高速铁路路基填筑质量检测方法控制指标及评价体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
路基的压实质量是保证路基的工程性能、路基长期稳定、工后沉降控制的重要环节。从高速铁路的路基填筑质量保证方面来讲,除了选择合适的填料、在施工过程中的合理的过程控制外,路基压实质量检测和评价是保证路基填筑质量的关键措施之一。
     尽管现有规范对路基的压实质量检测方法、控制标准及质量评价等都做过相关的规定,但由于路基填料本身的不均匀性和现有检测方法的局限性,路基的填筑质量仍旧不能很好的控制,因此进而影响道路的使用寿命,并造成巨大的经济损失。同时,现有的高速铁路建设采用多重检测指标来确保路基的压实质量。但是,这些措施不仅影响路基的施工进度,而且远不能适应现代化的施工要求及合理地控制路基填筑质量。并且,在路基使用粗颗粒填料时,这些缺陷更加显著。
     在高速铁路路基的研究领域中,研究快速合理的压实质量检测方法、控制标准及质量评价方法在国内外都属于一个全新的课题。本文基于我国高速铁路的建设实践,通过现场试验与理论分析,进一步完善和发展了路基压实质量检测方法、控制标准及质量评价方法。得到一些创新性研究成果,其概括为以下四个方面:
     (1)结合对比中、德两国路基压实质量检测方法、控制指标,对武广高铁岳阳段全风化砂砾岩与碎石改良两种典型填料的室内外实验结果进行深入分析,建立了中国压实度与德国压实系数之间的内在关系;为适应高速铁路大颗粒填料日益广泛使用的趋势,提出了在室内试验中增加大型击实设备以反映粗颗粒填料的真实工程特性的重要建议;基于现有规范中采用孔隙率控制指标不能有效控制路基压实质量的缺陷,提出了采用压实度作为路基压实的控制指标,以满足客运专线路基的密实度要求,并成功应用于武广高铁路基填筑压实工程,该建议即将被行业规范采纳;获得了K30与Ev2的相关性,提出了可以选择其中一个检测指标来衡量路基压实质量的重要建议,以简化压实检测程序。
     (2)根据路基不同压实阶段的力学性质,建立了反映路基压实状态的压路机-路基简化的动力学计算模型,获得了不同路基刚度下振动轮的动态响应、动态响应与路基刚度的相关性;据此提出了路基压实过程中的动态监控方法。
     (3)在哈大高速铁路与向莆铁路进行了现场试验,进行了传统的路基压实质量和连续动态检测,对不同检测方法的结果进行对比分析,建立了动态连续检测指标CMV与K30等之间的关系。获得了动态连续检测指标与传统检测指标之间具有较好的相关性的重要结论;提出连续动态检测指标能很好的反应路基压实质量,具有较高的可靠度的重要建议。
     (4)以连续动态检测的大量数据为基础,对检测数据进行了统计分析,得到了路基连续动态检测压实度的分布规律,分析了影响分布规律的主要因素。此外,基于概率和统计学理论,提出了压实均匀性的评价概念和路基不均匀沉降控制的思路。
Compaction quality of the embankment is a crucial link to ensure its engineering performance and long-term stability as well as reduce the post-construction settlement. Besides proper selection of soil and control of the construction, some influence factors (e.g. compaction quality, inspection and evaluation) are important measurements to guarantee the embankment quality required for a high quality embankment, especially for high-speed railway subgrade.
     Although there are requirements in specifications for the test methods, acceptance criteria and evaluation system of the compaction quality, there are still difficulties to control the compaction quality of subgrade due to the inhomogeneity of filling material and the limitations of test and evaluation methods. These kinds of disadvantages which may further influence the riding performance as well as reduce the service life of the road and then will result in great economic loss. As a matter of fact, in order to guarantee the compaction quality, many inspect methods were employed in high-speed railway construction in China to guarantee the compaction quality, which may delay the construction process schedule and are not adaptable to the requirement of modern construction including the compaction quality controlling of subgrade. These disadvantages are more evident when the coarse filling material is used in practice.
     It is a novel task, home and abroad, to study on high-speed railway subgrade to obtain the rapid and reasonable inspects method, rational control indexes and evaluation method with respect to compaction. Based on the practice of high-speed railway construction in China, this dissertation made an improvement and development in the test methods, acceptance criteria and evaluation system through theoretical analysis and field test. The innovational research achievements are summarized as follows:
     (1) According to deep analysis of laboratory and field test of compaction experiment with respect to two classical types of filling materials (e.g. completely decomposed sandy conglomerate and modified gravel) at Yueyang section of Wu-Guang High-speed railway as well as based on the comparison between China and Germany in terms of test measurement of compaction quality and controlling index, the correlation of the compaction degree applied in China and Germany was established. In order to adapt the development that the large-particle filling material is increasingly popular to be used in filling subgrade of hing-speed railway, a significant advice was presented that large scale compaction device should be added and applied in laboratory experiment to reflect the real engineering characteristics of large-particle filling material. Further, on the basis of the limitation of controlling index of porosity in current specification which cannot be efficient to control the compaction quality of subgrade, we presented another controlling index of compaction degree to control the compaction quality to satisfy the requirement of compaction required by subgrade of passenger dedicated line. This controlling index has been applied successfully in the practice of subgrade compaction engineering of Wu-Guang high-speed railway, and it will be included in the specification, Moreover, we obtained the correlation of K30 and Ev2, and presented another significant suggestion that we can simply select either K30 or Ev2 to weigh the compaction quality of subgrade, which can simplify the test procedures.
     (2) According to the different mechanical properties of subgrade in obvious compaction stages, the simplified roll-embankment integrated dynamic model to simulate the condition of subgrade compaction was presented. Based on the calculation of this model, we obtained the dynamic response of subgrade with obvious stiffness; also the correlation between dynamic response and stiffness of subgrade was obtained. Then, the method to monitor the compaction process dynamically was presented.
     (3) Based on the field experiment at Ha-Da high-speed railway and Xian-Pu railway, the roll-integrated compaction measurements and conventional measurements were conducted. Then, the relationship between CMV with respect to Roll-integrated compaction measurement and K30 was established in terms of comparison results between different detection measurements.
     (4) On the basis of numerous data of roll-integrated compaction measurements, the distribution of subgrade-compaction degree was obtained after analyzing the detection data statistically. Then, the main influence factors were analyzed. Further, the conception to evaluate the uniformity of compaction and the thought to control the non-uniformity of settlement were presented.
引文
[1]铁道部第一勘测设计院主编.铁路路基设计规范(TBJ1-85).北京:中国铁道出版社,1998
    [2]高速铁路设计规范(TB 10621-2009).北京:中国铁道出版社,2010.1
    [3]吴明友.铁路路基填料分类及压实标准研究.硕士学位论文西南交通大学,2004.12
    [4]徐培华,陈忠达路基路面试验检测技术.北京:人民交通出版社,2000
    [5]范云,填土压实质量检测技术的发展与评析[J]岩土力学,2002(8)524-529
    [6]Fleming, P. R. Small-scale dynamic devices for the measurement of elastic stiffness modulus on pavement foundation. Nondestructive testing of pavements and backcalculation of moduli:Third volume, ASTM STP 1375, S. D. Tayabji and E. O. Lukanen, eds, ASTM, West Conshohocken, Pa.2000
    [7]Moshe, L., and Yair, G. Use of falling-weight deflectometer and light drop weight for quality assessment during road formation and foundation construction.' TRB 80th Annual Meeting, Washington, D.C.2001
    [8]Jong Ryeol Kim, Evaluation of In Situ Modulus of Compacted Subgrades Using Portable Falling Weight Deflectometer and Plate-Bearing Load Test JOURNAL OF MATERIALS IN CIVIL ENGINEERING 2007(7) 492~499
    [9]任劲松.圆砾土填筑铁路路基压实质量标准研究.石家庄铁道学院学报.1997.9.第10卷增刊.33-38.
    [10]林祖玖.高速公路路基粗粒土填筑压实工艺.西部探矿工程(岩土钻掘矿业工程).1999.5.第11卷增刊.56-59.
    [11]徐立东.土石混合非均质填方的压实质量检测方法初探.辽宁交通科技,1999.6.第22卷.第3期.44-46.
    [12]马骏.超粒径含量高的砂卵石填方压实质量控制指标.路基工程.2002.第1期.31-33.
    [13]闫秀萍.关于土石混合料路填筑路基压实检测方法的探讨.公路交通科技2001.8.第4期.40-42.
    [14]郭庆国,李鹏,徐彦文.土石坝的压实标准及应用中存在的问题.西北水电.2001.第3期
    [15]毛洪录.含砂低液限粉土路基压实标准的探讨.山东大学学报(工学版).2003 年第五期
    [16]吴志雄.高速公路填石路堤的施工与质量控制.中外公路.2003.第1期
    [17]章国辉.高速铁路碎石土路基压实质量检测方法.标准的研究. 铁道建设.2003.第4期.1-8.
    [18]吴明友,叶阳升路基压实参数其工程意义铁道建筑技术,2004(5)
    [19]路基土压实度检测技术研究
    [20]Forssblad, L. Compaction meter on vibrating rollers for improved compaction control, Proc. Intl Conf. on Compaction, Vol. II, Paris,1980541-546.
    [21]Thumer, H. and Sandstrom, A. Continuous compaction control, CCC. Proc. Intl. Conf. on Compaction, Paris,1980.237-245.
    [22]Noshe and Kitano Development of A New Type of Single Drum Vibratory Roller." Proc.14th International Conference of the International Society for Terrain-Vehicle Systems, Vicksburg, MS USA October,2002.20-24
    [23]Krober, W., Floss, R., Wallrath, W., (2001). "Dynamic soil stiffness as quality criterion for soil compaction." Geotechnics for Roads, Rail Tracks and Earth Structures, A.A. Balkema Publishers, Lisse/Abingdon/Exton (Pa)/Tokyo Lundberg, G., (1939). "Elastische Beruhrung Zweier Halbraume." Forschung auf
    [24]徐光辉,王哲人.道路压实质量过程监测与控制系统的研究 建筑机械,2001年6月
    [25]张润利,贺杰.振动压路机压实度连续检测仪.工程机械.2001.8;P9-10
    [26]沈培辉,林述温国内外振动压实系统的动力学模型及展望 工程机械2009月(38卷)
    [27]邓学欣,王太勇,任成祖等,压实度自动检测技术及应用.西南交通大学学报.2003(5)505-508
    [28]范小彬,马伟等连续压实控制技术及压实度计在振动压路机上的应用筑路机械与施工机械化2003(5)
    [29]李健,吴徽,沈大路石渣路基连续压实控制的试验研究 北方交通2007(5)
    [30]徐光辉.崔青川.吴徽等.沈人路改扩建工程路基压实质量过程控制技术的研究·报告四.课题鉴定报告.2004年10月.沈阳
    [31]徐光辉,庞建文,蔡英碎石路基压实连续控制的试验研究铁道建筑技术2006(1)
    [32]徐光辉,高辉级配碎石振动压实过程的连续动态监控分析岩土工程学报2005(11)
    [33]秦四成.振动压路机振动压实及其系统动力学研究[D].吉林:吉林大学,1998.
    [34]李方东 压实控制系统在客运专线路基施工中的研究和应用 铁道工程学报200712增刊
    [35]杜善其振动压路机压实度实时测量与控制采集信号的分析.实机械与施工技术,2004847-49
    [36]Forssblad, L. (1980). "Compaction meter on vibrating rollers for improved compaction control." Proceedings of the International Conference on Compaction, Vol. II, Paris, p.541-546.
    [37]Thurner, H. and Sandstrom, A.. "Continuous compaction control, CCC." Proc. Intl. Conf. on Compaction, Paris,1980237-245.
    [38]Thurner, H., and A. Sandstrom (2000). Continuous compaction control, CCC. Compaction of Granular Materials. Modeling and Properties of Compacted Materials,Paris.Warrick, A. (2002). Soil Physics Companion. CRC Press:New York.
    [39]Sandstrom A.J. and Pettersson, C.B. (2004). "Intelligent systems for QA/QC in soil compaction." Proceedings of the TRB 2004 Annual Meeting, Washington, D.C., CD-ROM.
    [40]Mooney, M.A., and Rinehart, R.V. (2007). "Field Monitoring of Roller Vibration duringCompaction of Subgrade Soil.", J. Geot.& Geoenv. Engrg, ASCE, 133(3),257-265.
    [41]Mooney, M.A. and Adam, D. (2007). "Vibratory Roller Integrated Measurement of Earthwork Compaction:An Overview," Proc.7th Intl. Symp. Field Measurements in Geomechanics, ASCE, Boston, MA, Sept.24-27.
    [42]Anderegg, R. and Kaufmann, K. (2004). "Intelligent compaction with vibratory rollers." Transportation Research Record:Journal of the Transportation Research Board, National Academy Press, No.1868, p.124-134.
    [43]Briaud, J.L. and Seo, J. (2003). Intelligent Compaction:Overview and Research Needs.Final report, Texas A&M University.
    [44]Petersen, D., Siekmeier, J., Nelson, C., Peterson, R. (2006). "Intelligent soil compaction-technology, results and a roadmap toward widespread use." Proceedings of^the Annual Transportation Research Board Meeting, January, Washington, D.C., CD-ROM.
    [45]Preisig, M., Caprez, M. and Amann, P. (2003). "Validation of continuous compactioncontrol (CCC) methods." Workshop on Soil Compaction, Hamburg.
    [46]中铁十二局集团有限公司.铁建设[2005]160,客运专线铁路路基工程施工质量验收暂行标准[S].北京:中国铁道出版社,2005
    [47]铁道第一勘察设计院.铁路工程土工试验规程TB10102-2004[S].北京中国铁道出版社,2004
    [48]李庆民肖金凤张红艳 客运专线路基填筑质量变形模量Ev2试验检测方法铁道建筑技术2005(6)
    [49]李怒放DBM型动态变形模量测试仪的研制及其工程应用硕士学位论文西南交通大学,2005
    [50]动态变形模量Evd标准的应用与展望[J]铁道标准设计,2003(06)
    [51]李怒放.E_(vd)路基压实标准在铁路规范中的规定与特点[J]铁道标准设计,2004(07).
    [52]董秀文.Evd检测路基压实质量标准的试验研究[D]西南交通大学,2005.
    [53]龙卫,肖金凤.变形模量Ev)与K30平板载荷试验的对比分析[J]铁道建筑技术,2006,(05)
    [54]董秀文,谢强,郭永春.E_(vd)与动态模量E_d相关关系的试验研究[J]路基工程,2006,(06)
    [55]李芦林.E(vd),K(30)平板载荷对比试验探讨[J]铁道工程学报,2007,(S1)
    [56]薄会申,李铂.地基系数K_(30)与变形模量E_v及动态变形模量E_(vd)的对比试验研究[J]铁道勘察,2007,(03)
    [57]李怒放.客运专线无碴轨道路基压实标准K30与Ev2的探讨[J]铁道标准设计,2006,(02).
    [58]王从贵.动态变形模量Evd与地基系数K30的相关性研究[J]路基工程,2004,(02)
    [59]吕宾林,张千里.地基系数变形模量及动态变形模量的测试与对比[J]铁道建筑,2006,(02)
    [60]程远水.路基压实参数相关关系及改良土控制指标的研究[D]铁道部科学研究院,2007
    [61]铁道第三勘察设计院集团有限公司等高速铁路设计规范(试行)(TB10621-2009)北京:中国铁道出版社2010
    [62]张智明.压实度计及其试验研究[D].长安大学,2005
    [63]麦雄平.基于COSMOS的振动压路机振动加速度与压实度关系研究[D].重庆交通大学,2009
    [64]Adam, D. and Kopf F. (2000). "Sophisticated Compaction Technologies and Continuous Compaction Control," European Workshop Compaction of Soils and Granular Materials, Presses Ponts et Chaussees, Paris, France.
    [65]Floss, R. and H.-J. Kloubert (2000). "Newest Developments in Compaction Technology,"European Workshop Compaction of Soils and Granular Materials, Presses Ponts et Chaussees, Paris, France.
    [66]Thurner, H. F. and A. Sandstrom (2000). "Continuous Compaction Control, CCC." European Workshop Compaction of Soils and Granular Materials, Presses Ponts et Chaussees, Paris, France, pp.237-246.
    [67]Thurner, H. and A. Sandstrom (1980). "Quality assurance in soil compaction," Proceedings of XIIIRF world Congress, Madrid, p 951-955.
    [68]BOMAG. "Technical Testing Instructions for Soil and Rock in Road Construction TP BF-StB Part E 2 (1994)-Surface Covering Dynamic Compaction Test," Research Society for Road and Traffic, Germany.
    [69]王振花.车载式压实度计的研究开发[D].长安大学,2002
    [70]严世榕,闻邦椿.振动压路机的一种非线性动力学特性研究[J]福州大学学报(自然科学版),2000,,(05)
    [71]Hanci Wan. Huajun Wang。 Study on Dynamic Characteristics for Vibration Isolation Systemof the Vibrating Road Roller. ICVE'98 Proceedings of the International Conference onVibration Engineering.1998.6~9
    [72]秦四成,陈龙珠.振动压路机振动轮-土壤系统动力学分析[J]建筑机械,1999,(11).
    [73]何建和.振动压路机动力学特性及新型密实度仪研究开发[D].(硕士),2004,,(03)
    [74]吴仁智,黄海芳,孔庆华.振动压路机性能的计算机仿真计算方法[J]工程机械,1995,(06).
    [75]D.E.Newland.Mechanical vibration analysis and computation.Longman Scientific&Technical 1989:420-467
    [76]张润利,张俊杰,李熙山,高会敏,贺杰.振动压路机压实度连续检测仪[J]工程机械,2001,(08)
    [77]张帆.YZ30型振动压路机动力学分析、计算机仿真及参数优化[D]西安理工大学,2003.
    [78]何建和,严世榕.基于MATLAB的振动压路机计算机仿真[J]计算机仿真,2004,(06).
    [79]童飞.从“土壤-机器”系统力学的角度探讨振动压路机的参数设计[D]同济大学,2007
    [80]李光林.小型振动压路机压实效果的有限元分析[D]长安大学,2008.
    [81]E.T.Selig and T.S.Yoo.Fundamental of Vibratory Roller Behavior Proceedings International Conference on Soil Mechanics and Foundation Engineering.Tokyo.Japan.Vol.II,1997 p375~380
    [82]Sandstrom, Uke:Numerical simulation of a vibratory roller on cohessionles soil. Geodynamik report, Stockholm,1994,22.
    [83]胡一峰,李怒放动力连续同步检测技术(CCC)在无砟轨道路基填筑质量控制、验收中的应用铁道标准设计2009(4)
    [84]Thompson, M.J, White, D.J. Estimating compaction of cohesive soils from machine drive power Journal of Geotechnical and Geoenvironmental Engineering 2008
    [85]White, David J.1; Thompson, Mark J.2 Relationships between In situ and roller-integrated compaction measurements for granular soils Journal of Geotechnical and Geoenvironmental Engineering,,2008134 (12) 1763-1770,
    [86]Brandl, H., and Adam, D.1997. "Sophisticated continuous compaction control of soils and granular materials." Proc.14th Int. Conf. on Soil Mechanics and Foundation Engineering, Hamburg,1-6.
    [87]Thumer, Heinz and Sandstrom, Uke:A new device for instant compaction control, Proceedings of International conference on compaction, Vol.II, Paris,1980, 611-614.
    [88]Jonsson, per Ola:Introducing innovative tendering and contracting based on functional quality parameters. EAPA publication,1999,17.
    [89]Vennapusa, P.K.R., White, D.J., Morris, M.D. Geostatistical analysis for spatially referenced roller-integrated compaction measurements (2010) Journal of Geotechnical and Geoenvironmental Engineering
    [90]Bouvet D, FR M, Garcia G. A real-time localization system for Compactors [J]. automation in construction,2001,(10):417-428.
    [91]ANDEREGG R, KAUFMANN K. Intelligent Compaction with Vibratory rollers - Feedback Control Systems in Automatic Compaction and Compaction Control [J]. Journal of the Transportation Research Record.2004:124-134.
    [92]倪永军,李喆,张光宗,冯瑞玲,李方东,李玉君.武广客运专线路基压实动态检测[J]北京交通大学学报,2009,(04).
    [93]徐光辉,王哲人.道路压实质量过程监测与控制系统的研究[J]建筑机械,2001,(06).
    [94]徐光辉,高辉,王哲人.级配碎石振动压实过程的连续动态监控分析[J].岩土工程学报,2005,(11).
    [95]徐光辉,庞建文,蔡英.碎石路基压实连续控制的试验研究[J].铁道建筑技术,2006,(01).
    [96]刘达民程岩应用统计北京:化学工业出版社,2004.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700