due to a combination of composition and facet effects.
     (6) CuPd alloy nanoparticles with average sizes varying from6-23nm have been synthesized by the coreduction of Pd(acac)2and Cu(acac)2with OAm as both the solvent and reductant and TOPO as a stabilizer. The amounts of CTAB in the reaction solution were a key to the successful size-control of alloy nanoparticles. In addition, TOPO played a key role in controlling nucleation and growth of Cu and Pd into CuPd alloy nanoparticles. These alloy nanoparticles are expected to exhibit the good performance as catalysts for formic acid oxidation.
引文
[I]J. M. Tarascon, and M. Armand. Issues and challenges facing rechargeable lithium batteries. Nature,2001,414 (6861):359-367.
    [2]O. K. Park, Y. Cho, S. Lee, H. C. Yoo, H. K. Song, and J. Cho. Who will drive electric vehicles, olivine or spinel?. Energy & Environmental Science,2011,4 (5):1621-1633.
    [3]B. Dunn, H. Kamath, and J. Tarascon. Electrical energy storage for the grid:a battery of choices. Science,2011,334 (6058):928-935.
    [4]J. B. Goodenough, and Y. Kim. Challenges for rechargeable Li batteries. Chemistry of Materials,2010,22 (3):587-603.
    [5]A. Arico, P. Bruce, B. Scrosati, J. Tarascon, and W. Van Schalkwijk. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials,2005,4 (5):366-377.
    [6]P. Balaya. Size effects and nanostructured materials for energy applications. Energy & Environmental Science,2008,1 (6):645-654.
    [7]Y. G. Guo, J. S. Hu, and L. J. Wan. Nanostructured materials for electrochemical energy conversion and storage devices. Advanced materials,2008,20 (15):2878-2887.
    [8]Y. Wang, H. Li, P. He, E. Hosono, and H. Zhou. Nanoactive materials for lithium-ion batteries. Nanoscale,2010,2 (8):1294-1305.
    [9]H. Li, Z. Wang, L. Chen, and X. Huang. Research on advanced materials for Li-ion batteries. Advanced materials,2009,21 (45):4593-4607.
    [10]C. Liu, F. Li, L. P. Ma, and H. M. Cheng. Advanced materials for energy storage. Advanced materials,2010,22 (8):E28-E62.
    [11]T. Fang, J. G. Duh, and S. R. Sheen. Improving the electrochemical performance of LiCoO2 cathode by nanocrystalline ZnO coating. Journal of The Electrochemical Society,2005,152 (9):A1701-A 1706.
    [12]N. C. Li, C. J. Patrissi, G. L. Che, and C. R. Martin. Rate capabilities of nanostructured LiMn2O4 electrodes in aqueous electrolyte. Journal of The Electrochemical Society,2000, 147 (6):2044-2049.
    [13]B. Kang, and G. Ceder. Battery materials for ultrafast charging and discharging. Nature, 2009,458(7235):190-193.
    [14]L. J. Fu, H. Liu, C. Li, Y. P. Wu, E. Rahm, R. Holze, H. Q. Wu. Surface modifications of electrode materials for lithium ion batteries. Solid State Science,2006,8 (2):113-128.
    [15]X. H. Huang, Y. F. Yuan, Z. Wang, S. Y. Zhang, and F. Zhou. Electrochemical properties of NiO/Co-P nanocomposite as anode materials for lithium ion batteries. Journal of Alloys and Compounds,2011,509 (7):3425-3429.
    [16]P. Wu, N. Du, H. Zhang, J. X. Yu, and D. R. Yang. Carbon nanocapsules as nanoreactors for controllable synthesis of encapsulated iron and iron oxides:magnetic properties and reversible lithium storage. Journal of Physical Chemistry C,2011,115 (9):3612-3620.
    [17]Z. Wu, L. Qin, and Q. Pan. Fabrication and electrochemical behavior of flower-like ZnO-CoO-C nanowall arrays as anodes for lithium-ion batteries. Journal of Alloys and Compounds,2011,509 (37):9207-9213.
    [18]X. J. Zhu, Z. P. Guo, P. Zhang, G. D. Du, R. Zeng, Z. X. Chen, S. Li, and H. K. Liu. Highly porous reticular tin-cobalt oxide composite thin film anodes for lithium ion batteries. Journal of Materials Chemistry,2009,19 (1):8360-8365.
    [19]J. Ryu, S. W. Kim, K. Kang, and C. B. Park. Synthesis of diphenylalanine/cobalt oxide hybrid nanowires and their application to energy storage. Acs Nano,2010,4 (1):159-164.
    [20]A. Reddy, S. Gowda, M. Shaijumon, and P. Ajayan. Hybrid nanostructures for energy storage applications. Advanced Materials,2012,24 (37):5045-5064.
    [21]C. R. Martin. Template synthesis of electronically conductive polymer nanostructures. Accounts of Chemical Research,1995,28 (2):61-68.
    [22]P. L. Taberna, S. Mitra, P. Poizot, P. Simon, and J. M. Tarascon. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Materials 2006,5 (7):567-573.
    [23]A. Finke, P. Poizot, C. Guery, L. C. Dupont, P. L. Taberna, P. Simon, and J. M. Tarascon. Electrochemical method for direct deposition of nanometric bismuth and its electrochemical properties vs Li. Electrochemical and Solid-State Letters,2008,11 (3):E5-E9.
    [24]L. Bazin, S. Mitra, P. L. Taberna, P. Poizot, M. Gressier, M. J. Menu, A. Barnabe, P. Simon, and J. M. Tarascon. High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries. Jouranl of Power Sources,2009,188 (2): 578-582.
    [25]J. Hassoun, S. Panero, P. Simon, P. L. Taberna, and B. Scrosati. High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries. Advanced Materials,2007,19 (12): 1632-1635.
    [26]A. P. Graham, G. S. Duesberg, R. V. Seidel, M. Liebau, E. Unger, W. Pamler, F. Kreupl, and W. Hoenlein. Carbon nanotubes for microelectronics?. Small,2005,1 (4):382-390.
    [27]N. Du, H. Zhang, P. Wu, J. Yu, and D. Yang. A general approach for uniform coating of a metal layer on MWCNTs via layer-by-layer assembly. The Journal of Physical Chemistry C, 2009,113(40):17387-17391.
    [28]Y. Wang, F. Su, J. Lee, and X. S. Zhao. Crystalline carbon hollow spheres, crystalline carbon-SnO2 hollow spheres, and crystalline SnO2 hollow spheres:synthesis and performance in reversible Li-ion storage. Chemistry of Materials,2006,18 (5):1347-1353.
    [29]Z. S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, and H. M. Cheng. Graphene anchored with CO3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano,2010,4 (6):3187-3194.
    [30]D. Zhang, L. Sun, C. Jia, Z. Yan, L. You, and C. Yan. Hierarchical assembly of SnO2 nanorod arrays on Fe2O3 nanotubes:a case of interfacial lattice compatibility. Journal of the American Chemical Society,2005,127 (39):13492-13493.
    [31]S. Xie, N. Lu, Z. Xie, J. Wang, M. Kim, and Y. Xia. Synthesis of Pd-Rh core-frame concave nanocubes and their conversion to Rh cubic nanoframes by selective etching of the Pd cores. Angewandte Chemie International Edition,2012,51 (41):10266-10270.
    [32]J. Hu, M. Ouyang, P. Yang, and C. Lieber. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature,1999,399 (6731): 48-51.
    [33]J. Liu, X. Li, and L. Dai. Water-assisted growth of aligned carbon nanotube-ZnO heterojunction arrays. Advanced Materials,2006,18 (13):1740-1744.
    [34]S. Zhang, Z. Du, R. Lin, T. Jiang, G. Liu, X. Wu, and D. Weng. Nickel nanocone-array supported silicon anode for high-performance lithium-ion batteries. Advanced Materials, 2010,22 (47):5378-5382.
    [35]K. Chang, and W. Chen. L-cysteine-assisted synthesis of layered MoS2/Graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano,2011,5 (6):4720-4728.
    [36]Y. Wang, H. J. Zhang, L. Lu, L. P. Stubbs, C. C. Wong, and J. Y. Lin. Designed functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites. Acs Nano,2010, 4 (8):4753-4761.
    [37]Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, and H. Dai. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Materials,2011,10 (10):780-786.
    [38]T. Yu, J. Zeng, B. Lim, and Y. Xia. Aqueous-phase synthesis of Pt/CeO2 hybrid nanostructures and their catalytic properties. Advanced Materials,2010,22 (45): 5188-5192.
    [39]B. Sneed, C. Kuo, C. Brodsky, and C. Tsung. Iodide-mediated control of rhodium epitaxial growth on well-defined noble metal nanocrystals:synthesis, characterization, and structure-dependent catalytic properties. Journal of the American Chemical Society,2012, 134(44):18417-18426.
    [40]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 2000,407 (6803):496-499.
    [41]W. Y. Li, L. N. Xu, and J. Chen. Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Advanced Functional Materials,2005,15 (5):851-857.
    [42]K. T. Nam, D. W. Kim, P. J. Yoo, C. Y. Chiang, N. L. Meethong, P. T. Hammond, Y. M. Chiang, and A. M. Belcher. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science,2006,312 (5775):885-888.
    [43]N. Du, H. Zhang, B. D. Chen, J. B. Wu, X. Y. Ma, Z. H. Liu, Y. Q. Zhang, D. R. Yang, X. H. Huang, and J. P. Tu. Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates:a highly efficient material for Li-battery applications. Advanced Materials,2007,19 (24):4505-4509.
    [44]J. Zhong, X. L. Wang, X. H. Xia, C. D. Gu, J. Y. Xiang, J. Zhang, and J. P. Tu. Self-assembled sandwich-like NiO film and its application for Li-ion batteries. Journal of Alloys and Compounds,2011,509 (9):3889-3893.
    [45]S. Gao, S. Yang, J. Shu, S. Zhang, Z. Li, and K. Jiang. Green fabrication of hierarchical CuO hollow micro/nanostructures and enhanced performance as electrode materials for lithium-ion batteries. Journal of Physical Chemistry C,2008,112 (49):19324-19328.
    [46]G. X. Wang, Y. Chen, K. Konstantinov, J. Yao, J.-h. Ahn, H. K. Liu, and S. X. Dou. Nanosize cobalt oxides as anode materials for lithium-ion batteries. Journal of Alloys and Compounds,2002,340 (1-2):L5-L10.
    [47]S. L. Chou, J. Z. Wang, H. K. Liu, and S. X. Dou. Electrochemical deposition of porous Co3O4 nanostructured thin film for lithium-ion battery. Journal of Power Sources,2008,182 (1):359-364.
    [48]H. W. Shim, Y. H. Jin, S. D. Seo, S. H. Lee, and D. W. Kim. Highly reversible lithium storage in bacillus subtilis-directed porous Co3O4 nanostructures. Acs Nano,2011,5 (1): 443-449.
    [49]Y. Kang, M. Song, J. Kim, H. Kim, M. Park, J. Lee, H. Liu, and S. Dou. A study on the charge-discharge mechanism of Co3O4 as an anode for the Li ion secondary battery. Electrochimica Acta,2005,50 (18):3667-3673.
    [50]X. W. Lou, D. Deng, J. Y. Lee, J. Feng, L. A. Archer. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Advanced Materials,2008,20 (2):258-262.
    [51]Y. M. Kang, K. T. Kim, J. H. Kim, H. S. Kim, P. S. Lee, J. Y. Lee, H. K. Liu, and S. X. Dou. Electrochemical properties of Co3O4, Ni-Co3O4 mixture and Ni-Co3O4 composite as anode materials for Li ion secondary batteries. Journal of Power Sources,2004,133 (2):252-259.
    [52]Y. Q. Chu, Z. W. Fu, and Q. Z. Qin. Cobalt ferrite thin films as anode material for lithium ion batteries. Electrochimica Acta,2004,49 (27):4915-4921.
    [53]N. Du, Y. F. Xu, H. Zhang, J. X. Yu, C. X. Zhai, and D. R. Yang. Porous ZnCo2O4 nanowires synthesis via sacrificial templates high-performance anode materials of li-ion batteries. Inorganic Chemistry,2011,50 (8):3320-3324.
    [54]P. A. Connor, and J. T. S. Irvine. Novel tin oxide spinel-based anodes for Li-ion batteries. Journal of Power Sources,2001,97 (2):223-225.
    [55]P. A. Connor, and J. T. S. Irvine. Combined X-ray study of lithium (tin) cobalt oxide matrix negative electrodes for Li-ion batteries. Electrochimica Acta,2002,47 (18):2885-2892.
    [56]G. Wang, X. P. Gao, and P. W. Shen. Hydrothermal synthesis of Co2SnO4 nanocrystals as anode materials for Li-ion batteries. Journal of Power Sources,2009,192 (2):719-723.
    [57]Y. Liu, C. Mi, L. Su, and X. Zhang. Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries. Electrochimica Acta,2008,53 (5):2507-2513.
    [58]H. Zhang, J. Wu, C. Zhai, X. Ma, N. Du, J. Tu, and D. Yang. From cobalt nitrate carbonate hydroxide hydrate nanowires to porous Co3O4 nanorods for high performance lithium-ion battery electrodes. Nanotechnology,2008,19 (3):035711-035715.
    [59]Y. G. Li, B. Tan, and Y. Y. Wu. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Letters,2008,8 (1):265-270.
    [60]Y. Wang, H. Xia, L. Lu, and J. Y. Lin. Excellent performance in lithium-ion battery anodes: rational synthesis of Co(C03)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4. Acs Nano,2010,4 (3):1425-1432.
    [61]C. Wang, D. Wang, Q. Wang, and L. Wang. Fabrication of three-dimensional porous structured Co3O4 and its application in lithium-ion batteries. Electrochimica Acta,2010,55 (22):6420-6425.
    [62]W. Yao, J. Yang, J. Wang, and Y. Nuli. Multilayered cobalt oxide platelets for negative electrode material of a lithium-ion battery. Journal of Electrochemical Society,2008,155 (12):A903-A908.
    [63]J. Do, and C. Weng. Electrochemical and charge/discharge properties of the synthesized cobalt oxide as anode material in Li-ion batteries. Journal of Power Sources,2006,159 (1): 323-327.
    [64]S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, and J. M. Tarascon, On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. Journal of Electrochemical Society,2002,149 (5):A627-A634.
    [65]J. S. Do, and C. H. Weng. Preparation and characterization of CoO used as anodic material of lithium battery. Journal of Power Sources,2005,146 (1-2) 482-486.
    [66]F. Li, Q. Q. Zou, and Y. Y. Xia. CoO-loaded graphitable carbon hollow spheres as anode materials for lithium-ion battery. Journal of Power Sources,2008,177 (2):546-552.
    [67]B. Wang, Y. Wang, J. Park, H. Ahn, and G. Wang. In situ synthesis of Co3O4/graphene nanocomposite material for lithium-ion batteries and supercapacitors with high capacity and supercapacitance. Journal of Alloys and Compounds,2011,509 (29):7778-7783.
    [68]J. Zhu, Y. K. Sharma, Z. Zeng, X. Zhang, M. Srinivasan, S. Mhaisalkar, H. Zhang, H. H. Hng, and Q. Yan. Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-ion battery electrodes. Journal of Physical Chemistry C,2011,115 (16):8400-8406.
    [69]J. Zhu, T. Zhu, X. Zhou, Y Zhang, X. W. Lou, X. Chen, H. Zhang, H. H. Hng, and Q. Yan. Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale,2011,3 (3):1084-1089.
    [70]X. H. Huang, J. P. Tu, C. Q. Zhang, and J. Y. Xiang. Net-structured NiO-C nanocomposite as Li-intercalation electrode material. Electrochemistry Communications,2007,9 (5): 1180-1184.
    [71]X. W. Lou, C. M. Li, and L. A. Archer. Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Advanced Materials,2009,21 (24): 2536-2539.
    [72]S. Chou, J. Wang, C. Zhong, M. M. Rahman, H. Liu, and S. Dou. A facile route to carbon-coated SnO2 nanoparticles combined with a new binder for enhanced cyclability of Li-ion rechargeable batteries. Electrochimica Acta,2009,54 (28):7519-7524.
    [73]P. Wu, N. Du, H. Zhang, J. X. Yu, and D. R. Yang. CNTs@SnO2@C coaxial nanocables with highly reversible lithium storage. Journal of Physical Chemistry C,2010,114, (51): 22535-22538.
    [74]M. F. Hassan, Z. P. Guo, Z. Chen, and H. K. Liu. Carbon-coated MoO3 nanobelts as anode materials for lithium-ion batteries. Journal of Power Sources,2010,195 (8):2372-2376.
    [75]B. Liu, Z. P. Guo, G. D. Du, Y. Nuli, M. F. Hassan, and D. Z. Jia. In situ synthesis of ultra-fine, porous, tin oxide-carbon nanocomposites via a molten salt method for lithium-ion batteries. Journal of Power Sources,2010,195 (16):5382-5386.
    [76]J. Liu, W. Li, and A. Manthiram. Dense core-shell structured SnO2/C composites as high performance anodes for lithium ion batteries. Chemical Communications,2010,46 (9): 1437-1439.
    [77]P. Wu, N. Du, H. Zhang, J. X. Yu, Y. Qi, and D. R. Yang. Carbon-coated SnO2 nanotubes template-engaged synthesis and their application in lithium-ion batteries. Nanoscale,2011, 3 (2):746-750.
    [78]L. Xu, W. Zhang, Y. Ding, Y. Peng, S. Zhang, W. Yu, and Y. Qian. Formation, characterization, and magnetic properties of Fe3O4 nanowires encapsulated in carbon microtubes. Journal of Physical Chemistry B,2004,108 (30):10859-10862.
    [79]J. S. Chen, Y. L. Cheah, Y. T. Chen, N. Jayaprakash, S. Madhavi, Y. H. Yang, and X. W. Lou. SnO2 nanoparticles with controlled carbon nanocoating as high-capacity anode materials for lithium-ion batteries. Journal of Physical Chemistry C,2009,113 (47):20504-20508.
    [80]S. B. Yang, H. H. Song, and X. H. Chen. Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries. Electrochemistry Communications,2006,8 (1):137-142.
    [81]A. Rong, X. P. Gao, G. R. Li, T. Y. Yan, H. Y. Zhu, J. Q. Qu, and D. Y. Song. Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery. Journal of Physical Chemistry B, 2006,110(30):14754-14760.
    [82]B. Li, H. Cao, J. Shao, G. Li, M. Qu, and G. Yin. Co3O4@graphene composites as anode materials for high-performance lithium ion batteries. Inorganic Chemistry,2011,50(5): 1628-1632.
    [83]M. Armand, and J. M. Tarascon. Building better batteries. Nature,2008,451(7179): 652-657.
    [84]D. Barreca, M. C. Yusta, A. Gasparotto, C. Maccato, J. Morales, A. Pozza, C. Sada, L. Sanchez, and E. Tondello. Cobalt oxide nanomaterials by vapor-phase synthesis for fast and reversible lithium storage. Journal of Physical Chemistry C,2010,114(21):10054-10060.
    [85]X. Li, X. Meng, J. Liu, D. Geng, Y. Zhang, M. N. Banis, Y. Li, J. Yang, R. Li, X. Sun, M. Cai, and M. W. Verbrugge. Tin oxide with controlled morphology and crystallinity by atomic layer deposition onto graphene nanosheets for enhanced lithium storage. Advanced Functional Materials,2012,22(8):1647-1654.
    [86]K. Kang, K. Song, H. Heo, S. Yoo, G. S. Kim, G. Lee, Y. M. Kang, and M. H. Jo. Kinetics-driven high power Li-ion battery with a-Si/NiSix core-shell nanowire anodes. Chemical Science,2011,2(6):1090-1093.
    [87]W. S. Seo, J. H. Shim, S. J. Oh, E. K. Lee, N. H. Hur, and J. T. Park. Phase-and size-controlled synthesis of hexagonal and cubic CoO nanocrystals. Journal of the American Chemical Society,2005,127(17):6188-6189.
    [88]H. Kim, D. H. Seo, S. W. Kim, J. Kim, and K. Kang. Highly reversible Co3O4/graphene hybrid anode for lithium rechargeable batteries. Carbon,2011,49(1):326-332.
    [89]H. C. Liu, and S. K. Yen. Characterization of electrolytic Co3O4 thin films as anodes for lithium-ion batteries. Journal of Power Sources,2007,166(2):478-484.
    [90]S. Yang, G. Cui, S. Pang, Q. Cao, U. Kolb, X. Feng, J. Maier, and K. Mullen. Fabrication of cobalt and cobalt oxide/graphene composites:towards high-performance anode materials for lithium ion batteries. ChemSusChem,2010,3(2):236-239.
    [91]B. Choi, S. Chang, Y. Lee, J. Bae, H. Kim, and Y. Huh.3D heterostructured architectures of Co3O4 nanoparticles deposited on porous graphene surfaces for high performance of lithium ion batteries. Nanoscale,2012,4(19):5924-5930.
    [92]Y. Sun, X. Hu, W. Luo, and Y. Huang. Ultrathin CoO/graphene hybrid nanosheets:a highly stable anode material for lithium-ion batteries. Journal of Physical Chemistry C,2012, 116(39):20794-20799.
    [93]S. Chu, and A. Majumdar. Opportunities and challenges for a sustainable energy future. Nature,2012,488(7411):294-303.
    [94]T. Wagner, B. Lakshmanan, and F. Mathias. Electrochemistry and the future of the automobile. Journal of Physics Chemistry Letters,2010,1(14):2204-2219.
    [95]A. Gasteiger, and M. Markovic. Just a drea—or future reality. Science,2009,324(5923): 48-49.
    [96]M. Debe. Electrocatalyst approaches and challenges for automotive fuel cells. Nature,2012, 486(7401):43-51.
    [97]H. Gasteiger, S. Kocha, B. Sompalli, and F. Wagner. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Applied Catalysis B, 2005,56(1-2):9-35.
    [98]J. Greeley, L. Stephens, S. Bondarenko, P. Johansson, A. Hansen, F. Jaramillo, J. Rossmeisl, I. Chorkendorff, and K. Norskov. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chemistry,2009,1(7):552-556.
    [99]B. Lim, M. Jiang, P. Camargo, E. Cho, J. Tao, X. Lu, Y. Zhu, and Y. Xia. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science,2009,324(5932): 1302-1305.
    [100]J. Wu, J. Zhang, Z. Peng, S. Yang, T. Wagner, and H. Yang. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. Jouranl of the American Chemistry Society, 2010,132(14):4984-4985.
    [101]J. Wu, A. Gross, and H. Yang. Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent. Nano Letters,2011,11(2): 798-802.
    [102]P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, F. Toney, and A. Nilsson. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nature Chemistry,2010,2(6):454-460.
    [103]Z. Chen, M. Waje, W. Li, and Y. Yan. Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angewandte Chemie International Edition,2007,46(22): 4060-4063.
    [104]J. Wang, H. Inada, L. Wu, Y. Zhu, Y. Choi, P. Liu, W. Zhou, and R. Adzic. Oxygen reduction on well-defined core-shell nanocatalysts:particle size, facet, and Pt shell thickness effects. Jouranl of the American Chemistry Society,2009,131(47): 17298-17302.
    [105]R. Stamenkovic, B. Fowler, S. Mun, G. Wang, N. Ross, A. Lucas, and M. Markovic. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science,2007,315(5811):493-497.
    [106]C. Bianchini, and P. Shen. Palladium-Based Electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chemical Review,2009,109(9):4183-4206.
    [107]E. Antolini. Palladium in fuel cell catalysis. Energy Environmental Science,2009,2(9): 915-931.
    [108]D. Wang, and Y. Li. Bimetallic nanocrystals:liquid-phase synthesis and catalytic applications. Advanced Materials,2011,23(9):1044-1060.
    [109]J. Wu, P. Li, Y. Pan, S. Warren, X. Yin, and H. Yang. Surface lattice-engineered bimetallic nanoparticles and their catalytic properties. Chemical Society Review,2012,41(24): 8066-8074.
    [110]J. Gu, Y. Zhang, and F. Tao. Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chemical Society Review,2012,41(24): 8050-8065.
    [111]J. Zhang, K. Sasaki, E. Sutter, and R. Adzic. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science,2007,315(5809):220-222.
    [112]J. Norskov, T. Bligaard, J. Rossmeis, and C. Christensen. Towards the computational design of solid catalysts. Nature Chemistry,2009,1(1):37-46.
    [113]J. Zhang, M. Vukmirovic, Y. Xu, M. Mavrikakis, and R. Adzic. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angewandte Chemie International Edition,2005,44(14):2132-2135.
    [114]K. Sasaki, H. Naohara, Y. Cai, Y. Choi, P. Liu, M. Vukmirovic, J. Wang, and R. Adzic. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes, K. Sasaki, H. Naohara. Angewandte Chemie International Edition,2010,49(46): 8602-8607.
    [115]L. Zhang, J. Zhang, Q. Kuang, S. Xie, Z. Jiang, Z. Xie, and L. Zheng. Cu2+-assisted synthesis of hexoctahedral Au-Pd alloy nanocrystals with high-index facets. Jouranl of the American Chemistry Society,2011,133(43):17114-17117.
    [116]J. Zhang, H. Yang, B. Martens, Z. Luo, D. Xu, Y Wang, S. Zou, and J. Fang. Pt-Cu nanoctahedra:synthesis and comparative study with nanocubes on their electrochemical catalytic performance. Chemical Science,2012,3(11):3302-3306.
    [117]A. Yin, X. Min, W. Zhu, W. Liu, Y. Zhang, and C. Yan. PtCu and PtPdCu concave nanocubes with high-index facets and superior electrocatalytic activity. Chemistry-A European Journal,2012,18(3):777-782.
    [118]N. Tian, Z. Zhou, S. Sun, Y. Ding, Z. Wang. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high eectro-oxidation activity. Science,2007, 316(5825):732-735.
    [119]H. Zhang, M. Jin, and Y. Xia. Noble-metal nanocrystals with concave surfaces:synthesis and applications. Angewandte Chemie International Edition,2012,51(31):7656-7673.
    [120]A. Mohanty, N. Garg, and R. Jin. A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angewandte Chemie International Edition, 2010,49(29):4962-4966.
    [121]M. Jin, H. Zhang, Z. Xie, and Y. Xia. Palladium concave nanocubes with high-index facets and their enhanced catalytic properties. Angewandte Chemie International Edition,2011, 50(34):7850-7854.
    [122]Z. Niu, D. Wang, R. Yu, Q. Peng, and Y. Li. Highly branched Pt-Ni nanocrystals enclosed by stepped surface for methanol oxidation. Chemical Science,2012,3(6):1925-1929.
    [123]B. Xia, H. Wu, Y. Yan, X. Lou, and X. Wang. Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. Jouranl of the American Chemistry Society,2013,135(25):9480-9485.
    [124]S. Mourdikoudis, and L. M. Liz-Marzan. Oleylamine in nanoparticle synthesis. Chemistry of Materials,2013,25(9):1465-1476.
    [125]J. B. Wu, and H. Yang. Synthesis and electrocatalytic oxygen reduction properties of truncated octahedral Pt3Ni nanoparticles. Nano Research 2011,4(1):72-82.
    [126]J. Wu, and H. Yang. Study of durability of faceted Pt3Ni oxygen reduction electrocatalysts. ChemCatChem,2012,4(10):1572-1577.
    [127]V. Nandwana, K. Elkins, N. Poudyal, G. Chaubey, K. Yano, and J. Liu. Size and shape control of monodisperse FePt nanoparticles. Journal of Physical Chemistry C,2007, 111(11):4185-4189.
    [128]S. Son, Y. Jang, J. Park, H. Na, H. Park, H. Yun, Lee, and T. Hyeon. Designed synthesis of atom-economical Pd/Ni bimetallic nanoparticle-based catalysts for sonogashira coupling reactions. Jouranl of the American Chemistry Society,2004,126(16):5026-5027.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700