骨髓单个核细胞构建细胞化生物组织工程血管支架的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:鼠骨髓来源的内皮祖细胞的体外培养及生物学特性的研究
     目的将鼠骨髓来源的内皮祖细胞(endothelial progenitor cells , EPCs)诱导培养成内皮细胞(endothelial cells , ECs),鉴定并观察其在体外增殖、分化过程中相关细胞表型的变化。
     方法采用密度梯度离心方法获得鼠骨髓单个核细胞,分别用EGM-2培养剂进行诱导分化(实验组)和普通培养基培养(对照组),于培养4、7、10、14、21 d,用免疫荧光双标技术(CD34、VWF和FLK1等)鉴定EPCs,用MTT法分析EPCs增殖情况。于诱导分化后的1、4、7、10、14、21 d,用western blotting法检测VWF蛋白的水平,用RT-PCR和Real-time PCR法检测VEGFR 2(FLK1)、VWF的mRNA表达变化,并与未诱导培养的细胞进行比较。
     结果鼠骨髓单个核细胞在诱导培养的4 d细胞开始贴壁,7 d细胞大多变为梭形,排列成“铺路石”样,而对照组的细胞生长状态差,形态不如典型的“铺路石”状;MTT结果表明10 d时EPCs达增殖高峰(P<0.05);免疫染色表明,诱导培养7 d的细胞约90%呈VWF/CD34双荧光阳性,对照组的阳性率极低,随培养时间的延长阳性率无增加; western blotting结果表明,诱导培养1 d的细胞无VWF表达,培养4 d后表达逐渐增强, 10~14 d达高峰,21 d后稍减弱;Real-time PCR结果表明,培养1 d的细胞FLK1和VWF的mRNA表达低(P<0.01),4 d后表达逐渐增强,14 d达高峰,21 d后略减少,未诱导细胞无表达。
     结论本试验成功地从鼠骨髓单个核细胞中分离、诱导培养出EPCs,在其体外扩增分化为成熟内皮细胞的过程中,P0~P3(1~21 d) FLK1和VWF等内皮细胞标志蛋白表达逐渐增强,P3(21 d)后略有下降;而未加诱导的不能生长成内皮细胞。该细胞可作为构建血管组织工程较为理想的内皮的种子细胞。
     第二部分:鼠骨髓来源的平滑肌祖细胞培养、鉴定及生物学特性的研究
     目的将鼠骨髓来源的平滑肌祖细胞(smooth muscle progenitor cells, SPCs),诱导培养成平滑肌细胞(smooth muscle cells, SMCs),鉴定并观察其在体外增殖、分化过程中相关细胞表型的变化。
     方法采用密度梯度离心方法获得鼠骨髓单个核细胞,用M-199条件培养剂进行诱导其分化,于培养4、7、10、14、21 d,用免疫荧光双标技术(α-SMA、CD14)鉴定SPCs。于诱导分化后的1、4、7、10、14、21 d,用western blotting法检测α-SMA蛋白的水平,用RT-PCR和Real-time PCR法检测α-SMA的mRNA表达变化,并与未诱导培养的细胞进行比较。
     结果鼠骨髓单个核细胞在诱导培养的4 d细胞开始贴壁,7 d细胞大多变为梭形,14 d(第3代)融合时呈现典型的“峰”“谷”样形态;免疫荧光染色表明,培养4 d的细胞α-SMA/CD14开始出现双荧光阳性;western blotting结果表明,培养1 d的细胞无α-SMA表达,培养4 d后表达逐渐增强, 10~14 d达高峰,21 d后仍持续高水平;Real-time PCR结果表明,培养1 d的细胞α-SMA的mRNA表达低(P<0.01),4 d后表达逐渐增强,14 d达高峰(P<0.01),21 d后仍持续高水平,未诱导细胞无表达。
     结论本试验成功地从鼠骨髓单个核细胞中分离培养出SPCs,在其体外扩增分化为成熟平滑肌细胞的过程中,α-SMA、CD14平滑肌细胞标志蛋白及mRNA表达逐渐增强。该细胞可作为构建血管组织工程较为理想的平滑肌的种子细胞。
     第三部分:细胞外基质支架对内皮祖细胞生长影响的研究
     目的研究鼠骨髓来源内皮祖细胞(EPCs)在细胞外基质压缩和未压缩支架上的生长特性,为EPCs生长寻找更新、更适合的生物组织工程支架。
     方法将纤维蛋白原、层粘连蛋白和纤粘连蛋白按一定比例混合后,在新鲜大鼠血浆促凝作用下,构建毯状细胞外基质支架(extracellular matrix ECM),一组给于一定压力形成压缩支架为实验组,另一组未压缩的支架为对照组,在两种支架表面种植骨髓来源的经诱导培养的第二代内皮祖细胞(EPCs)。分别于培养1、3、7、10、14、21 d,用免疫荧光技术(VWF)鉴定EPCs,用电镜观察和分析的支架表面结构以及EPCs在支架表面的生长情况。于诱导分化后的3、7、10、14、21 d,用western blotting法检测VWF蛋白的水平,用Real-time PCR法检测VWF的mRNA表达变化。于培养10 d,用流体力学的方法测定四组不同支架的扭矩。
     结果1 h、3 h、5 h三个检测点的细胞贴壁率分别是:压缩组25.3%、60.4%、90.5%,未压缩组10.5%、30.4%、66.3%。分析1﹑3﹑7﹑10﹑14﹑21 d两组支架细胞的数量,结果表明随着时间的增加两组支架上细胞数明显增加,在1﹑3﹑7 d压缩组的细胞数明显高于未压缩组(p<0.001),且压缩组细胞较未压缩组细胞形态成熟,与内皮细胞相似,10 d后细胞数无明显差异,但压缩支架上形成一个较平整的细胞平面,而在未压缩支架表面细胞形态不规则、高低不平、细胞间排列松散。western blotting检测表明3﹑7﹑10 d VWF蛋白在压缩支架上表达比未压缩支架上强,14 d后两者表达无差异。real-timePCR结果显示:两组不同支架上的EPCs均表达VWF基因,两组的表达量7 d后均显著增高(p<0.05),14 d达高峰(p<0.01),21 d仍维持较高水平,而在3、7、10 d三时段中的压缩组VWF基因表达量明显高于未压缩组(p<0.05),14 d后实验组仍高于对照组,但无差异。压缩支架上种植细胞的扭矩明显低于其他三种支架(p<0.01)。
     结论压缩细胞外基质支架较未压缩的更能促进EPCs粘附、增殖和分化,压缩的支架可作为EPCs生长的载体,可作为一种新颖的合成人造血管的生物组织工程支架。
     第四部分:细胞外基质支架对平滑肌祖细胞生长影响的研究
     目的研究鼠骨髓来源平滑肌祖细胞(smooth muscle progenitor cells,SPCs)在细胞外基质支架上的生长特性,为SPCs生长寻找更新的生物组织工程支架。
     方法将纤维蛋白原、层粘连蛋白和纤粘连蛋白按一定比例混合后,在新鲜大鼠血浆促凝作用下,构建毯状细胞外基质支架(extracellular matrix ECM)。第二代SPCs种植于支架表面为实验组,种植于圆盖片上为对照组。于培养1、3、7、10、14、21 d,用免疫荧光技术(α-SMA)鉴定SPCs,用扫描电镜和透射电镜观察和分析的支架表面结构以及SPCs在支架上生长情况。分别于诱导分化后的3、7、10、14、21 d用western blotting法检测α-SMA蛋白的水平,用Real-time PCR法检测α-SMA的mRNA表达变化。
     结果1 h、3 h、5 h三个检测点的细胞贴壁率分别是:实验组(支架)26.40%、61.40%、91.50%,对照组(圆盖片上)11.10%、30.55%、66.90%。分析在1﹑3﹑7﹑10﹑14﹑21 d两组细胞的数量,结果表明随着时间的增加两组细胞数明显增加,在1﹑3﹑7 d实验组的细胞数明显高于对照组(p<0.001);扫描电镜显示在支架表面形成一个完整的较平整的细胞平面,细胞间排列紧密,细胞有较多的突起,如典型“平滑肌”形状;而对照组细胞形态不规则、高低不平、细胞间排列松散。透射电镜发现对照组的细胞为单层,而实验组平滑肌祖细胞为多层,呈三维立体结构,更接近天然血管的结构。western blotting检测表明3﹑7﹑10 dα-SMA蛋白在实验组表达比对照组强,14 d后两者表达无差异。real-time PCR结果显示:两组的SPCs均表达α-SMA基因,两组的表达量7 d后均显著增高(p<0.05),14 d达高峰(p<0.01),21 d仍维持较高水平;而在3、7、10 d三时段中的实验组α-SMA基因表达量明显高于对照组(p<0.05),14 d后两组表达相当,无差异。21 d后实验组仍维持高水平,对照组明显下降(p<0.01)。
     结论细胞外基质支架能显著促进SPCs粘附、增殖和分化,可作为SPCs生长的载体,可作为一种新颖的合成人造血管的生物组织工程支架。
     第五部分:内皮祖细胞和平滑肌祖细胞共同构建细胞化生物组织工程血管支架的研究
     目的研究鼠骨髓来源平滑肌祖细胞(smooth muscle progenitor cells, SPCs)和内皮祖细胞(endothelial progenitor cells , EPCs)在细胞外基质支架上的生长特性,为生物组织工程血管寻找更新的种子细胞和支架。
     方法将鼠骨髓来源单个核细胞( bone mononuclear cells, BMCs)分别用不同的培养基进行诱导分化,培养作为种子细胞。将纤维蛋白原、层粘连蛋白和纤粘连蛋白按一定比例混合后,在新鲜大鼠血浆促凝作用下,构建毯状细胞外基质(extracellular matrix, ECM)支架,先在支架表面种植诱导培养骨髓来源的第二代SPCs,4 d后再种植上第二代的EPCs(实验组);而在圆玻片上(对照组)。用扫描电镜和透射电镜观察和分析支架表面结构以及细胞在两种不同载体上生长情况。
     结果诱导培养的第二代SPCs,种植在支架上,4 d时倒置显微镜示SPCs在支架表面细胞融合呈现典型的“峰”“谷”样形态,当EPCs被种植10 d时扫描电镜显示在支架表面形成一个完整的较平整的细胞平面。透射电镜发现在多层平滑肌祖细胞表面有单层内皮祖细胞,呈三维立体结构,具有天然血管的内膜和中膜,更接近天然血管的结构。而对照组的细胞生长状态差,且为单层细胞结构。
     结论BMCs将是组织工程血管最理想的细胞来源,细胞外基质支架能显著促进SPCs和EPCs粘附、增殖和分化,可作为SPCs和EPCs生长的载体,可作为一种新颖的合成人造血管的生物组织工程支架。
Part I Study the Culture Condition and Biological Characteristics of Endothelial Progenitor Cells from Rat Marrow in Vitro
     Objective To elucidate a simple method of isolating endothelial progenitor cells ( EPCs) from rat marrow monocytes (MNCS) and observe the endothelial cell specific expression profile during proliferation and differentiation in vitro.
     Methods MNCS were isolated from rat marrow using ficoll density gradient centrifugation, induced, proliferated and differentiated in EGM-2 culture medium(the experiment group) and common medium (the control group) respectively. The EPCs were identified by immunofluorescent staining (CD34、VWF dipl-mark and FLK1) at 4,7,10,14,21 d, respectively. The proliferation of EPCs was evaluated by MTT, and endothelial cell specific markers (VWF、FLK1) were determined with western blotting and Real-time PCR at 1、4、7、10、14、21 d, respectively, and compare with the control group. Results During culturing process, the cells became spindle shaped and displayed endothelium-like cobble-stone morphology with outgrowth at 4 d and 7 d, but cells of the control group were worse in the condition and the morphous than the experiment group .
     Result of MTT indicated that the number of EPCs increased to peak at 10 d (P<0.05). Percentage of the cells that were positive for CD34/VWF was 90% at 7 d, and that of the control group extremely low, Percentage of positive was no increase. Expression for VWF at 1 d was not found with western blotting, however,gradually increased at 4 d and reached to the top during 10 d to 14 d. The results with Real-time PCR indicated that the expression of VWF and FLK1 mRNA within non-induced cells was not found, gradually increased at 4 d and reached to top at 14 d, the low-expression at 1 d was significantly different from the other ones (P<0.01).
     Conclusion These data demonstrated that EPCs could be isolated from rat marrow monocytes (MNCS) and cultured in vitro. The EPCs could be used as endothelial seeding cells in vascular tissue engineering.
     Part II Study the culture and bionomics of smooth muscle progenitorcells from rat marrow in Vitro
     Objective To elucidate a simple method of isolating smooth muscle progenitor cells ( SPCs) from rat marrow monocytes (MNCS) and observe the smooth muscle progenitor cells specific expression profile during proliferation and differentiation in vitro.
     Methods MNCS isolated by ficoll density gradient centrifugation from rat marrow,induced and proliferated and differentiated then identified by immunofluorescent staining (α-SMA,CD14) at 4, 7, 10, 14, 21 d, respectively. and smooth muscle cells specific markers (α-SMA, CD14) were determined with western blotting and Real-time PCR at 1, 4, 7,10, 14, 21 d, respectively.
     Results During culturing, cells start adherence and became spindle shaped with outgrowth at 4 d and 7 d , and present typical“peak”“valley”at 14 d (3 generation). dipl- positive forα-SMA、CD14 at 4 d. Expression forα-SMA at 1 d not found with western blotting ,but it gradually enhanced at 4 d and reached to the top from 10 d to 14 d ,and still to remain high-level after 21 d .The results with Real-time PCR indicated that the expression ofα-SMA mRNA within noninduced cells was not found ,but after being induced it gradually enhanced at 4 d and got to top at 14 d, and still to remain high-level after 21 d , low-expression at 1 d was significantly different from the other ones(P<0.01).
     Conclusion These data demonstrated that SPC could be isolated and cultured from rat marrow monocytes (MNCS), and during culturing Smooth muscle cell-specific marker expressions, such asα-SMA and CD14 potently enhanced from 1 d to 21 d. SPCs can be used as smooth muscle seeding cells for constructing vascular tissue engineering.
     Part III Study the growth effect on endothelial progenitor cells with extracellular matrix scaffold
     Objective To explore the characteristics of endothelial progenitor cells (EPCs) on pressed and unpressed extracellular matrix (ECM) scaffolds and to find a novel bio-engineered synthetic hybrid scaffold for artificial bio-engineered blood vessels.
     Methods EPCs were induced from mesenchymal stem cells isolated from rat bone marrow and cultured in EGM-2 culture medium. The scaffold was comprised from three major ECM proteins (i.e. fibrinogen, fibronectin and laminin) which can be easily molded into mat-like form and gelled by the addition of fresh plasma. Then, pressure was applied to make a pressed scaffold. EPCs were seeded on both pressed and unpressed scaffolds. the surface structure of the scaffold and growth state of EPCs on the scaffold were observed and analysed by electron microscope. The characteristics of those EPCs on different kinds of scaffolds were studied with EPC-specific VWF by immunofluorescent, western blotting and a real-time PCR technique at DIV3 (days in vitro), DIV7, DIV10, DIV14, DIV21,respectively. In addition, the hydromechanical characteristics of four kinds of scaffolds were detected by a rheometer.
     Results The ratios of cell adhesion at 1 h,3 h,5 h after seeded on pressed scaffold and unpressed scaffolds were 25.3%,60.4%,90.5% and 10.5%, 30.4%,66.3% respectively. Cell numbers on the two scaffold types at DIV1, DIV3, DIV7, DIV10, DIV14, DIV21 increased in evidence. pressed scaffolds has got a larger cell number(p<0.001)at DIV1, DIV3, DIV7,but no significant difference was found after DIV10. Furthermore, cell shapes of EPCs on pressed scaffolds were more mature and more similar to endothelial cell. A level cell surface on pressed scaffolds was achieved. However, on unpressed scaffolds, cell shapes were irregular and gaps between cells at the top of the scaffold were rather distant. Western blotting assays revealed: EPCs on pressed scaffolds expressed more protein VWF at DIV3,vDIV7, vDIV10, but no significant difference after DIV14. Real-time PCR results showed: EPCs on the two different groups of scaffolds all expressed VWF gene, The quantity of their expression in the two groups were all enhanced at DIV7(p<0.05), peaked at DIV14(p<0.01)and still maintained at a high level at DIV21. The quantity of VWF gene expression in the pressed group was much higher than that in the unpressed group at DIV3, DIV7, DIV10, but there was no significant difference after DIV14. Hydromechanical result show torque of pressed and growthed-cell scaffold was obviously lower than other scaffold (p<0.01).
     Conclusions Pressed ECM scaffolds can promote adhesion, proliferation and differentiation on EPCs. Pressed scaffolds can be used as the matrix for EPC and fabricated into a novel synthetic tissue bio-engineered vascular scaffold.
     Part IV Study the growth effect on smooth muscle progenitor cells with extracellular matrix scaffold
     Objective To explore the characteristics of smooth muscle progenitor cells (SPCs) on the extracellular matrix (ECM) scaffolds and to find a novel bio-engineered synthetic hybrid scaffold for artificial bio-engineered blood vessels.
     Methods second generation SPCs from mesenchymal stem cells isolated and cultured and induced from rat bone marrow were growthed on the scaffold(the experiment group), that comprises three major ECM proteins (i.e. fibrinogen, fibronectin and laminin) which can be easily molded into mat-like form and gelled by the addition of fresh plasma.and cells were the control group on the cover glass. the surface structure of the scaffold and growth state of SPCs on the scaffold were observed and analysed by scanning electron microscope (SEM)and transmission electron microscope (TEM);The characteristics of those SPCs on the experiment group and the control group were studied with SPC-specificα-SMA by immunofluorescent, ,western blotting and by an real-timePCR technique at DIV3 (days in vitro), DIV7, DIV10, DIV14, DIV21.
     Results The ratios of cell adhesion at 1 h, 3 h, 5 h after seeded on scaffold and control group were 26.40%,61.40%,91.50% and 11.10%,30.55%,66.90% respectively. Cell numbers on the experiment group and the control group at DIV1, DIV3, DIV7, DIV10, DIV14, DIV21 increased in evidence. the experiment group has got a larger cell number(p<0.001)at DIV1, DIV3, DIV7,but no significant difference after DIV10. Furthermore, cell shapes of SPCs on scaffolds were more level, more compact and have major ecphymas as typical smooth muscle cell by SEM. Detected by TEM , SPCs of the control group were monolayer ,on the other hand ,ones of the experiment group were multiplayer which was 3D stereochemical structure and got close to natural vascular. However, cell shapes of the control group were irregular and gaps between cells at the top of the scaffold were rather distant. Western blotting assays revealed: SPCs on ECM scaffolds expressed more proteinα-SMA at DIV3, DIV7, DIV10 ,but no significant difference after DIV14. Real-time PCR results showed: SPCs on the two different groups all expressedα-SMA gene, The quantity of their expression in the two groups were all enhanced at DIV7(p<0.05 ), peaked at DIV14(p<0.01) and still maintained at a high level at DIV21. The quantity ofα-SMA gene expression in the experiment group was much higher than that in the control group at DIV3,DIV7,DIV10(p<0.05), but there was no significant difference after DIV14. that of the control group significant decrease after DIV21.
     conclusions scaffolds can promote adhesion, proliferation and differentiation on SPCs. ECM scaffolds can be used as the matrix for SPCs and fabricated into a novel synthetic tissue bio-engineered vascular scaffold.
     Part V Experimental Research on Construction of Tissue engineering Blood Vessel scaffold with cells from smooth muscl progenitor cells and endothelial progenitor cells
     Objective To explore the characteristics of smooth muscle progenitor cells (SPCs) and endothelial progenitor cells ( EPCs) on the extracellular matrix (ECM) scaffolds and to find a novel seeds cells and bio-engineered synthetic hybrid scaffold for artificial bio-engineered blood vessels.
     Methods induced, proliferated and differentiated in different culture medium from rat bone mononuclear cells (BMCs). SPCs and EPCs of the second generation from mononuclear cells isolated and cultured and induced from rat bone marrow were growthed on the scaffold(the experiment group), that comprises three major ECM proteins (i.e. fibrinogen, fibronectin and laminin) which can be easily molded into mat-like form and gelled by the addition of fresh plasma. and cells were the control group on the cover glass. the surface structure of the scaffold and growth state of SPCs and EPCs on the scaffold were observed and analysed by scanning electron microscope (SEM)and transmission electron microscope (TEM).
     Results BMCs were induced in EGM-2 culture medium, and BMCs were induced in M-199 culture medium with bFGF. second filial generation SPCs that induced were planted on the ECM-scaffold, SPCs under inverted/ fluorescent microscope present typical“peak”“valley”at 4 d , and second filial generation EPCs were planted on the scaffold with the SPCs after 4 d, A level cell surface on scaffolds was achieved under SEM After10 d. And multiplayer SMCs were found on the surface of monolayer EPCs under TEM, which had three diamensions stereochemical structure with endomembrane and tunica media and got close to natural blood vessel. The growth of the control group cells with monolayer construction was weaker .
     Conclusions BMCs will be most ideal cells source for Tissue engineering Blood Vessel. ECM scaffolds can promote adhesion, proliferation and differentiation on SPCs and EPCs.ECM scaffolds can be used as the matrix for SPCs and EPCs and fabricated into a novel synthetic tissue bio-engineered vascular scaffold.
引文
1. Ounpuu S,Anand S,Yusuf S.The impending global epidemic of cardiovascular diseases[J]. Eur Heart J 2000,21(11):880-883.
    2. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis [J]. Science, 1997, 275(5302): 964 - 967.
    3. Yeh ET,Zhang S, Wu HD, et al. Transdifferentiation of human peripheral blood CD34+-enriched cell population into ardimnyocytes, endothelial cells, and smooth muscle cells to vtvo[J]. Circulation, 2003,108(17):2070-2073
    4. Simper D, Stalboerger PG, Panetta CJ, et al. Smooth Muscle Progenitor Cello is Human Blood[J]. Circulation, 2002,106(10) :1199- 1204.
    5. Teebken OE, Haverich A. Tissue engineering of small diameter vascular grafts[J]. Eur J Vasc Endovasc Surg, 2002, 23(6):475–485.
    6. Klinkert P,Post PN,Breslau PJ, et al.Saphenous vein versus PTFE forabove-knee femoropopliteal by-pass.A review of the literature[J]. Eur J Vasc Endovasc Surg, 2004,27(4):357-362.
    7. Niklason LE, Gao J, Abbott WM, et al. Functional arteries grown in vitro[J]. Science. 1999, 284(5413): 489–493
    8. Kawamoto A, Tkebuchava T, Yamaguchi J, et al. Intramyocardial transplantation of utologous endothelial p rogenitor cells for therapeutic neovascularization of myocardial ischemia [ J] . Circulation,2003,107 (3) : 461 - 468.
    9. Shin’oka T. Clinical result of tissue-engineered vascular autograft seeds with autologous bone marrow cells [J]. Nippon Geka Gakkai Zasshi, 2004,105(8):459-463.
    10. He H, Shirota T, Yasui H, et al.Canine endothelial progenitor cell-lined hybrid vascular graft with nonthrombogenic potential [J].J Thorac Cardiovasc Surg, 2003,126(2): 455-464.
    11. Wang Z, Wang S, Marois Y, et al . Evaluation of biodegradable synthetic scaffold coated on arterial prostheses implanted in rat subcutaneous tissue [J].Biomaterials, 2005 ,26(35):7387-7401.
    12. Battista S,Guarnieri D,Borselli C,et al. The effect of matrix composition of 3D constructs on embryonic stem cell differentiation [J].Biomaterials,2005,26 (31):6194-6207.
    13. Hokugo A, Takamoto T, Tabata Y. Preparation of hybrid scaffold from fibrin and biodegradable polymer fiber [J]. Biomaterials, 2006, 27(1): 61-67.
    14. Mosesson MW. Fibrinogen and fibrin structure and functions [J]. J Thromb Haemost, 2005, 3(8):1894-1904.
    15. Eyrich D, Brandl F, Appel B, et al. Long-term stable fibrin gels for cartilage engineering [J]. Biomaterials, 2007, 28(1):55-65.
    16. Alston SM, Solen KA, Broderick AH, et al. New method to prepare autologous fibrin glue on demand [J]. Transl Res, 2007, 149(4):187-195.
    17. Corbett SA, Lee L, Wilson CL, et al. Covalent cross-linking of fibronectin to fibrin is required for maximal cell adhesion to a fibronectin-fibrin matrix [J]. J Biol Chem, 1997, 272(40): 24999-25005.
    1. Klinkert P,Post PN,Breslau PJ,et al.Saphenous vein versus PTFE forabove-knee femoropopliteal bypass.A review of the literature.Eur[J]. Vasc Endovasc Surg, 2004, 27 (4) :357-362.
    2. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis [J]. Science, 1997, 275(5302): 964 - 967.
    3. Kawamoto A, Tkebuchava T, Yamaguchi J, et al. Intramyocardial transplantation of autologous endothelial p rogenitor cells for therapeutic neovascularization of myocardial ischemia [ J] . Circulation,2003, 107 (3) : 461 - 468.
    4. Shin’oka T. Clinical result of tissue-engineered vascular autograft seeds with autologous bone marrow cells [J]. Nippon Gekkai Zasshi, 2004, 105(8):459-463.
    5. He H, Shirota T, Yasui H, et al.Canine endothelial progenitor cell-lined hybrid vascular graft with nonthrombogenic potential [J]. Thorac Cardiovas Surg,2003,126(2):455-464.
    6. Reyes M ,Dudek A ,Jahagirdar B ,et al. Origin of endothelial progenitors in human postnatal bone marrow [J]. Clin Invest ,2002 ,109(3) :337-346.
    7. Zhao Y, Glesne D ,Huberman E ,et al. A human peripheral blood monocyte2de2 rived subset acts as pluripotent stem cells [J]. Proc Natl Acad Sci USA ,2003 , 100 (5) : 2426 -2431.
    8. Murayama T , Tepper OM ,Silver M ,et al. Determination of bone endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo [J]. Exp Hematol ,2002 ,30(8) :967-972.
    9. Gee J ,Tanaka M,Grossman HB.Connexin 26 is abnormally expressed in bladder cancer[J]. Urol,2003,169(3):1135-1137.
    10. Luttun A, Carmeliet G, Carmeliet P. Vascular progenitors: from biology to treatment [J]. Trends Cardiovasc Med, 2002, 12(2):88-96.
    11. Aushal S,Amiel GE,Guleserian KJ.Functional. small-diameter neovessels created using endothelial progenitor cells expanded ex viov [J] . Nat Med,2001,7(9):1035-1040.
    12. Kalka C,Masuda H,Takahashi T,et al. Tranplantation of ex viov expanded endothelial peogenitor cells for therapeutic neovascularization [J]. Proc Natl Acad Sci USA, 2000,97(7):3422-3427.
    13. Risau W, Sariola H, Zerwes HG, et al..Vasculogenesis and angiogenesis in embryonic stem ell-derived embryoid bodies [J]. Development,1998,102 (3);471-478.
    1. Yeh ET,Z hang S, Wu HD, et al. Transdifferentiation of human peripheral blood CD34+-enriched cell population into ardimnyocytes, endothelial cells, and smooth muscle cells to vtvo[J]. Circulation, 2003,108(17):2070-2073
    2. Simper D, Stalboerger PG, Panetta CJ, et al. Smooth Muscle Progenitor Cello is Human Blood[J]. Circulation, 2002,106(10) :1199- 1204.
    3. Pueyo ME,Chen Y,D,Angelo G,,et al. .Regulation of vascular endothelial growth factor expression by cAMP in rat aortic smooth muscle cells[J] .Exp Cell Res , 1998, 238 (2):354-8
    4. L’Heureux N, Paquet S, Labbe R, et a1. A completely biological tissue- engineered human blood vessel[J].FASEB J, 1998, 12(1):47-56.
    5. Niklason LE, Gao J, Abbott WM, et a1. Functional arteries grown in vitro[J]. Science, 1999, 284(5413): 489-493.
    6. Tanaka K, Sam M, Hirata Y, et al. Diverse contribution of bone marrow cells toneointimal hyperplasia after mechanical vsacular Injuries[J]. Cite Res, 2003, 93(8): 783 -790.
    7. Sata M , Saiura A, Kunisato A, et a1 .Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis[J].Nat Med , 2002, 8(4): 403-409.
    8. Simper D, Stalboerger PG, Panetta CJ, et a1. Smooth muscle progenitor cells in human blood[J]. Circulation, 2002, l06(10): 1199-l204.
    9. Kashlwakura Y, Katoh Y, Tamayose K, et a1. Isolation of bone marrow stromal cell-derived smooth muscle cells by a human SM-2a promoter:in vitro differentiation of putative smooth muscle progenitor cells of bone marrow[J]. Circulation, 2003, l07(2): 2078-2081.
    10. Guan K.,Chang H, Rolletschek A, ,et al. Embryonic stem cell-derived urogenesis. retinoic acid induction and lineage election of neuronal cells[J]. Cell Tissue Res , 2001, 305(2): 171-6.
    1. Ounpuu S,Anand S,Yusuf S.The impending global epidemic of cardiovascular diseases[J]. Eur Heart J ,2000,21(11):880-883.
    2.钱雷敏,张志坚,龚爱华等嗅鞘细胞P细胞外基质夹层支架的制备和形态学观察[J].中国生物医学工程学报,2007,26(3):436-440
    3. Klinkert P,Post PN,Breslau PJ et al. Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature[J]. Eur J Vasc Endovasc Surg, 2004,27(4):357-362
    4. Kim BS, Baez CE, Atala A. Biomaterial for engineering[J].World J Urol.2000;18(1):2-9.
    5. Hokugo A, Takamoto T, Tabata Y. Preparation of hybrid scaffold from fibrin and biodegradable polymer fiber[J]. Biomaterials, 2006, 27(1): 61-67.
    6. Eyrich D, Brandl F, Appel B, et al. Long-term stable fibrin gels for cartilage engineering[J]. Biomaterials, 2007, 28(1):55-65.
    7. Villard V, Kalyuzhniy O, Riccio O, et al. Synthetic RGD-containing alpha-helical coiled coil peptides promote integrin-dependent cell adhesion[J]. J Pept Sci,2006,12(3): 206– 212.
    8. Belkin AM, Tsurupa G, Zemskov E, et al. Transglutaminase-mediated oligomerization of the fibrin(ogen) alphaC domains promotesintegrin-dependent cell adhesion and signaling[J]. Blood, 2005, 105(9): 3561-3568.
    9. Ili? D, Almeida EA, Schlaepfer DD, et al. Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis[J]. J Cell Biol, 1998, 143(2): 547-560.
    1. Lee OK, Coathup MJ,Goodship AE,et al. Use of mesenchymal stem cells to facilitate bone regeneration in normal and chemotherapy-treated rats [J]. Tissue Eng , 2005,11 (11-12) :1727-1735.
    2. Derfoul A, Perkins GL, Hall DJ, et al. Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enchancing expression of cartilage extracellular matrix genes [J]. Stem Cells,2006,24(6):1487-1495.
    3.钱雷敏,张志坚,龚爱华等.嗅鞘细胞P细胞外基质夹层支架的制备和形态学观察[J].中国生物医学工程学报,2007,26(3):436-440.
    4. Hokugo A, Takamoto T, Tabata Y. Preparation of hybrid scaffold from fibrin and biodegradable polymer fiber [J]. Biomaterials, 2006, 27(1): 61-67.
    5. Mosesson MW. Fibrinogen and fibrin structure and functions [J]. J Thromb Haemost, 2005, 3(8):1894-1904.
    6. Eyrich D, Brandl F, Appel B, et al. Long-term stable fibrin gels for cartilage engineering [J]. Biomaterials, 2007, 28(1):55-65.
    7. Alston SM, Solen KA, Broderick AH, et al. New method to prepare autologous fibrin glue on demand [J]. Transl Res, 2007, 149(4):187-195.
    8. Corbett SA, Lee L, Wilson CL, et al. Covalent cross-linking of fibronectin to fibrin is required for maximal cell adhesion to a fibronectin-fibrin matrix [J]. Biol Chem, 1997, 272(40): 24999-25005.
    9. Ilic D,Almeida EA, Schlaepfer DD, et al. Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis [J]. J Cell Biol, 1998, 143(2): 547-560.
    10. Villard V, Kalyuzhniy O, Riccio O, et al. Synthetic RGD-containing alpha-helical coiled coil peptides promote integrin-dependent cell adhesion [J]. J Pept Sci, 2006, 12(3): 206-212.
    11. Belkin AM, Tsurupa G, Zemskov E, et al. Transglutaminase-mediated oligomerization of the fibrin(ogen) alphaC domains promotes integrin-dependent cell adhesion and signaling[J]. Blood, 2005, 105(9): 3561-3568.
    12. Stamenkovic I. Extracellular matrix remodelling: the role of matrix metalloproteinases [J]. J Pathol, 2003, 200(4): 448-464.
    1. Teebken OE, Haverich A. Tissue engineering of small diameter vascular grafts[J]. Eur J Vasc Endovasc Surg, 2002,23(6):475–485.
    2. Niklason LE, Gao J, Abbott WM, et al. Functional arteries grown in vitro[J]. Scince, 1999,284(5413): 489-493.
    3. Kaushal S, Amiel GE, Guleserian KJ, et al. Functional small-diameter neovessels created using endothelial progenitor cells expanded exvivo[J]. Nat Med, 2001,7 (9): 1035–1040.
    4. Langer R,Vacanti JP. Tissue engineering[J]. Scince,1993,260(5100):920-926.
    5. Nerem RM ,Seliktar D. Vascular tissue engineering[J]. Anun Rev Biomed Eng.2001, 3: 225 -243.
    6. Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial progenitors in human postnatal bone marrow[J].J Clin Invest,2002,109(3):337–346.
    7. Kashiwakura Y, Katoh Y, Tamayose K, et al. Isolation of bone marrow stromal cell- derived smooth muscle cells by a human SM22 [alpha] promoter: in vitro differentiation of putative smooth muscle progenitor cells of bone marrow[J]. Circulation, 2003,107 (16):2078–2081.
    8. Takahashi T, Kalka C, Masuda H, et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization[J]. Nat Med, 1999, 5(4): 434–438.
    9. Sata M, Saiura A, Kunisato A, et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis[J]. Nat Med,2002, 8 (4):403–409.
    10. Shimizu K, Sugiyama S, Aikawa M, et al. Host bone-marrow cells are a source of donor intimal smooth-muscle-like cells in murine aortic transplant arteriopathy[J]. NatMed, 2001, 7(6):738–741.
    11. Wang Z, Wang S, Marois Y, et al . Evaluation of biodegradable synthetic scaffold coated on arterial prostheses implanted in rat subcutaneous tissue [J].Biomaterials, 2005, 26(35): 7387-7401.
    12. Battista S,Guarnieri D,Borselli C,et al. The effect of matrix composition of 3D constructs on embryonic stem cell differentiation [J].Biomaterials, 2005,26 (31) : 6194-6207.
    13. Hokugo A, Takamoto T, Tabata Y. Preparation of hybrid scaffold from fibrin and biodegradable polymer fiber[J]. Biomaterials,2006,27(1): 61-67.
    14. Eyrich D, Brandl F, Appel B, et al. Long-term stable fibrin gels for cartilage engineering[J]. Biomaterials,2007,28(1):55-65.
    15. Villard V, Kalyuzhniy O, Riccio O, et al. Synthetic RGD-containing alpha-helical coiled coil peptides promote integrin-dependent cell adhesion[J].J Pept Sci,2006,12(3): 206-212.
    16. Belkin AM, Tsurupa G, Zemskov E, et al. Transglutaminase-mediated oligomerization of the fibrin(ogen) alphaC domains promotesintegrin-dependent cell adhesion and signaling[J]. Blood,2005, 105(9): 3561-3568.
    17. Bader A, Steinhoff G, Strobl K, et al. Engineering of human vascular aortic tissue based on a xenogeneic starter matrix. Transplantation, 2000,70(1):7–14.
    1. Ounpuu S,Anand S,Yusuf S.The impending global epidemic of cardiovascular diseases [J]. Eur Heart J ,2000,21(11):880-3.
    2. Klinkert P,Post PN,Breslau PJ et al. Saphenous vein versus PTFE for above-knee femoropoplitealbypass. A review of the literature [J]. Eur J Vasc Endovasc Surg, 2004 ,27(4):357-362
    3. Mitchell SL, Niklason LE. Requirements for growing tissue-engineered vascular grafts [J]. Cardiovasc Pathol, 2003,12(2):59–64.
    4. Carrl A“Results of permanent intubation of the thoracic aorta”Surg Gynaecol Obstet 1912;15:245-248
    5. Voorhees AB, Jaretzki A, Blakemore AH“The use of tubes constructed from Vinyon N cloth in bridging arterial defects”Ann Surg 1952;135:332-336
    6. Blakemore AH, Voorhees AB.“The use of tubes constructed from Vinyon N cloth in bridging arterial defects; experimental and clinical”Ann Surg. 1954;140:324-334
    7. Klinkert P,Post PN,Breslau PJ et al.“Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature”Eur J Vasc Endovasc Surg. 2004 ;27:357-362
    8. Mitchell SL, Niklason LE. Requirements for growing tissue-engineered vascular grafts. Cardiovasc Pathol. 2003;12:59–64.
    9. Kim BS, Baez CE, Atala A. Biomaterial for engineering[J].World JU Rol. 2000; 18(1):2-9.
    10. Eiselt P, Kim BS, Chacko B et al. Development of technologies aiding large-tissue engineering [J].Biotechnol-Prog.1998;14(1):134-140.
    11. Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials. 2000;21:2215–2231.
    12. Bader A, Schilling T, Teebken OE, Brandes G, Herden T, Steinhoff G, Haverich A. Tissue engineering of heart valves—human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardiothorac Surg. 1998;14:279–284.
    13. Bishopric NH, Dousman L, Yao Y-MM.Matrix substrate for a viable body tissue-derived prosthesis and method for making the same. St Paul, Minn: St. Jude Medical Inc; 1999.
    14. Livesy SA, del Campo AA, Nag A, Nichols KB, Coleman C, inventors; LifeCell Corp, assignee. Method for processing and preserving collagen-based tissues for transplantation. US patent 5 336 616. Branchburg, NJ: LifeCell Corp; 1994
    15. Badylak SF, Record R, Lindberg K, Hodde J, Park K. Small intestinal submucosa: a substrate for in vitro cell growth. J Biomater Sci Polym Ed. 1998;9:863–878.
    16. Robotin-Johnson MC, Swanson PE, Johnson DC, Schuessler RB, Cox JL. An experimental model of small intestinal submucosa as a growing vascular graft. J Thorac Cardiovasc Surg. 1998;116:805–811.
    17. Voytik-Harbin SL, Brightman AO, Kraine MR, Waisner B, Badylak SF. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem. 1997;67:478–491.
    18. Sandusky GE Jr, Badylak SF, Morff RJ, Johnson WD, Lantz G. Histologic findings after in vivo placement of small intestine submucosal vascular grafts and saphenousvein grafts in the carotid artery in dogs. Am J Pathol. 1992;140:317–324.
    19. Huynh T, Abraham G, Murray J, Brockbank K, Hagen PO, Sullivan S. Remodeling of an acellular collagen graft into a physiologically responsive neovessel. Nat Biotechnol. 1999;17:1083–1086.
    20. Courtman DW, Pereira CA, Kashef V, McComb D, Lee JM, Wilson GJ. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction. J Biomed Mater Res. 1994;28:655–666.
    21. Teebken OE, Haverich A. Tissue engineering of small diameter vascular grafts. Eur J Vasc Endovasc Surg. 2002;23:475–485.
    22. Sung HW, Hsu CS, Chen HC, Hsu HL, Chang Y, Lu JH, Yang PC. Fixation of various porcine arteries with an epoxy compound. Artif Organs. 1997;21:50–58.
    23. Kim BS, Putnam AJ, Kulik TJ, Mooney DJ. Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices. Biotechnol Bioeng. 1998;57:46–54.
    24. Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R. Functional arteries grown in vitro. Science. 1999;284:489–493
    25. Zund G, Hoerstrup SP, Schoeberlein A, Lachat M, Uhlschmid G, Vogt PR, Turina M. Tissue engineering: a new approach in cardiovascular surgery: seeding of human fibroblasts followed by human endothelial cells on resorbable mesh. Eur J Cardiothorac Surg. 1998;13:160–164.
    26. Mooney DJ, Mazzoni CL, Breuer C, McNamara K, Hern D, Vacanti JP, Langer R. Stabilized polyglycolic acid fibre-based tubes for tissue engineering. Biomaterials. 1996;17:115–124.
    27. Shum-Tim D, Stock U, Hrkach J, Shinoka T, Lien J, Moses MA, Stamp A, Taylor G, Moran AM, Landis W, Langer R, Vacanti JP, Mayer JE Jr. Tissue engineering ofautologous aorta using a new biodegradable polymer. Ann Thorac Surg. 1999;68:2298–2305.
    28. Hoerstrup SP, Zund G, Sodian R, Schnell AM, Grunenfelder J, Turina MI. Tissue engineering of small caliber vascular grafts. Eur J Cardiothorac Surg. 2001;20: 164–169.
    29. Shin'oka T, Imai Y, Ikada Y. Transplantation of a tissue-engineered pulmonary artery. N Engl J Med. 2001;344:532–53330. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson J. Molecular Biology of the Cell. 3rd ed. New York: Garland Publishing; 1994:978–980.
    30. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson J. Molecular Biology of the Cell. 3rd ed. New York: Garland Publishing; 1994:978–980.
    31. Solan A, Prabhakar V, Niklason L. Engineered vessel: importance of the extracellular matrix .Transplant Proc .2001;33(1-2):66-68.
    32. Weinberg CB, Bell E. A blood vessel model constructed form collagen and cultured vascular cells. Science. 1986;231:397–400.
    33. Sarkar S, Dadhania M, Rourke P.Vascular tissue engineering microtextured scaffold templatea to control organization of vascular smooth muscle cells and extracellcular matrix. Acta Biomaterialia 2005;1:93-100.
    34. L'Heureux N, Germain L, Labbe R, Auger FA. In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study. J Vasc Surg. 1993; 17: 499–509.
    35. Grassl ED, Oegema TR, Tranquillo RT. A fibrin-based arterial media equivalent. J Biomed Mater Res A. 2003;66:550–561.
    36. Hirai J, Matsuda T. Self-organized, tubular hybrid vascular tissue composed of vascular cells and collagen for low-pressure-loaded venous system. Cell Transplant.1995;4:597–608.
    37. Girton TS, Oegema TR, Grassl ED, Isenberg BC, Tranquillo RT. Mechanisms of stiffening and strengthening in media-equivalents fabricated using glycation. J Biomech Eng. 2000;122:216–223.
    38. Elbjeirami WM, Yonter EO, Starcher BC, West JL. Enhancing mechanical properties of tissue engineered constructs via lysyl oxidase crosslinking activity. J Biomed Mater Res A. 2003;66:513–521.
    39. Grassl ED, Oegema TR, Tranquillo RT. Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. J Biomed Mater Res. 2002;60:607–612.
    40. Helgerson SL, Seelich T, DiOrio JP, Tawil B, Bittner K, Spaethe R. Fibrin. In: Wnek GE, Bowlin GL, eds. Encyclopedia of Biomaterials and Biomedical Engineering. New York: Marcel Dekker; 2004:603–610.
    41. Long JL, Tranquillo RT. Elastic fiber production in cardiovascular tissue-equivalents. Matrix Biol. 2003;22:339–350.
    42. Ross JJ, Tranquillo RT. ECM gene expression correlates with in vitro tissue growth and development in fibrin gel remodeled by neonatal smooth muscle cells. Matrix Biol. 2003;22:477–490.
    43. Swartz DD, Russell JA, Andreadis ST. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am J Physiol Heart Circ Physiol. 2005;288:H1451–H1460.
    44. Prasad chennazhy K, Krishnan LR. Effect of passage number and matrix characteristics on differentiation of endothelial cells cultured for tissue engineering. Biomaterials 2005;26(28):5658-67.
    45. Battista S ,Guarnieri D,Borselli C, ET et al.The effect of matrix composition of 3Dconstructs on embryonic stem cell diffrentiation. Biomaterials 2005;26(31):6194-207.
    46. Kakisis JD, Liapis CD, Sumpio BE. Effects of cyclic strain on vascular cells. Endothelium. 2004;11:17–28.
    47. Isenberg BC, Tranquillo RT. Long-term cyclic distention enhances the mechanical properties of collagen-based media-equivalents. Ann Biomed Eng. 2003;31:937–949.
    48. Jeong SI, Kwon JH, Lim JI, Cho SW, Jung Y, Sung WJ, Kim SH, Kim YH, Lee YM, Kim BS, Choi CY, Kim SJ. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds. Biomaterials. 2005;26:1405–1411.
    49. McCulloch AD, Harris AB, Sarraf CE, Eastwood M. New multi-cue bioreactor for tissue engineering of tubular cardiovascular samples under physiological conditions. Tissue Eng. 2004;10:565–573.
    50. Stanley AG, Patel H, Knight AL, Williams B. Mechanical strain-induced human vascular matrix synthesis: the role of angiotensin II. J Renin Angiotensin Aldosterone Syst. 2000;1:32–35.
    51. Lee RT, Yamamoto C, Feng Y, Potter-Perigo S, Briggs WH, Landschulz KT, Turi TG, Thompson JF, Libby P, Wight TN. Mechanical strain induces specific changes in the synthesis and organization of proteoglycans by vascular smooth muscle cells. J Biol Chem. 2001;276:13847–13851.
    52. Sudhir K, Hashimura K, Bobik A, Dilley RJ, Jennings GL, Little PJ. Mechanical strain stimulates a mitogenic response in coronary vascular smooth muscle cells via release of basic fibroblast growth factor. Am J Hypertens. 2001;14:1128–1134.
    53. Zeidan A, Nordstrom I, Dreja K, Malmqvist U, Hellstrand P. Stretch-dependent modulation of contractility and growth in smooth muscle of rat portal vein. Circ Res. 2000;87:228–234.
    54. Seliktar D, Nerem RM, Galis ZS. The role of matrix metalloproteinase-2 in the remodeling of cell-seeded vascular constructs subjected to cyclic strain. Ann Biomed Eng. 2001;29:923–934.
    55. L'Heureux N, Paquet S, Labbe R, Germain L, Auger FA. A completely biological tissue-engineered human blood vessel. FASEB J. 1998;12:47–56.
    56. Bassiouny HS, White S, Glagov S, Choi E, Giddens DP, Zarins CK. Anastomotic intimal hyperplasia: mechanical injury or flow induced. J Vasc Surg. 1992;15:708–716.
    57. Cho SW, Lim SH, Kim IK, Hong YS, Kim SS, Yoo KJ, Park HY, Jang Y, Chang BC, Choi CY, Hwang KC, Kim BS. Small-diameter blood vessels engineered with bone marrow-derived cells. Ann Surg. 2005;241:506–515.
    1. Klinkert p,post PN,Breslau PJ,et al.Saphenous vein versus PTFE forabove-knee femoropop liteal bypass.A review of the literature.Eur J Vasc Endovasc Surg,2004, 27:357-362.
    2. Kempczinski RF,Rosenman JE,Pearce WH et al.Endothelial cell seeding of a new PTFE vascular prosthesis.J Vasc Surg,1985,2:424-429.
    3. Zilla P,Fasol R,Deutsch et al.Endothelial cell seeding of polytetrafluoroethylene vascular grafts in humans:a preliminary report J Vasc Surg,1997,6:535-541.
    4. Rosenman JE,Kempczinski RF,Pearce WH,et al.Kinetics of endothelial cell seeding J Vasc surg,2000,9:271-276.
    5. Zilla P,Deutsch M,Meinhart J,et al.Clinical in vitro endothelialization of femoropopliteal bypass graft:an actuarial follow-up over three years J Vasc surg,1994,19:540-548.
    6. Verhagen HJ,Heijnen-Snyder GJ,Pronk A,et al.Thrombomodulin activity on mesothelial cells:perspectives for mesothlial cells as an alternative for endothelial cells for cell seeding on vascular grafts Br J Haematol,1996,95:542-549.
    7. Verhagen HJ,Blankensteijn JD,Groot PG,et al.In vivo experiments with mesothelial cell seeded Eptfe vascular grafts Eur J Vasc Endovasc surg,1998,15:489-496.
    8. Hedeman Joosten PP,Verhagen HJ,Heijnen-snyder GJ,et al.Thrombomodulin activity of fat-derived microvascular endothelial cells seeded on expanded polytetrafluorethylene J Vasc Res ,1999,36;91-99.
    9. Williams SK,Human clinical trials of microvascular endothelial cell sodding In Zilla P,Greisler HP eds,Tissue Engineering of Vascular Prosthetic Grafts R.G.Landes Austin:TX 1999:pp 143-147.
    10. Kadner A,Hoerstrup SP,Zund C,et al.A new source for cardiovascular tissue engineer ing:human bone marrow stromal cell.Eur J Cardiothorac Surg,2002,21:1055-1060.
    11. Shin’oka T.Clinical result of tissue-engineered vascular autograft seeds with autologous bone marrow cells.Nippon Gekkai Zasshi,2004,105:459-463.
    12. He HB,Shirota T,Yasui H,et al.Canine endothelial progenitor cell-lined hybrid vascular graft with nonthrombogenic potential.J Thorac Cardiovasc Surg,2003,126:455-464.
    13. Griese DP,Ehsan A,Melo LG,et al.Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts implications for cell-basedvascular therapy Circulation, 2003,108:2710-2715.
    14. Peichev M,Naiyer AJ,Pereira D,et al.Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood,2000,95:952-958.
    15. Guo H,Fang BJ, Liao LM,et al.Hemangioblastic characteristics of fetal bone marrow–d erived Flki+ CD31- CD34- cells. Exp He matol,2003,31:650-658.
    16. Yamashita J, Itoh H,Hirashima M,et al.FIK1-positive cells derived from embryonic stem cells serve as vascular progenitors.Nature,2000,408:92-96.
    17. Levenberg S,Golub JS,Amit M,et al.Endothelial cells derived from human embryonic stem cells.PNAS,2002,99:4391-4396.
    18. Battista S,Gnarnieri D,Borsellic,et al.The effect of matrix composition of 3 constructs on embryonic stem cells differentiation.Biomaterials,2005,26(31):6194-207.
    1. Kaplan D,Adams WW,Farmer B,Viney C. Silk—biology,structure,properties,and genet ics. ACS Symp Ser 1994;544:2–16.
    2. Kaplan DL,Mello CM,Arcidiacono S,Fossey S,Senecal K,Muller W. Silk. In: McGrath K,Kaplan DL,editors. Protein based materials. Boston: Birkhauser; 1998. p. 103–31.
    3. Vollrath F,Knight DP. Liquid crystalline spinning of spider silk.Nature 2001 ;410 (6828):541–8.
    4. Vollrath F. Biology of spider silk. Int J Biol Macromol 1999;24(2–3):81–8.
    5. Altman GH,Diaz F,Jakuba C,Calabro T,Horan RL,Chen J,et al. Silk-based biomaterials.Biomaterials 2003;24(3):401–16.
    6. Winkler S,Kaplan DL. Molecular biology of spider silk. J Biotechnol 2000;74(2):85–93.
    7. Wong Po Foo C,Kaplan DL. Genetic engineering of fibrous proteins: spider dragline silk and collagen. Adv Drug Deliv Rev 2002;54(8):1131–43.
    8. Rising A,Nimmervoll H,Grip S,Fernandez-Arias A,Storckenfeldt E,Knight DP,et al. Spider silk proteins—mechanical property and gene sequence. Zool Sci 2005;22(3): 273–81.
    9. Kaplan DL.Fibrous proteins—silk as a model system.Polym Degrad Stabil 1998;59 (1–3):25–32.
    10. Gosline JM,Guerette PA,Ortlepp CS,Savage KN. The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol 1999;202(Part 23):3295–303.
    11. Jin HJ,Kaplan DL.Mechanism of silk processing in insects and spiders. Nature 2003 ;424(6952):1057–61.
    12. Vollrath F. Strength and structure of spiders’silks. J Biotechnol 2000;74(2):67–83.
    13. Lazaris A,Arcidiacono S,Huang Y,Zhou JF,Duguay F,Chretien N,et al. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 2002;295(5554):472–6.
    14. Bini E,Knight DP,Kaplan DL. Mapping domain structures in silks from insects and spiders related to protein assembly. J Mol Biol 2004;335(1):27–40.
    15. Simmons A,Ray E,Jelinski LW. Solid-state C-13 NMR of Nephila-Clavipes dragline silk establishes structure and identity of crystalline regions. Macromolecules 1994;27(18): 5235–7.
    16. Simmons AH,Michal CA,Jelinski LW. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 1996;271(5245):84–7.
    17. Vollrath F. Spiders’webs. Curr Biol 2005;15(10):R364–5.
    18. Mello CM,Arcidiacono S,Senecal K,Mcgrath K,Beckwitt R,Kaplan DL. Spider silk -natures high-performance fiber. Abstr Pap Am Chem Soc 1994;207:80-Btec.
    19. Haider M,Megeed Z,Ghandehari H. Genetically engineered polymers: status and prospects for controlled release. J Control Release 2004;95(1):1–26.
    20. Prince JT,McGrath KP,DiGirolamo CM,Kaplan DL. Construction,cloning, and express ion of synthetic genes encoding spider dragline silk. Biochemistry 1995;34(34): 10879–85.
    21. Fahnestock SR,Irwin SL. Synthetic spider dragline silk proteins and their production in Escherichia coli. Appl Microbiol Biotechnol 1997;47(1):23–32.
    22. Fahnestock SR,Bedzyk LA. Production of synthetic spider dragline silk protein in Pichia pastoris. Appl Microbiol Biotechnol 1997;47(1):33–9.
    23. Lewis RV,Hinman M,Kothakota S,Fournier MJ. Expression and purification of a spider silk protein: a new strategy for producing repetitive proteins. Protein Exp Purif 1996;7(4):400–6.
    24. Arcidiacono S,Mello C,Kaplan D,Cheley S,Bayley H. Purification and characterization of recombinant spider silk expressed in Escherichia coli. Appl Microbiol Biotechnol 1998 ;49(1):31–8.
    25. Cappello J,Crissman J,Dorman M,Mikolajczak M,Textor G,Marquet M,et al. Genetic engineering of structural protein polymers. Biotechnol Prog 1990;6(3):198–202.
    26. Scheller J,Guhrs KH, Grosse F,Conrad U. Production of spider silk proteins in tobacco and potato. Nat Biotechnol 2001;19(6):573–7.
    27. Scheller J, Henggeler D, Viviani A, Conrad U. Purification of spider silk-elastin from transgenic plants and application for human chondrocyte proliferation. Transgenic Res 2004;13(1):51–7.
    28. Kaplan DL, Fossey S, Mello CM, Arcidiacono S, Senecal K, Muller W, et al.Biosynthesis and processing of silk proteins. MRS Bull 1992;17(10):41–7.
    29. Winkler S, Szela S, Avtges P, Valluzzi R, Kirschner DA, Kaplan D.Designing recombinant spider silk proteins to control assembly. Int J Biol Macromol 1999;24 (2–3):265–70.
    30. Szela S, Avtges P, Valluzzi R, Winkler S, Wilson D, Kirschner D,et al. Reduction–oxidation control of beta-sheet assembly in genetically engineered silk. Biomacro -molecules 2000;1(4):534–42.
    31. Valluzzi R, Szela S, Avtges P, Kirschner D, Kaplan D. Methionine redox controlled crystallization of biosynthetic silk spidroin. J Phys Chem B 1999;103(51):11382–92.
    32. Winkler S, Wilson D, Kaplan DL. Controlling beta-sheet assembly in genetically engineered silk by enzymatic phosphorylation/dephosphorylation. Biochemistry 2000;39 (41):12739–46.
    33. Asakura T, Nitta K, Yang M, Yao J, Nakazawa Y, Kaplan DL.Synthesis and characterization of chimeric silkworm silk. Biomacromolecules 2003;4(3):815–20.
    34. Megeed Z, Cappello J, Ghandehari H. Genetically engineered silkelastinlike protein polymers for controlled drug delivery. Adv Drug Deliv Rev 2002;54(8):1075–91.
    35. Nagarsekar A, Crissman J, Crissman M, Ferrari F, Cappello J,Ghandehari H. Genetic engineering of stimuli-sensitive silkelastinlike protein block copolymers. Biomacromole -cules 2003;4(3):602–7.
    36. Megeed Z, Cappello J, Ghandehari H. Controlled release of plasmid DNA from a genetically engineered silk-elastinlike hydrogel. Pharm Res 2002;19(7):954–9.
    37. Langer R, Vacanti JP. Tissue engineering. Science 1993;260(5110):920–6.
    38. Vunjak-Novakovic G, Meinel L, Altman G, Kaplan D. Bioreactor cultivation of osteochondral grafts. Orthodont Craniofac Res 2005;8(3):209–18.
    39. Minoura N, Aiba S, Higuchi M, Gotoh Y, Tsukada M, Imai Y.Attachment and growthof fibroblast cells on silk fibroin. Biochem Biophys Res Commun 1995;208(2):511–6.
    40. Minoura N, Aiba S, Gotoh Y, Tsukada M, Imai Y. Attachment and growth of cultured fibroblast cells on silk protein matrices. J Biomed Mater Res 1995;29(10):1215–21.
    41. Gotoh Y, Tsukada M, Minoura N. Effect of the chemical modification of the arginyl residue in Bombyx mori silk fibroin on the attachment and growth of fibroblast cells. J Biomed Mater Res 1998;39(3):351–7.
    42. Inouye K, Kurokawa M, Nishikawa S, Tsukada M. Use of Bombyx mori silk fibroin as a substratum for cultivation of animal cells.J Biochem Biophys Methods 1998;37(3): 159–64.
    43. Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 1984;309(5963):30–3.
    44. Pierschbacher MD, Ruoslahti E. Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci USA 1984;81(19):5985–8.
    45. Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion:RGD and integrins. Science 1987;238(4826):491–7.
    46. Sofia S, McCarthy MB, Gronowicz G, Kaplan DL. Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 2001;54(1):139–48.
    47. Chen J, Altman GH, Karageorgiou V, Horan R, Collette A, Volloch V, et al. Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A 2003;67(2):559–70.
    48. Tsubouchi K, Igarashi Y, Takasu Y, Yamada H. Sericin enhances attachment of cultured human skin fibroblasts. Biosci Biotechnol Biochem 2005;69(2):403–5.
    49. Terada S, Sasaki M, Yanagihara K, Yamada H. Preparation of silk protein sericin as mitogenic factor for better mammalian cell culture.J Biosci Bioeng 2005;100(6):667–71.
    50. Ogawa A, Terada S, Kanayama T, Miki M, Morikawa M, Kimura T, et al. Improvement of islet culture with sericin. J Biosci Bioeng 2004;98(3):217–9.
    51. Santin M, Motta A, Freddi G, Cannas M. In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res 1999;46(3):382–9.
    52. Sugihara A, Sugiura K, Morita H, Ninagawa T, Tubouchi K, Tobe R, et al. Promotive effects of a silk film on epidermal recovery from full-thickness skin wounds. Proc Soc Exp Biol Med 2000;225(1):58–64.
    53. Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J,Gronowicz G, et al. The inflammatory responses to silk films in vitro and in vivo. Biomaterials 2005; 26(2):147–55.
    54. Sakabe H, Itoh H, Miyamoto T, Noishiki Y, Hu W. In vivo blood compatibility of regenerated silk fibroin. Sen-i Gakkaishi 1989;45:487–90.
    55. Minoura N, Tsukada M, Nagura M. Physico-chemical properties of silk fibroin membrane as a biomaterial. Biomaterials 1990;11(6):430–4.
    56. Minoura N, Tsukada M, Nagura M. Fine-structure and oxygen permeability of silk fibroin membrane treated with methanol.Polymer 1990;31(2):265–9.
    57. Petrini P, Parolari C, Tanzi MC. Silk fibroin-polyurethane scaffolds for tissue engineering. J Mater Sci Mater Med 2001;12(10–12):849–53.
    58. Chiarini A, Petrini P, Bozzini S, Pra ID, Armato U. Silk fibroin/poly (carbonate) -urethane as a substrate for cell growth: in vitro interactions with human cells. Biomaterials 2003;24(5):789–99.
    59. Dal Pra I, Petrini P, Charini A, Bozzini S, Fare S, Armato U. Silk fibroin-coated three-dimensional polyurethane scaffolds for tissue engineering: interactions with normal human fibroblasts. Tissue Eng 2003;9(6):1113–21.
    60. Cai K, Yao K, Lin S, Yang Z, Li X, Xie H, et al. Poly(D,L-lactic acid) surfaces mod-ified by silk fibroin: effects on the culture of osteoblast in vitro. Biomaterials 2002; 23(4):1153–60.
    61. Cai K, Yao K, Cui Y, Yang Z, Li X, Xie H, et al. Influence of different surface modifi cation treatments on poly(D,L-lactic acid) with silk fibroin and their effects on the culture of osteoblast in vitro.Biomaterials 2002;23(7):1603–11.
    62. Wang X, Kim HJ, Xu P, Matsumoto A, Kaplan DL. Biomaterial coatings by stepwise deposition of silk fibroin. Langmuir 2005;21(24):11335–41.
    63. Kardestuncer T, McCarthy MB, Karageorgiou V, Kaplan D,Gronowicz G. RGD -tethered silk substrate stimulates the differentiation of human tendon cells. Clin Orthop Relat Res 2006;448:234–9.
    64. Ishizuya T, Yokose S, Hori M, Noda T, Suda T, Yoshiki S, et al.Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells. J Clin Invest 1997;99(12):2961–70.
    65. Uzawa T, Hori M, Ejiri S, Ozawa H. Comparison of the effects of intermittent and continuous administration of human parathyroid hormone (1–34) on rat bone. Bone 1995;16(4):477–84.
    66. Karageorgiou V, Meinel L, Hofmann S, Malhotra A, Volloch V, Kaplan D. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J Biomed Mater Res A 2004;71(3):528–37.
    67. Freddi G, Romano M, Massafra MR, Tsukada M. Silk fibroin/ cellulose blend films—preparation, structure, and physical-properties.J Appl Polym Science 1995;56 (12) : 1537–45.
    68. Yang G, Zhang LN, Liu YG. Structure and microporous formation of cellulose/silk fibroin blend membranes, I: Effect of coagulants.J Membr Sci 2000;177(1–2):153–61.
    69. Chen X, Li WJ, Yu TY. Conformation transition of silk fibroin induced by blendingchitosan. J Polym Sci Part B—Polym Phys 1997;35(14):2293–6.
    70. Chen X, Li WJ, Zhong W, Lu YH, Yu TY. pH sensitivity and ion sensitivity of hydro gels based on complex-forming chitosan/silk fibroin interpenetrating polymer network. J Appl Polym Sci 1997;65(11):2257–62.
    71. Jin HJ, Park J, Valluzzi R, Cebe P, Kaplan DL. Biomaterial films of Bombyx mori silk fibroin with poly(ethylene oxide). Biomacromolecules 2004;5(3):711–7.
    72. Freddi G, Tsukada M, Beretta S. Structure and physical properties of silk fibroin polyacrylamide blend films. J Appl Polym Sci 1999;71(10):1563–71.
    73. Gotoh Y, Tsukada M, Baba T, Minoura N. Physical properties and structure of poly(ethylene glycol)-silk fibroin conjugate films. Polymer 1997;38(2):487–90.
    74. Demura M, Asakura T. Porous membrane of Bombyx mori silk fibroin—structure characterization, physical-properties and application to glucose-oxidase immobilization. J Membr Sci 1991;59(1):39–52.
    75. Kweon HY, Park SH, Ye JH, Lee YW, Cho CS. Preparation of semi-interpenetrating polymer networks composed of silk fibroin and poly(ethylene glycol) macromer. J Appl Polym Sci 2001;80(10):1848–53.
    76. Tsukada M, Freddi G, Crighton JS. Structure and compatibility of poly(vinyl alcohol) -silk fibroin (PVA/SF) blend films. J Polym Sci Part B—Polym Phys 1994;32(2):243–8.
    77. Kesenci K, Motta A, Fambri L, Migliaresi C. Poly(epsiloncaprolactone co-D,L-lactide) /silk fibroin composite materials: preparation and characterization. J Biomater Sci—Polym Ed 2001;12(3):337–51.
    78. Hu K, Lv Q, Cui FZ, Feng QL, Kong XD, Wang HL, et al. Biocompatible fibroin blended films with recombinant human-like collagen for hepatic tissue engineering. J Bioact Compat Polym 2006;21(1):23–37.
    79. Arai T, Wilson DL, Kasai N, Freddi G, Hayasaka S, Tsukada M. Preparation of silk fibroin and polyallylamine composites. J Appl Polym Sci 2002;84(11):1963–70.
    80. Lee KY, Kong SJ, Park WH, Ha WS, Kwon IC. Effect of surface properties on the antithrombogenicity of silk fibroin/S-carboxymethyl kerateine blend films. J Biomater Sci—Polym Ed 1998;9(9):905–14.
    81. Lee KY, Ha WS. DSC studies on bound water in silk fibroin/Scarboxymethyl kerateine blend films. Polymer 1999;40(14):4131–4.
    82. Yeo JH, Lee KG, Kim HC, Oh YL, Kim AJ, Kim SY. The effects ofPVA/chitosan /fibroin (PCF)-blended spongy sheets on wound healing in rats. Biol Pharm Bull 2000;23(10):1220–3.
    83. Ayub ZH, Arai M, Hirabayashi K. Mechanism of the gelation of fibroin solution. Biosci Biotechnol Biochem 1993;57(11):1910–2.
    84. Hanawa T, Watanabe A, Tsuchiya T, Ikoma R, Hidaka M, Sugihara M. New oral dosage form for elderly patients: preparation and characterization of silk fibroin gel. Chem Pharm Bull (Tokyo)1995;43(2):284–8.
    85. Kim UJ, Park J, Li C, Jin HJ, Valluzzi R, Kaplan DL. Structure and properties of silk hydrogels. Biomacromolecules 2004;5(3): 786–92.
    86. Motta A, Migliaresi C, Faccioni F, Torricelli P, Fini M, Giardino R. Fibroin hydrogels for biomedical applications: preparation, characterization and in vitro cell culture studies. J Biomater Sci Polym Ed 2004;15(7):851–64.
    87. Yoo MK, Kweon HY, Lee KG, Lee HC, Cho CS. Preparation of semi-interpenetrating polymer networks composed of silk fibroin and poloxamer macromer. Int J Biol Macromol 2004;34(4):263–70.
    88. Ayub ZH, Arai M, Hirabayashi K. Quantitative structural—analysis and physical - properties of silk fibroin hydrogels. Polymer 1994;35(10):2197–200.
    89. Kang GD, Nahm JH, Park JS, Moon JY, Cho CS, Yeo JH. Effects of poloxamer on the gelation of silk fibroin. Macromol Rapid Commun 2000;21(11):788–91.
    90. Gil ES, Spontak RJ, Hudson SM. Effect of beta-sheet crystals on the thermal and rheological behavior of protein-based hydrogels derived from gelatin and silk fibroin. Macromol Biosci 2005;5(8):702–9.
    91.Gil ES, Frankowski DJ, Spontak RJ, Hudson SM. Swelling behavior and morphological evolution of mixed gelatin/silk fibroin hydrogels. Biomacromolecules 2005;6 (6):3079–87.
    92.Gobin AS, Froude VE, Mathur AB. Structural and mechanical characteristics of silk fibroin and chitosan blend scaffolds for tissue regeneration. J Biomed Mater Res A 2005;74(3):465–73.
    93. Dinerman AA, Cappello J, Ghandehari H, Hoag SW. Swelling behavior of a genetically engineered silk-elastinlike protein polymer hydrogel. Biomaterials 2002;23 (21):4203–10.
    94. Dinerman AA, Cappello J, Ghandehari H, Hoag SW. Solute diffusion in genetically engineered silk-elastinlike protein polymer hydrogels. J Control Release 2002;82(2–3):277–87.
    95. Megeed Z, Haider M, Li D, O’Malley Jr. BW, Cappello J,Ghandehari H. In vitro and in vivo evaluation of recombinant silk-elastinlike hydrogels for cancer gene therapy. J Control Release 2004;94(2–3):433–45.
    96. Haider M, Leung V, Ferrari F, Crissman J, Powell J, Cappello J,et al. Molecular engineering of silk-elastinlike polymers for matrixmediated gene delivery: biosynthesis and characterization. Mol Pharm 2005;2(2):139–50.
    97. Hanawa T, Watanabe A, Tsuchiya T, Ikoma R, Hidaka M,Sugihara M. New oral dosage form for elderly patients, II: release behavior of benfotiamine from silk fibroin gel.Chem Pharm Bull (Tokyo) 1995;43(5):872–6.
    98. Fini M, Motta A, Torricelli P, Giavaresi G, Nicoli Aldini N, Tschon M, et al. The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel. Biomaterials 2005;26(17): 3527–36.
    99. Aoki H, Tomita N, Morita Y, Hattori K, Harada Y, Sonobe M, et al. Culture of chondro cytes in fibroin–hydrogel sponge. Biomed Mater Eng 2003;13(4):309–16.
    100. Morita Y, Tomita N, Aoki H, Sonobe M, Wakitani S, Tamada Y, et al. Frictional properties of regenerated cartilage in vitro.J Biomech 2006;39(1):103–9.
    101. Morita Y, Tomita N, Aoki H, Wakitani S, Tamada Y, Suguro T, et al. Visco-elastic properties of cartilage tissue regenerated with fibroin sponge. Biomed Mater Eng 2002;12(3):291–8.
    102. Dal Pra I, Freddi G, Minic J, Chiarini A, Armato U. De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials.Biomaterials 2005;26(14): 1987–99.
    103. Unger RE, Peters K, Wolf M, Motta A, Migliaresi C, Kirkpatrick CJ. Endothelial -ization of a non-woven silk fibroin net for use in tissue engineering: growth and gene regulation of human endothelial cells. Biomaterials 2004;25(21):5137–46.
    104. Unger RE, Wolf M, Peters K, Motta A, Migliaresi C, James Kirkpatrick C. Growth of human cells on a non-woven silk fibroin net: a potential for use in tissue engineering. Biomaterials 2004;25(6):1069–75.
    105. Wang M, Jin HJ, Kaplan DL, Rutledge GC. Mechanical properties of electrospun silk fibers. Macromolecules 2004;37(18):6856–64.
    106. Kim KH, Jeong L, Park HN, Shin SY, Park WH, Lee SC, et al.Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol 2005; 120(3):327–39.
    107. Jin HJ, Fridrikh SV, Rutledge GC, Kaplan DL. Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules 2002;3(6):1233–9.
    108. Min BM, Jeong L, Nam YS, Kim JM, Kim JY, Park WH.Formation of silk fibroin matrices with different texture and its cellular response to normal human keratinocytes. Int J Biol Macromol 2004;34(5):281–8.
    109. Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 2004;25(7–8):1289–97.
    110. Ohgo K, Zhao CH, Kobayashi M, Asakura T. Preparation of nonwoven nanofibers of Bombyx mori silk, Samia cynthia ricini silk and recombinant hybrid silk with electro -spinning method. Polymer 2003;44(3):841–6.
    111. Ayutsede J, Gandhi M, Sukigara S, Micklus M, Chen HE, Ko F.Regeneration of Bombyx mori silk by electrospinning, Part 3:characterization of electrospun nonwoven mat. Polymer 2005;46(5):1625–34.
    112. Jin HJ, Chen J, Karageorgiou V, Altman GH, Kaplan DL. Human bone marrow stromal cell responses on electrospun silk fibroin mats.Biomaterials 2004; 25 (6): 1039–47.
    113. Puelacher WC, Vacanti JP, Ferraro NF, Schloo B, Vacanti CA.Femoral shaft recon -struction using tissue-engineered growth of bone. Int J Oral Maxillofac Surg 1996; 25(3):223–8.
    114. Livingston T, Ducheyne P, Garino J. In vivo evaluation of a bioactive scaffold for bone tissue engineering. J Biomed Mater Res 2002;62(1):1–13.
    115. Zhu L, Liu W, Cui L, Cao Y. Tissue-engineered bone repair of goat femur defects with osteogenically induced bone marrow stromal cells. Tissue Eng 2006, March 1.
    116. Caplan AI. Mesenchymal stem cells. J Orthop Res 1991;9(5):641–50.
    117. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Mult ilinage potential of adult human mesenchymal stem cells. Science1999;284(541 1):143–7.
    118. Fukumoto T, Sperling JW, Sanyal A, Fitzsimmons JS, Reinholz GG, Conover CA, et al. Combined effects of insulin-like growth factor-1 and transforming growth factor-beta1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthritis Cartilage 2003;11(1):55–64.
    119. Nakahara H, Bruder SP, Haynesworth SE, Holecek JJ, Baber MA, Goldberg VM, et al. Bone and cartilage formation in diffusion ARTICLE IN PRESS Y. Wang et al. / Biomat–erials 15 chambers by subcultured cells derived from the periosteum. Bone 1990;11 (3):181–8.
    120. De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 2001;44(8):1928–42.
    121. Lee JY, Qu-Petersen Z, Cao B, Kimura S, Jankowski R, Cummins J,et al. Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J Cell Biol 2000;150(5):1085–100.
    122. Jankowski RJ, Deasy BM, Huard J. Muscle-derived stem cells. Gene Ther 2002; 9(10):642–7.
    123. Wada MR, Inagawa-Ogashiwa M, Shimizu S, Yasumoto S, Hashimoto N. Generation of different fates from multipotent muscle stem cells. Development 2002; 129(12):2987–95.
    124. Nathan S, Das De S, Thambyah A, Fen C, Goh J, Lee EH. Cellbased therapy in the repair of osteochondral defects: a novel use for adipose tissue. Tissue Eng 2003;9 (4): 733–44.
    125. Noort WA, Kruisselbrink AB, in’t Anker PS, Kruger M, van Bezooijen RL, de PausRA, et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 2002;30(8):870–8.
    126. in’t Anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C,Kruisselbrink AB, van Bezooijen RL, et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 2003;88 (8):845–52.
    127. in’t Anker PS, Noort WA, Kruisselbrink AB, Scherjon SA,Beekhuizen W, Willemze R, et al. Nonexpanded primary lung and bone marrow-derived mesenchymal cells promote the engraftment of umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 2003;31(10):881–9.
    128. Noth U, Osyczka AM, Tuli R, Hickok NJ, Danielson KG, Tuan RS. Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res 2002;20(5):1060–9.
    129. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et al.SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 2003; 100(10):5807–12.
    130. Young HE, Steele TA, Bray RA, Hudson J, Floyd JA, Hawkins K,et al. Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec 2001;264(1):51–62.
    131. Alsalameh S, Amin R, Gemba T, Lotz M. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 2004;50(5):1522–32.
    132. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biologicalcharacterization. Int J Biochem Cell Biol 2004;36(4):568–84.
    133. Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and cellbased tissue engineering. Arthritis Res Ther 2003;5(1):32–45.
    134. Bruder SP, Jaiswal N, Ricalton NS, Mosca JD, Kraus KH,Kadiyala S. Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop 1998(Suppl. 355):S247–56.
    135. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Jt Surg Am 1998;80(7):985–96.
    136. Bruder SP, Kurth AA, Shea M, Hayes WC, Jaiswal N, Kadiyala S.Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res 1998;16(2):155–62.
    137. Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, et al. Mesenchy -mal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Jt Surg Am 1994;76(4):579–92.
    138. Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage 2002;10(3):199–206.
    139. Wakitani S, Yamamoto T. Response of the donor and recipient cells in mesenchymal cell transplantation to cartilage defect. Microsc Res Tech 2002;58(1):14–8.
    140. Young RG, Butler DL, Weber W, Caplan AI, Gordon SL, Fink DJ.Use of mese -nchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res 1998;16(4):406–13.
    141. Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C, Klinge H,et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet2003;361(9351):45–6.
    142. Tohill M, Mantovani C, Wiberg M, Terenghi G. Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neurosci Lett 2004;362 (3):200–3.
    143. Ji JF, He BP, Dheen ST, Tay SS. Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells 2004;22(3):415–27.
    144. Wong Po Foo C, Patwardhan SV, Belton DJ, Kitchel B,Anastasiades D, Huang J, et al. Novel nanocomposites from silksilica fusion (chimeric) proteins. Proc Natl Acad Sci USA 2006; 103(25):9428–33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700