苹果霉心病果肉生理及其近红外无损检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苹果霉心病又称心腐病,主要危害苹果果实,果实受害从心室开始,逐渐向外扩展霉烂。由于霉心病发生在果实内部(心室周围),如果不把果实切开,很难从外表看出该果实是否被霉心病菌所侵染,它不仅影响果实感官品质、降低商品价格,而且也可能对食用者健康造成危害;如果病害果流入消费者手中,对果商信誉、销售市场都会产生不利影响。苹果发生霉心病病害时,果实发生了哪些生理反应还未见报道。因此,有必要对苹果霉心病引起的果肉生理变化进行研究,并建立一种无损、可靠的方法来检测苹果霉心病。
     本文以红富士苹果为试材,对苹果霉心病病原菌、果肉生理变化及其近红外无损检测技术进行了研究,以期为苹果霉心病的防治和无损检测提供依据和参考。研究取得以下主要结果:
     (1)经过对霉心病苹果的调查发现,苹果霉心病主要发生在果实横径在70mm~85mm、果实纵径在60mm~70mm、果形指数为0.80~0.90的果实,且圆形或近圆形的果实发病率高。
     (2)通过对病害组织的分离、培养和致病性试验,确定苹果霉心病主要由链格孢[Alternaria alternata (Fr.) Keissl.]、粉红单端孢[Trichothecium roseum (Bull.) Link.]和/或链格孢和粉红单端孢混合侵染所引起。
     (3)通过对苹果霉心病果肉生理变化的研究,发现不同类型的霉心病对果肉生理变化的影响不同。病原菌侵染苹果发生霉心型病害时,果肉总酚含量和AsA含量显著上升。病原菌侵染苹果发生干心腐型病害时,果肉中SOD、CAT、PPO、APX、PAL、β-1,3-葡聚糖酶和几丁质酶的活性与总酚含量、超氧阴离子产生速率显著升高,蛋白含量显著下降。病原菌侵染苹果发生湿心腐型病害时,正常部果肉POD活性和总酚含量显著上升;病部果肉细胞膜透性、MDA含量与β-1,3-葡聚糖酶和几丁质酶活性显著升高,APX活性与总酚、AsA、H_2O_2、SSC和蛋白含量显著降低。
     (4)通过对波段范围的选取,经不同光谱预处理方法[原始光谱未处理、多元散射校正(MSC)、标准正态变量变换(SNV)、矢量归一化(VN)、最大归一化(MN)、面积归一化(AN)、9点平滑、一阶导数(9点平滑)]处理后提取到的主成分所建立的判别函数对健康苹果和霉心病苹果的判别效果研究发现,在全波段范围(12000cm~(-1)~4000cm~(-1))内,经VN预处理后所建判别函数的正确判别率最高,为89.9%;经MN预处理所建判别函数的正确判别率最低,为73.3%;其他预处理方法所建判别函数的判别效果介于二者之间。
     (5)在全波段范围(12000cm~(-1)~4000cm~(-1))内,光谱经VN预处理后提取主成分(20个主成分)所建健康苹果和霉心病苹果的Fisher判别函数判别性能稳定,校正集正确判别率为89.9%,对未知苹果样本(验证集)的正确判别率为87.8%,可以基本满足苹果霉心病无损检测的要求,说明近红外漫反射光谱技术应用于健康苹果和霉心病苹果的检测是可行的。
     (6)经OPUS-QUANT2定量分析软件的自动优化功能对建模条件进行自动优化,最优建模参数为:光谱经VN预处理,光谱波段范围为12000cm~(-1)~5446.2cm~(-1)和4601.5cm~(-1)~4246.6cm~(-1),主成分维数为10时所建苹果霉心病发病程度偏最小二乘(PLS)模型的交叉验证均方根差(RMSECV)最小,为0.123,此时交叉验证决定系数(R~2C V)为0.5172,优于全波段范围所建PLS模型。
     (7)光谱经9点平滑遗传算法(GA)筛选波段和VN预处理GA筛选波段所建苹果霉心病发病程度PLS模型最优,R~2_(CV)与验证集预测决定系数(R~2P)分别为0.6623与0.6328和0.6597与0.6466,它们对应的RMSECV与验证集预测均方根差(RMSEP)比较接近且较低,分别为0.1035与0.0929和0.1041与0.0944,GA筛选建模参数所建PLS模型优于OPUS优选建模参数所建模型。
     (8)通过预测偏差准则剔除32个异常样本后,光谱经9点平滑预处理GA筛选波段所建PLS模型校正集的R~2_(CV)为0.7809,未知样本(验证集)R~2P为0.6902,RMSECV(0.0846)和RMSEP(0.0860)均较低且比较接近;通过预测偏差准则剔除44个异常样本后,光谱经VN预处理GA筛选波段所建PLS模型校正集R~2_(CV)为0.7730,未知样本(验证集)R~2P为0.7105,RMSECV(0.0784)和RMSEP(0.0817)均较低,且比较接近,说明所建的PLS预测模型是稳健的,可以用来对未知苹果样本的发病程度进行预测。VN预处理GA筛选波段比9点平滑预处理GA筛选波段所建的优化PLS模型对苹果霉心病发病程度有较好的预测效果。
Moldy core (MC) and core rot (CR), pathogenic disorders associated with the coreregion of fruits, are among the most important postharvest diseases of apple (Malus domestica)and are mainly found in susceptible varieties that have open calyx tubes. Apple fruits werefirst infected in the seed locules, then gradually expanded into fruit flesh and finally resultedin fruit rot. MC and CR of apple fruits are undetectable unless the fruits are cut open or bitteninto because they occurred in the internal of apple fruits (surround seed locules), they can notonly affect fruit quality, cause lower commodity prices, but also may cause damage toconsumers’ health, and if the diseased fruits were delivered into the table of consumers, it willhave a negative impact on both producers and consumers, such as loss of consumers trust andloyalty or even lost the market. However, there is no related report on the physiologicalresponses of apple fruits with MC and CR. Therefore, it is necessary to study the fruitphysiological responses caused by apple MC and CR, and to find or establish a reliable,nondestructive method to detecting apple MC and CR fruits.
     With the “Fuji” apple (Malus domestica cv. Fuji) as materials, this study investigated thecasual agents of apple moldy core, physiological responses of fruit flesh, and nondestructivedetection of apple moldy core and core rot using near infrared spectroscopy. The main resultswere exhibited as follows:
     (1) After investigation the relationship between MC and CR and apple fruits, the resultsshowed that apple MC and CR occur mainly in fruit diameter is70mm~85mm, fruitheight is60mm~70mm, fruit-shape index is0.80~0.90, and high apple MC and CRincidence rate occurs in circular or near circular apple fruits.
     (2) In order to clear the casual agents of apple MC and CR, the diseases through isolation,cultivation and pathogenicity experiment, found that the main pathogen caused apple MC andCR are Alternaria alternata, Trichothecium roseum, and/or the combination of Alternariaalternata and Trichothecium roseum.
     (3) The fruit flesh physiological responses of apple MC and CR was studied, the results indicated that different types of apple MC and CR have different effects on the physiologicalindices of apple fruits flesh. Total phenolic content and ascorbate (AsA) content increasedsignificantly when pathogen infecting apple fruits caused MC. When pathogen infecting applefruits caused dry CR (DCR), Superoxide dismutase (SOD), catalase (CAT), polyphenoloxidase (PPO), ascorbate peroxidase (APX), phenylalanine ammonia-lyase (PAL),β-1,3-glucanase and chitinase activities, and total phenolic content, superoxide radicalproduction of fruit flesh increased significantly; protein content decreased markedly. Whenpathogen infecting apple fruits caused wet CR (WCR), peroxidase (POD) activity and totalphenolic content were increased significantly in asymptomatic tissue of WCR (asympWCR)fruit flesh; in symptomatic tissue of WCR (sympWCR) fruit flesh, membrane permeability,malondialdehyde (MDA) content, β-1,3-glucanase and chitinase activities were increasedsignificantly, thus, APX activity, and the contents of total phenolic, AsA, hydrogen peroxide(H2O2), soluble solid content (SSC), protein content were decreased significantly.
     (4) Select effective wavenumber range, apple MC and CR discriminant efficiency ofFisher function based on several spectra preprocessing methods (non-preprocess,multiplicative scatter correction (MSC), standard normal variate transformation (SNV), vectornormalization (VN), maximum normalization (MN), area normalization (AN), smoothingwith a segment of9, first derivation with a segment of9) and principal component analysis(PCA) were investigated. In the whole wavenumber range (12000cm~(-1)~4000cm~(-1)), thehighest correct discriminant rate (89.9%) of Fisher discriminant function was based on VNpreprocessing, while the lowest correct discriminant rate (73.3) was based on MNpreprocessing, and the correct discriminant efficiency of Fisher discriminant function built byother preprocessing methods were between the upper two.
     (5) In whole wavenumber range (12000cm~(-1)~4000cm~(-1)), the correct discriminantefficiency of Fisher discriminant function based on VN preprocessing and extracting principalcomponents (PCs,20PCs) was stabe, correct discriminant rate for calibration set is of89.9%,for test set is of87.8%. It can basically meet the requirements of non-destructive testing ofapple MC and CR fruits. These results could indicate that near infrared diffuse reflectancespectroscopy applied to apple MC and CR detection is feasible.
     (6) By using automatic optimization function of OPUS-QUANT2quantitative analysissoftwarefor modeling contidions, the best partial least square (PLS) model built for relativedecay area of apple MC and CR were based on VN preprocess. The optimized parameters forPLS model were as follows: effective wavenumbers are of12000cm~(-1)~5446.2cm~(-1)and4601.5cm~(-1)~4246.6cm~(-1); PCs rank of10. Under these conditions, root mean square error ofcross-validation (RMSECV) is the lowest (0.123), the cross-validation determination (R2 0.5172, it is better than PLS model build in whole wavenumber range.
     (7) The best PLS model of decay area for apple MC and CR were built with the variablesselected by genetic algorithm (GA) after smoothing with a segment of9and VNpreprocessing. TheR2CVand prediction determination (R~2P) for the PLS model built by GAselected variables after the both two preprocessing methods were0.6623and0.6328,0.6597and0.6466, respectively. Their corresponding RMSECV and root mean square errors ofprediction (RMSEP) were0.1035and0.0929,0.1041and0.0944, respectively. The resultsindicated that the PLS model buid by GA selected variables were better than the parametersoptimized by OPUS.
     (8) Eliminating32outliers by criterion of prediction difference, theR~2_(CV)of PLS modelbuild by GA selected wavenumbers after smoothing with a segment of9spectrapreprocessing for calibration set is0.7809, RMSECV is of0.0846; theR2
     Pfor prediction setis0.6902, RMSEP is of0.0860. Eliminating44outliers by criterion of prediction difference,theR~2_(CV)of PLS model build by GA selected wavenumbers after VN spectra preprocessingfor calibration set is0.7730, RMSECV is of0.0784; theR~2_Pfor prediction set is0.7105,RMSEP is of0.0817. The above results indicated that both PLS models were robust, and canbe used to predicting decay area of apple MC and CRfruits, and the PLS model build by GAselected wavenumbers with VN preprocessing has a better prediction effect on decay area ofapple MC and CR fruits than GA selected wavenumbers with smoothing (a segment of9)preprocessing.
引文
曹建康,姜微波,赵玉梅.2007.果蔬采后生理生化实验指导.北京:中国轻工业出版社
    曹谋文.2001.红富士霉心病的生物防治.山西农业,(2):27
    曾永三,王振中.1999.苯丙氨酸解氨酶在植物抗病反应中的作用.仲恺农业技术学院学报,12(3):56-65
    陈策.1990.苹果霉心病的防治和研究问题.山西果树,(3):11-12
    陈崇顺,徐凤彩,李明启.1993.21科41种(变种)植物叶片几丁质酶系的研究.植物资源与环境,2(4):28-33
    陈德芬,赵国防,马连安,霍文娟.1996.苹果增产菌对苹果霉心病的防治效果.落叶果树,(3):2-3
    陈建军,陈红果,韩兰荣,杨秀媛,郭保荣,马恩正.2000.苹果霉心病防治技术研究初报.中国果树,(2):29-30
    陈延熙,梅汝鸿,赫玉强.1985.苹果霉心病的发生及防治.植物保护,11(6):9-11
    董冰.2008.桃树霉心病的发生及综合防治措施.当代生态农业,(Z1):126-127
    房道亮,姜丽芝.1993.北斗苹果霉心病的发生及防治.山西果树,(1):12-13
    冯启云,张海霞,刁兴治,刘华堂.1996.多效灵防治元帅系苹果霉心病的效果.落叶果树,(4):42
    冯世杰,戴小鹏,王艳平.2008.基于NIR-SVM对鸭梨褐变病果的识别.农业网络信息,(3):133-135
    傅霞萍,应义斌,刘燕德,陆辉山.2006.水果坚实度的近红外光谱检测分析试验研究.光谱学与光谱分析,26(6):1038-1041
    傅学池,徐维敏,梅汝鸿,陈策.1998.苹果霉心病的生物防治试验.落叶果树,(3):3-5
    高俊凤.2000.植物生理学实验技术.西安:世界图书出版公司
    龚国淑,冷怀琼,朱继熹.1991.苹果霉心病病原(Alternaria alternata)拮抗菌的筛选.四川农业大学学报,9(2):236-243
    韩东海,刘新鑫,鲁超,王加华,孙旭东.2006.苹果内部褐变的光学无损伤检测研究.农业机械学报,37(6):86-88,93
    何勇,李晓丽.2006.用近红外光谱鉴别杨梅品种的研究.红外与毫米波学报,25(3):192-194,212
    呼丽萍,马春红,杨光明,谭维军.1996.苹果霉心病病原研究.果树科学,13(3):157-161
    呼丽萍,马春红,张健,谭维军,杨光明,张领耘.1995a.苹果霉心病菌的侵染过程.植物病理学报,25(4):351-356
    呼丽萍,谭维军,杨光明,马春红,魏志贞.1995b.苹果霉心病与果实结构关系的研究.中国果树,(1):30-32
    黄丽丽,张管曲,康振生,严勇敢.2001.果树病害图鉴.西安:西安地图出版社
    黄秀丽,程鲜友,王丽丽,兰红礼.2008.苹果霉心病防治试验研究.河北果树,(4):40-41
    金春文,徐云斌,杨顺山,徐永芳,张美芳.1996.解决北斗苹果因霉心病引起的采前落果试验.落叶果树:52
    寇莉萍.2007.热处理对轻度加工葡萄保鲜效应及机理的研究.[博士学位论文].杨凌:西北农林科技大学
    雷英杰,张善文,李续斌,周创明.2005. MATLAB遗传算法工具箱及应用.西安:西安电子科技大学出版社
    雷玉明.1993.河西走廊苹果霉心病侵染规律研究.甘肃农业科技,(9):29-30
    冷怀琼,刘勇.1991.苹果霉心病Alternaria spp在芽中越冬的研究.四川农业大学学报,9(2):244-249
    冷怀琼,刘勇,龚国淑.1991.苹果霉心病防治的研究.四川农业大学学报,9(2):257-261
    李广旭,杨华,王家民.2005.岳帅苹果霉心病药剂防治研究.北方果树,(2):10-11
    李桂峰.2008.苹果果肉褐变机理和近红外无损检测技术研究.[博士学位论文].杨凌:西北农林科技大学
    李亮,丁武.2010.掺有植物性填充物牛奶的近红外光谱判别分析.光谱学与光谱分析,30(5):1238-1242
    李鹏霞,王炜,胡花丽,黄开红,常有宏.2009.次氯酸钙处理对红富士苹果常温贮藏下防御酶活性的影响.江苏农业学报,25(2):378-381
    李仁芳,郝庆照,张艳春,王福义,李瑞芝.2004.苹果霉心病大发生的原因及防治措施.落叶果树,(4):49-50
    李善宽,潘月生,赵纪文,阎振常,王吉奎.1994.多效灵防治苹果霉心病试验初报.山西果树,(2):27-28
    李晓丽,胡兴越,何勇.2006.基于主成分和多类判别分析的可见-红外光谱水蜜桃品种鉴别新方法.红外与毫米波学报,25(6):417-420
    李炎,张月学,徐香玲,蒿若超.2008.近红外反射光谱(NIRS)分析技术及其在农业上的应用.黑龙江农业科学,(1):105-108
    林枫.2004.防治苹果斑点落叶病、霉心病的高效药剂——多氧清.烟台果树,(2):49
    刘会香.2001.苹果霉心病的研究现状及展望.水土保持研究,8(3):91-92
    刘开启,申卫星,张培正,马明,刘素芳.1995.苹果霉心病的研究Ⅰ致病菌种类的调查鉴定.山东农业大学学报,26(3):291-298
    刘燕德,罗吉,陈兴苗.2008.可见/近红外光谱的南丰蜜桔可溶性固形物含量定量分析.红外与毫米波学报,27(2):119-122
    刘燕德,应义斌.2004a.基于MATLAB语言的苹果糖度近红外光谱定量分析.浙江大学学报(工学版),38(10):1371-1374
    刘燕德,应义斌.2004b.近红外漫反射式水果糖份含量的测量系统.光电工程,31(2):51-53
    刘勇,冷怀琼.1990.苹果霉心病菌(Alternaria spp)越冬和侵入研究.四川农业大学学报,8(2):136-140
    刘勇,冷怀琼.1991.苹果霉心病病原Alteria alternata的生物特性.四川农业大学学报,9(2):250-256
    刘勇,刘红雨,曾正宜,郑有强,周志明,向熙汉.1996.洁尔阴对苹果霉心病菌的防效(简报).西南农业大学学报,(6):532
    陆辉山,傅霞萍,谢丽娟,应义斌.2007.可见/近红外光估测完整柑橘水果可溶性固形物含量的研究.光谱学与光谱分析,27(9):1727-1730
    陆婉珍,袁洪福,徐广通,强冬梅.2000.现代近红外光谱分析技术.北京:中国石化出版社
    马本学,饶秀勤,应义斌,沈飞,樊玉霞.2009.基于近红外漫反射光谱的香梨类别定性分析.光谱学与光谱分析,29(12):3288-3290
    马恩正,陈建军,陈红果,韩兰荣,杨秀媛,郭保荣.2000.苹果霉心病田间防治技术研究.烟台果树,(2):23-10
    马广,傅霞萍,周莹,应义斌,徐惠荣,谢丽娟,林涛.2007.大白桃糖度的近红外漫反射光谱无损检测试验研究.光谱学与光谱分析,27(5):907-910
    马文辉,冯金花.2001.防治苹果霉心病.河北农业,(6):19
    马艳萍.2009.鲜食核桃才后生理及辐照效应研究.[博士学位论文].杨凌:西北农林科技大学
    毛莎莎,曾明,何绍兰,郑永强,易时来,王亮,赵旭阳,邓烈.2010.哈姆林甜橙果实内在品质的可见-近红外漫反射光谱无损检测法.食品科学,31(14):258-263
    梅汝鸿,严志农,付学池.1991.苹果霉心病微生态研究.中国微生态学杂志,3(1):80-83
    闵顺耕,李宁,张明祥.2004.近红外光谱分析中异常值的判别与定量模型优化.光谱学与光谱分析,24(10):1205-1209
    农贸网.2011.2010年世界苹果生产与贸易状况. http://www.agriffchina.com/details.aspx?id=140688[2011-04-05]
    欧阳光察,薛应龙.1988.植物苯丙烷类代谢的生理意义及其调控.植物生理学通讯,(3):9-16
    彭帮柱,岳田利,袁亚宏,高振鹏.2009.苹果酒发酵过程中糖度近红外光谱检测模型的建立.光谱学与光谱分析,29(3):652-655
    沈文飚,徐朗莱,叶茂炳,张荣铣.1996.抗坏血酸过氧化物酶活性测定的探讨.植物生理学通讯,32(3):203-205
    孙群,胡景江.2006.植物生理学研究技术.杨凌:西北农林科技大学出版社
    孙元武,王淑华.1995.北斗苹果霉心病与果实着生位置、大小关系的调查.烟台果树,(1):45
    唐欣甫,陈兆恒.1997.北斗苹果霉心病防治技术研究.中国果树,(2):32-34
    陶轶凡.1995.我国苹果霉心病研究进展概述.四川果树,(4):35-37
    王东昌,郝秀青,辛玉成,张成,雷彩霞.2001.红富士苹果霉心病的发生与生物防治.落叶果树,(2):57-58
    王丰,云兴福,李蕾.2009.机械损伤对黄瓜幼苗体内苯丙氨酸解氨酶和几丁质酶活性的影响.内蒙古农业大学学报(自然科学版),30(1):36-40
    王加华,孙旭东,潘璐,孙谦,韩东海.2008.基于可见/近红外能量光谱的苹果褐腐病和水心鉴别.光谱学与光谱分析,28(9):2098-2102
    王志龙.2006.苹果盛花期喷药对坐果率及霉心病的影响.北方果树,(1):54
    魏传珍,王翠香,李夏鸣,郭秀芳.1997.苹果心腐病防治初步研究.山西农业科学,25(3):72-76
    魏传珍,周旭凌,杨兰生,那海平,李夏鸣.1993.贮藏期苹果霉心病发病与环境关系的研究.植物保护学报,20(2):117-122
    魏景超.1979.真菌鉴定手册.上海:上海科学技术出版社
    魏康年,饶华华,李红,韩金声.1980.苹果霉心病侵染规律研究.中国果树,(3):32-34,31
    吴芳芳,郑有飞,万长健,吴荣军.2008. UV-B辐射增强对苹果采后炭疽病发病情况和抗病相关酶活性的影响.生态环境,17(3):962-965
    夏俊芳.2007.基于近红外光谱的贮藏脐橙品质无损检测方法研究.[博士学位论文].武汉:华中农业大学
    辛玉成.2000.枯草芽孢杆菌BL03对苹果霉心病和棉苗病害田间防治效果.中国生物防治,16(1):47
    辛玉成,秦淑莲,金静,张迎春,徐坤.1999a.苹果霉心病生防菌株抗菌蛋白的提纯与部分性质初报.莱阳农学院学报,16(1):35-38
    辛玉成,秦淑莲,李宝笃,尹士采,丁锡花,雷彩霞.2000a.枯草芽孢杆菌XM16菌株制剂对苹果霉心病的防治及病原的抑制作用.植物病理学报,30(1):66-70
    辛玉成,秦淑莲,李宝笃,张迎春,陈倩.1996.苹果品种霉心病发生与果实糖和酸含量的相关性研究初报.莱阳农学院学报,13(4):286-287
    辛玉成,秦淑莲,刘希光,李彩霞,孙竹生,王元庆.1999b.几种拮抗菌株对苹果霉心病菌抑制作用的研究.中国果树,(3):14-15
    辛玉成,衣先家,张成,田丙列,丁锡花,尹士采.2000b.红富士霉心病的发生与生物防治研究初报.烟台果树,(2):25-31
    严衍禄.2005.近红外光谱分析基础与应用.北京:中国轻工业出版社
    杨亮亮.2009.基于机器视觉和X射线的苹果霉心病检测方法研究.[硕士学位论文].杨凌:西北农林科技大学
    杨清美.2005.苹果霉心病的发生和防治.农业科技通讯,(3):15
    杨松芳,高国锋,朱苏娜,高俊山,雷永亮.2011.宝丽安防治苹果霉心病田间药效试验.山西果树,(2):45
    展慧,李小昱,周竹,汪成龙,高云.2011.基于近红外光谱和机器视觉融合技术的板栗缺陷检测.农业工程学报,27(2):345-349
    张俊祥,原晓玲,赵磊,程少丽.2008.苹果霉心病的发生规律与防治方法.西北园艺(果树专刊),(1):52
    张鹏,李江阔,孟宪军,张平,王宝刚,冯晓元.2011.磨盘柿可溶性固形物的可见/近红外漫反射光谱无损检测.食品科学,32(6):191-194
    张钦书.1992.苹果霉心病发生近况及研究进展.烟台果树,(3):21-22
    张庆,冷怀琼,朱继熹.1997.苹果叶面附生微生物区系及其有益菌的研究Ⅲ:蜡芽B017防病及促生的实验.云南农业大学学报,12(4):269-275
    章海亮,孙旭东.2011.近红外漫反射检测梨可溶性固形物SSC和硬度的研究.中国农机化,(1):101-103,111
    章海亮,孙旭东,郝勇,刘燕德.2010.近红外漫反射无损检测梨果糖度及pH值的研究.西北农林科技大学学报(自然科学版),38(4):128-132
    中国科学院上海植物生理研究所,上海市植物生理学会.1999.现代植物生理学实验指南.北京:科学出版社
    周竹,刘洁,李小昱,李培武,王为,展慧.2009.霉变板栗的近红外光谱和神经网络方法判别.农业机械学报,40(增刊):109-112
    祝诗平,王一鸣,张小超,吴静珠.2004.近红外光谱建模异常样品剔除准则与方法.农业机械学报,35(4):115-119
    左豫虎,康振生,杨传平,芮海英,娄树宝,刘惕若.2009. β-1,3-葡聚糖酶和几丁质酶活性与大豆对疫霉根腐病抗性的关系.植物病理学报,39(6):600-607
    Abeles F B, Forrence L E.1970. Temporal and Hormonal Control of β-1,3-Glucanase in Phaseolus vulgarisL. Plant Physiology,45(4):395-400
    Amarante C V T, Blum L E B, Ernani P R, Megguer C A, Krammes J G, Bogo A.2002. Preharvest sprayingwith thidiazuron reduces calcium content and increases the calix-end opening and the incidence ofmouldy core on apple fruits. Revista de Ciencias Agroveterinarias,1(2):56-62
    Archer C.2002. The use of honeybees as a transfer vector for core rot in apples. RIRDC Publication.Barton, A.C.T., Rural Industries Research and Development Corporation:1-47.
    Berardinelli A, Cevoli C, Silaghi F A, Fabbri A, Ragni L, Giunchi A, Bassi D.2010. FT-NIR Spectroscopyfor the Quality Characterization of Apricots (Prunus Armeniaca L.). Journal of Food Science,75(7):E462-E468
    Berger L R, Reynold D M.1958. The chitinase system of a strain of Streptomyces griseus. Biochimica etBiophysica Acta,29(3):522-534
    Biggs A R, Ingle M, Solihati W D.1993. Control of Alternaria infection of fruit of apple cultivar Nittanywith calcium chloride and fungicides. Plant Disease,77(10):976-980
    Boller T, Gehri A, Mauch F, V geli U.1983. Chitinase in bean leaves: induction by ethylene, purification,properties, and possible function. Planta,157(1):22-31
    Bradford M M.1976. A rapid and sensitive method for the quantitation of microgram quantities of proteinutilizing the principle of protein-dye binding. Analytical Biochemistry,72(1-2):248-254
    Brown E A, Hendrix F F.1978. Effect of certain fungicides sprayed during apple bloom on fruit set andfruit rot. Plant Disease Reporter,62(8):739-741
    Bureau S, Ruiz D, Reich M, Gouble B, Bertrand D, Audergon J M, Renard C M G C.2009. Rapid andnon-destructive analysis of apricot fruit quality using FT-near-infrared spectroscopy. Food Chemistry,113(4):1323-1328
    Burns D A, Ciurczak E W.2001. Handbook of Near-Infrared Analysis (2nd Edition). New York:MarcelDekker, Inc.
    Camps C, Christen D.2009. Non-destructive assessment of apricot fruit quality by portable visible-nearinfrared spectroscopy. LWT-Food Science and Technology,42(6):1125-1131
    Carlomagno G, Capozzo L, Attolico G, Distante A.2004. Non-destructive grading of peaches bynear-infrared spectrometry. Infrared Physics&Technology,46(1-2):23-29
    Carpenter J B.1942. Moldy core of apples in Wisconsin. Phytopathology,32:896-900
    Chérif M, Arfaoui A, Rhaiem A.2007. Phenolic compounds and their role in bio-control and resistance ofchickpea to fungal pathogenic attacks. Tunisian Journal of Plant Protection,2(1):7-21
    Clark C J, McGlone V A, Jordan R B.2003a. Detection of Brownheart in 'Braeburn' apple by transmissionNIR spectroscopy. Postharvest Biology and Technology,28(1):87-96
    Clark C J, McGlone V A, Requejo C, White A, Woolf A B.2003b. Dry matter determination in 'Hass'avocado by NIR spectroscopy. Postharvest Biology and Technology,29(3):301-308
    Combrink J C, Kotze J M, Wehner F C, Grobbelaar C J.1985. Fungi associated with core rot of Starkingapples in South Africa. Phytophylactica,17(2):81-83
    Cota I E, Troncoso-Rojas R, Sotelo-Mundo R, Sánchez-Estrada A, Tiznado-Hernández M E.2007.Chitinase and β-1,3-glucanase enzymatic activities in response to infection by Alternaria alternataevaluated in two stages of development in different tomato fruit varieties. Scientia Horticulturae,112(1):42-50
    Davies A M C, Grant A.1987. Review: Near infra-red analysis of food. International Journal of FoodScience&Technology,22(3):191-207
    Dowson W J.1926. On a core rot and premature fall of apples associated with Sclerotinia fructigena.Transactions of the British Mycological Society,11(1-2):155-161
    Dygert S, Li L H, Florida D, Thoma J A.1965. Determination of reducing sugar with improved precision*1. Analytical Biochemistry,13(3):367-374
    Ellis M A.1980. Fungi associated with moldy-core of apple and their location within fruit. ResearchCircular, Ohio Agricultural Research and Development Center,(259):36-38
    Ellis M A, Barrat J G.1983. Colonization of delicious apple fruits by Alternaria spp. and effect of fungicidesprays on moldy-core. Plant Disease,67(2):150-152
    Fan G, Zha J, Du R, Gao L.2009. Determination of soluble solids and firmness of apples by Vis/NIRtransmittance. Journal of Food Engineering,93(4):416-420
    Gómez A H, He Y, Pereira A G.2006. Non-destructive measurement of acidity, soluble solids and firmnessof Satsuma mandarin using Vis/NIR-spectroscopy techniques. Journal of Food Engineering,77(2):313-319
    Han D, Tu R, Lu C, Liu X, Wen Z.2006a. Nondestructive detection of brown core in the Chinese pear 'Yali'by transmission visible-NIR spectroscopy. Food Control,17(8):604-608
    Han J, Tao W, Hao H, Zhang B, Jiang W, Niu T, Li Q, Cai T.2006b. Physiology and Quality Responses ofFresh cut Broccoli Florets Pretreated with Ethanol Vapor. Journal of Food Science,71(5): S385-S389
    Kamdee C, Ketsa S, van Doorn W G.2009. Effect of heat treatment on ripening and early peel spotting incv. Sucrier banana. Postharvest Biology and Technology,52(3):288-293
    Kampfenkel K, Vanmontagu M, Inze D.1995. Extraction and determination of ascorbate anddehydroascorbate from plant tissue. Analytical Biochemistry,225(1):165-167
    Kang J C, Crous P W, Mchau G R A, Serdani M, Song S M.2002. Phylogenetic analysis of Alternaria spp.associated with apple core rot and citrus black rot in South Africa. Mycological Research,106(10):1151-1162
    Khan J, Ahmad S, Hassan S.1999. Etiology of Post-harvest Rot of Apples in NWFP. Pakistan Journal ofBiological Sciences,2(4):1332-1333
    Kretzschmar A A, Marodin G A B, Duarte V, Valdebenito-Sanhueza R M, Guerra D S.2007. Effects ofgrowth regulators on the incidence of moldy core in "Fuji" apples. Revista Brasileira de Fruticultura,29(3):414-419
    López-Serrano M, Barceló A R.1999. H2O2-mediated pigment decay in strawberry as a model system forstudying color alterations in processed plant foods. Journal of Agricultural and Food Chemistry,47(3):824-827
    Lee C Y, Kagan V, Jaworski A W, Brown S K.1990. Enzymic browning in relation to phenolic compoundsand polyphenoloxidase activity among various peach cultivars. Journal of Agricultural and FoodChemistry,38(1):99-101
    Li X, He Y, Fang H.2007. Non-destructive discrimination of Chinese bayberry varieties using Vis/NIRspectroscopy. Journal of Food Engineering,81(2):357-363
    Liu Y, Chen X, Ouyang A.2008. Nondestructive determination of pear internal quality indices by visibleand near-infrared spectrometry. LWT-Food Science and Technology,41(9):1720-1725
    Lu R.2001. Predicting firmness and sugar content of sweet cherries using near-infrared diffuse reflectancespectroscopy. Transactions of the ASAE,44(5):1265-1271
    Matern U, Kneusel R E.1988. Phenolic compounds in plant disease resistance. Phytoparasitica,16(2):153-170
    Mehinagic E, Royer G, Symoneaux R, Bertrand D, Jourjon F.2004. Prediction of the sensory quality ofapples by physical measurements. Postharvest Biology and Technology,34(3):257-269
    Meronuck R A, Steele J A, Mirocha C J, Christensen C M.1972. Tenuazonic acid, a toxin produced byAlternaria alternata. Applied Microbiology,23(3):613-617
    Michailides T J, Morgan D P, Mitcham E, Crisosto C H.1994. Occurrence of moldy core and core rot ofFUJI apple in California. KAC Plant Protection Quarterly,3(1):4-6
    Mireei S A, Mohtasebi S S, Massudi R, Rafiee S, Arabanian A S.2010. Feasibility of near infraredspectroscopy for analysis of date fruits. International Agrophysics,24(4):351-356
    Mishra N P, Mishra R K, Singhal G S.1993. Changes in the activities of anti-oxidant enzymes duringexposure of intact wheat leaves to strong visible light at different temperatures in the presence ofprotein synthesis inhibitors. Plant Physiology,102(3):903
    Mittler R.2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science,7(9):405-410
    Mittler R, Zilinskas B A.1991. Purification and characterization of pea cytosolic ascorbate peroxidase.Plant Physiology,97(3):962
    Nakano Y, Asada K.1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinachchloroplasts. Plant and Cell Physiology,22(5):867
    Nguyen T B T, Ketsa S, van Doorn W G.2003. Relationship between browning and the activities ofpolyphenoloxidase and phenylalanine ammonia lyase in banana peel during low temperature storage.Postharvest Biology and Technology,30(2):187-193
    Nicola B M, Beullens K, Bobelyn E, Peirs A, Saeys W, Theron K I, Lammertyn J.2007. Nondestructivemeasurement of fruit and vegetable quality by means of NIR spectroscopy: A review. PostharvestBiology and Technology,46(2):99-118
    Niem J, Miyara I, Ettedgui Y, Reuveni M, Flaishman M, Prusky D.2007. Core Rot Development in RedDelicious Apples Is Affected by Susceptibility of the Seed Locule to Alternaria alternata Colonization.Phytopathology,97(11):1415-1421
    Pinilla C B, Trombert V Y, Alvarez A M.1996. Effect of fungicide sprays on mouldy core of cold-storedapples. Agricultura Tecnica (Santiago),56(3):155-162
    Ramírez-Legarreta M R, Jacobo-Cuéllar J L, ávila-Marioni M R, Parra-Quezada R á, Zacatenco-GonzálezM G.2009. Irrigation type, organic mulch and fungicide sprays over yield losses caused by moldy core[Alternaria alternata (Fries) Keissler] in apple trees [Malus sylvestris (L.) Mill var. domestica (Borkh)Mansf.] cv. Red Delicious. Revista Mexicana de Fitopatología,27(2):113-122
    Rang J C, Crous P W, Mchau G R A, Serdani M, Song S M.2002. Phylogenetic analysis of Alternaria spp.associated with apple core rot and citrus black rot in South Africa. Mycological Research,106(10):1151-1162
    Reissig J L, Strominger J L, Leloir L F.1955. A modified colorimetric method for the estimation ofN-acetylamino sugars. Journal of Biological Chemistry,217(2):959
    Reuveni M.2006. Inhibition of germination and growth of Alternaria alternata and mouldy-coredevelopment in Red Delicious apple fruit by Bromuconazole and Sygnum. Crop Protection,25(3):253-258
    Reuveni M, Prusky D.2007. Improved control of moldy-core decay (Alternaria alternata) in Red Deliciousapple fruit by mixtures of DMI fungicides and captan. European Journal of Plant Pathology,118(4):349-357
    Reuveni M, Sheglov D.2002. Effects of azoxystrobin, difenoconazole, polyoxin B (polar) andtrifloxystrobin on germination and growth of Alternaria alternata and decay in red delicious applefruit. Crop Protection,21(10):951-955
    Reuveni M, Sheglov D, Cohen Y.2003. Control of moldy-core decay in apple fruits by β-aminobutyricacids and potassium phosphites. Plant Disease,87(8):933-936
    Reuveni M, Sheglov D, Sheglov N, Ben-Arie R, Prusky D.2002. Sensitivity of Red Delicious apple fruit atvarious phenologic stages to infection by Alternaria alternata and moldy-core control. EuropeanJournal of Plant Pathology,108(5):421-427
    Reuveni M, Sheglov N, Eshel D, Prusky D, Ben-Arie R.2007. Virulence and the Production ofEndo-1,4-β-glucanase by Isolates of Alternaria alternata Involved in the Moldy-core Disease ofApples. Journal of Phytopathology.,155(1):50-55
    Robiglio A L, Lopez S E.1995. Mycotoxin production by Alternaria alternata strains isolated from reddelicious apples in Argentina. International Journal of Food Microbiology,24(3):413-417
    Roy S, Anantheswaran R C, Shenk J S, Westerhaus M O, Beelman R B.1993. Determination of moisturecontent of mushrooms by Vis—NIR spectroscopy. Journal of the Science of Food and Agriculture,63(3):355-360
    S rensen J L, Phipps R K, Nielsen K F, Schroers H J, Frank J, Thrane U.2009. Analysis of Fusariumavenaceum metabolites produced during wet apple core rot. Journal of Agricultural and FoodChemistry,57(4):1632-1639
    Salles I I, Blount J W, Dixon R A, Schubert K.2002. Phytoalexin induction and β-1,3-glucanase activitiesin Colletotrichum trifolii infected leaves of alfalfa (Medicago sativa L.). Physiological and MolecularPlant Pathology,61(2):89-101
    Salzman R A, Tikhonova I, Bordelon B P, Hasegawa P M, Bressan R A.1998. Coordinate Accumulation ofAntifungal Proteins and Hexoses Constitutes a Developmentally Controlled Defense Response duringFruit Ripening in Grape. Plant Physiology,117(2):465-472
    Serdani M, Crous P W, Holz G, Petrini O.1998. Endophytic fungi associated with core rot of apples inSouth Africa, with specific reference to Alternaria species. Sydowia,50(2):257-271
    Serdani M, Kang J C, Andersen B, Crous P W.2002. Characterisation of Alternaria species-groupsassociated with core rot of apples in South Africa. Mycological Research,106(5):561-569
    Shenderey C, Shmulevich I, Alchanatis V, Egozi H, Hoffman A, Ostrovsky V, Lurie S, Ben Arie R,Schmilovitch Z.2010. NIRS detection of moldy core in apples. Food and Bioprocess Technology,3(1):79-86
    Spotts R A, Holmes A R J, Washington W S.1988. Factors affecting wet core rot of apples. AustralasianPlant Pathology,17(2):53-57
    Teixidó N, Usall J, Magan N, Vi as I.1999. Microbial population dynamics on Golden Delicious applesfrom bud to harvest and effect of fungicide applications. Annals of applied biology,134(1):109-116
    Upchurch B L, Throop J A, Aneshansley D J.1997. Detecting internal breakdown in apples usinginteractance measurements. Postharvest Biology and Technology,10(1):15-19
    van der Walt L, Spotts R A, Visagie C M, Jacobs K, Smit F J, McLeod A.2010. Penicillium speciesassociated with preharvest wet core rot in south africa and their pathogenicity on apple. Plant disease,94(6):666-675
    Van Loon L C, Van Strien E A.1999. The families of pathogenesis-related proteins, their activities, andcomparative analysis of PR-1type proteins. Physiological and Molecular Plant Pathology,55(2):85-97
    Vurro M, Ellis B E.1997. Effect of fungal toxins on induction of phenylalanine ammonia-lyase activity inelicited cultures of hybrid poplar. Plant Science,126(1):29-38
    Wang J, Nakano K, Ohashi S, Takizawa K, He J.2010. Comparison of different modes of visible andnear-infrared spectroscopy for detecting internal insect infestation in jujubes. Journal of FoodEngineering,101(1):78-84
    Wang Y S, Tian S P, Xu Y, Qin G Z, Yao H.2004. Changes in the activities of pro-and anti-oxidantenzymes in peach fruit inoculated with Cryptococcus laurentii or Penicillium expansum at0or20℃.Postharvest Biology and Technology,34(1):21-28
    Wise B M, Gallagher N B, Bro R, Shaver J M, Windig W, Scott Koch R.2006. Chemometrics Tutorial forPLS_Toolbox and Solo. Wenatchee:Eigenvector Research, Inc.
    Xing J, Landahl S, Lammertyn J, Vrindts E, Baerdemaeker J D.2003. Effects of bruise type ondiscrimination of bruised and non-bruised 'Golden Delicious' apples by VIS/NIR spectroscopy.Postharvest Biology and Technology,30(3):249-258
    Xu W T, Peng X, Luo Y B, Wang J, Guo X, Huang K L.2009. Physiological and biochemical responses ofgrapefruit seed extract dip on 'Redglobe' grape. LWT-Food Science and Technology,42(2):471-476
    Ying Y, Liu Y.2008. Nondestructive measurement of internal quality in pear using genetic algorithms andFT-NIR spectroscopy. Journal of Food Engineering,84(2):206-213
    Zhang J, Huang W, Pan Q, Liu Y.2005. Improvement of chilling tolerance and accumulation of heat shockproteins in grape berries (Vitis vinifera cv. Jingxiu) by heat pretreatment. Postharvest Biology andTechnology,38(1):80-90
    Zheng X, Tian S, Meng X, Li B.2007. Physiological and biochemical responses in peach fruit to oxalicacid treatment during storage at room temperature. Food Chemistry,104(1):156-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700