SDF-1/CXCR4生物轴调控骨髓来源的血管平滑肌祖细胞参与低氧性肺血管重塑
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     旨在证明骨髓来源的血管平滑肌祖细胞参与了低氧性肺血管重塑,这一过程受到SDF-1/CXCR4生物轴调控:低氧刺激肺血管内皮细胞产生SDF-1,与细胞表面的CXCR4结合介导了平滑肌祖细胞的向肺血管定向迁移。
     实验方法:
     从大鼠骨髓细胞中分离和培养平滑肌祖细胞(SPCs),以示踪剂标记后移植给SD大鼠,检测低氧性肺动脉高压时SPCs在肺血管壁中的分布,并在整体和细胞水平阻断SDF-1/CXCR4生物轴,观察SPCs分布和肺血管重塑的变化。
     1、骨髓来源SPCs的分离和培养
     通过构建以平滑肌细胞特异性启动的报告基因载体,转染培养的大鼠骨髓间质细胞,经过流式活细胞分选获得SPCs;体外扩大培养SPCs,通过流式细胞术和免疫荧光技术分析细胞是否表达前体细胞表面受体CXCR4和平滑肌细胞特异性蛋白α-SM-actin,并与内皮祖细胞(EPCs)和成熟的平滑肌细胞(SMCs)进行对比;以CXCR4和钙调蛋白(CaM)分别作为前体细胞和成熟细胞的标志,观察血小板衍生生长因子-BB(PDGF-BB)对体外培养的平滑肌祖细胞分化成熟的诱导作用。
     2、SPCs参与低氧性肺血管重塑形成的研究
     大鼠经尾静脉移植标记有CM-Dil荧光活细胞示踪剂的SPCs(1×106/只),复制低氧性肺动脉高压动物模型,观察SPCs在肺血管壁的分布;在细胞水平建立SPCs与肺血管内皮细胞(PVECs)粘附实验模型,以Trans-well装置为基础建立SPCs穿过内皮细胞层的迁移实验模型,观察低氧或氯化钴(CoCl2)对SPCs粘附和迁移能力的影响。
     3、SDF-1/CXCR4生物轴调控SPCs定向迁移的研究
     通过免疫组化分析和ELISA实验,分别在整体和细胞水平研究低氧刺激对肺血管内皮细胞表达SDF-1的影响;在SPCs粘附和迁移实验基础上,给予SDF-1中和抗体,或者以CXCR4中和抗体封闭配体结合位点,观察SPCs粘附和迁移能力的变化;在复制低氧性肺动脉高压动物模型的同时,给予大鼠注射SDF-1或者移植经CXCR4中和抗体处理的SPCs(5×107/只),观察对肺动脉压力、血管重塑指标、血管壁SPCs分布数量的影响。
     实验结果:
     1、体外培养的SPC单个细胞生长呈梭形,与SMC相似,融合成片后呈现出集落生长的前体细胞特征,连续传7代以内细胞生长形态无明显改变;
     2、SPCs表达前体细胞共有的表面受体CXCR4,同时表达平滑肌细胞特异性蛋白α-SM-actin,而不表达内皮细胞标志分子CD31和成熟平滑肌细胞标志CaM,借此可以鉴别SPC与EPC、SMC;
     3、PDGF-BB能诱导体外培养的SPCs的CXCR4蛋白含量逐渐减少,而表达CaM逐渐增多;
     4、大鼠移植标记红色荧光标记的SPCs,慢性低氧条件下动物肺血管荧光强度明显高于常氧组,且主要呈现在肺动脉中膜层;
     5、相对于常氧条件,低氧条件或有CoCl2存在时SPCs与PVEC的粘附率明显增高,SPCs穿过内皮细胞层的迁移数量也明显增多;
     6、低氧性肺动脉高压大鼠肺血管内皮层SDF-1的表达量较正常肺血管增多,低氧或CoCl2都能使体外培养的PVECs表达和分泌SDF-1增加;
     7、细胞模型上阻断SDF-1/CXCR4能降低SPCs与PVECs的粘附率,也能减少SPCs透过内皮细胞层的数量;
     8、与低氧组比较,阻断SDF-1/CXCR4生物轴的大鼠肺动脉压力明显减轻,肺血管壁相对厚度降低,到达肺血管壁的SPCs数量也显著减少。
     研究结论:
     低氧环境下肺循环氧分压降低,刺激肺血管内皮细胞产生SDF-1,趋化骨髓来源的血管平滑肌祖细胞经过血液循环向肺脏迁移,并通过与平滑肌祖细胞表面CXCR4受体结合,介导该细胞与肺血管内皮的粘附,最终穿过内皮细胞层进入肺动脉中膜,分化为成熟的平滑肌细胞,参与低氧性肺血管重塑的形成。此项研究揭示了低氧性肺血管重塑的新机制,为低氧性肺动脉高压的防治提供了新的药物作用靶点。
AIM:
     To prove bone marrow-derived smooth muscle progenitor cells (SPCs) contribute to hypoxia-induced pulmonary vascular remodeling (PVR), which mediated by SDF-1/CXCR4 axis.
     METHODS:
     1. Isolation of bone marrow-derived SPCs.
     We constructed the smooth muscle specially promoted plasmid. Then transfered it to the bone marrow stromal cells and sorted the GFP positive ones (these were deemed to SPCs) by flow cytometry. SPCs were cultured 3 to 5 passages in vitro. Cell phenotype and growth characteristic were observed. Cell makers were identified by flow cytometry and immunofluorescence. SPCs were cultured with platelet derived growth factor-BB (PDGF-BB), and valuated whether those differentiate to smooth muscle-liked cells.
     2. SPCs involve in hypoxia-induced PVR.
     CM-Dil labeled SPCs (1×106 per rat) were injected into caudal vein of SD rats. Animals were placed in hypoxia cabin in 28 days, 8 hours per day, with setting barometric pressure to 380mmHg. Then SPCs in pulmonary arterial wall were measured. We established the models of SPCs adherent and penetrate to endothelial cells (ECs). Base on the models, the adherence and migration cof SPC were valued in the condition of hypoxia and presence of CoCl2.
     3. SDF-1/CXCR4 axis mediates SPCs directional migration.
     Through immunohistochemistry and ELISA assays, the SDF-1 expression was measured in pulmonary arterial wall or ECs under the condition of hypoxia. On cell models, the SPCs adherence and migration ability were valued with SDF-1 or CXCR4 neutral antibody. In vivo, SDF-1ab or SPCs (5×107 per rat) blocked CXCR4 binding site were injected to rats. Then the pulmonary artery pressure, indexes of vascular remodeling, and SPCs numbers in pulmonary arterial wall were measured.
     RESULT:
     1. In vitro, the cultured SPC was spindle-shape of single growth, and colony-liked in cells fusion.
     2. Both the precursor cell marker CXCR4 and SMC makerα-SM-actin were positive in SPC, but negative for the EC maker CD31 and the mature SMC maker CaM.
     3. SPCs eliminated CXCR4, but expressed CaM gradually when cultured with PDGF-BB.
     4. Under the condition of hypoxia, more SPCs migrated into pulmonary arterial wall than normoxia, and most of those showed in media of the vascular.
     5. Contrast to normoxia, the adherence rate and migration quantity of SPCs were markedly increased under hypoxia or with CoCl2.
     6. SDF-1 expression rise in the pulmonary vascular endothelial and cultured PVECs supernatant the condition of hypoxia or cells cultured with CoCl2.
     7. On the cell models, inhibition of SDF-1 or blockade of CXCR4 could significantly decrease the adherence rate and migration quantity of SPCs.
     8. Blockade of SDF-1/CXCR4 axis could down regulate the pulmonary artery pressure, attenuate the PAs remodeling and reduce the number of SPCs in PAs wall.
     CONCLUSION:
     The PaO2 of pulmonary circulation is low under the hypoxic condition, which leads to the expression of SDF-1 in pulmonary endothelial, and homing the bone marrow–derived SPCs from blood. Once SDF-1 binding to CXCR4 on the SPC surface, cell adherents to pulmonary arterial ECs, migrate into vessel wall, and differentiate to matured SMCs, finally contribute to the vascular remodeling. These findings maybe proposal a new mechanism of hypoxia-induced PVR, and provide a new pharmacal target of HPAH.
引文
1.Lin M J, Leung G P, Zhang W M, et al. Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension.[J]. Circ Res, 2004, 95(5): 496-505.
    2.Beghetti M, Tissot C. Pulmonary arterial hypertension in congenital heart diseases.[J]. Semin Respir Crit Care Med, 2009, 30(4): 421-428.
    3.Archer S L, Michelakis E D. An evidence-based approach to the management of pulmonary arterial hypertension.[J]. Curr Opin Cardiol, 2006, 21(4): 385-392.
    4.谢万木,翟振国,童朝辉, et al.肺动脉高压治疗进展[J].中国实用内科杂志, 2007(06).
    5.Batyraliev T A, Makhmutkhodzhaev S A, Ekinci E, et al. [Pulmonary hypertension and right ventricular failure. Part X. Prostanoids in the treatment of primary pulmonary arterial hypertension][J]. Kardiologiia, 2007, 47(6): 70-77.
    6.Shalev L, Langevitz P, Zandman-Goddard G. [Long-term therapy with endothelin-1 antagonist for pulmonary hypertension secondary to systemic sclerosis][J]. Harefuah, 2008, 147(4): 287-289, 376.
    7.Ogawa H, Hida W. [Chronic obstructive pulmonary disease (COPD)][J]. Nippon Rinsho, 2009, 67(8): 1518-1524.
    8.Bernheim A. [High altitude and cardiac disease][J]. Praxis (Bern 1994), 2005, 94(45): 1760-1764.
    9.Maloney J P, Broeckel U. Epidemiology, risk factors, and genetics of high-altitude-related pulmonary disease.[J]. Clin Chest Med, 2005, 26(3): 395-404.
    10.Schwab M, Jayet P Y, Allemann Y, et al. [High altitude pulmonary edema. An experimentof nature to study the underlying mechanisms of hypoxic pulmonary hypertension and pulmonary edema in humans][J]. Medicina (B Aires), 2007, 67(1): 71-81.
    11.Becker S, Moir L M, Snetkov V A, et al. Hypoxic pulmonary vasoconstriction in intact rat intrapulmonary arteries is not initiated by inhibition of Na+-Ca2+ exchange.[J]. Am J Physiol Lung Cell Mol Physiol, 2007, 293(4): L982-L990.
    12.A M E. Hypoxic pulmonary vasoconstriction.[J]. Essays Biochem, 2007, 43: 61-76.
    13.Miniati D. Pulmonary vascular remodeling.[J]. Semin Pediatr Surg, 2007, 16(2): 80-87.
    14.Sumou I K, Du Jb, Wei B, et al. Effect of L-arginine on pulmonary artery smooth muscle cell apoptosis in rats with hypoxic pulmonary vascular structural remodeling.[J]. Acta Biochim Biophys Sin (Shanghai), 2006, 38(1): 15-21.
    15.Deuchar G A, Hicks M N, Maclean M R. The role of 5-hydroxytryptamine in the control of pulmonary vascular tone in a rabbit model of pulmonary hypertension secondary to left ventricular dysfunction.[J]. Pulm Pharmacol Ther, 2005, 18(1): 23-31.
    16.Lee S L, Wang W W, Finlay G A, et al. Serotonin stimulates mitogen-activated protein kinase activity through the formation of superoxide anion.[J]. Am J Physiol, 1999, 277(2 Pt 1): L282-L291.
    17.Chassagne C, Eddahibi S, Adamy C, et al. Modulation of angiotensin II receptor expression during development and regression of hypoxic pulmonary hypertension.[J]. Am J Respir Cell Mol Biol, 2000, 22(3): 323-332.
    18.Michiels C, Arnould T, Remacle J. Endothelial cell responses to hypoxia: initiation of a cascade of cellular interactions.[J]. Biochim Biophys Acta, 2000, 1497(1): 1-10.
    19.Zakrzewicz A, Hecker M, Marsh L M, et al. Receptor for activated C-kinase 1, a novel interaction partner of type II bone morphogenetic protein receptor, regulates smooth muscle cell proliferation in pulmonary arterial hypertension.[J]. Circulation, 2007, 115(23): 2957-2968.
    20.Novotna J, Herget J. Exposure to chronic hypoxia induces qualitative changes of collagenin the walls of peripheral pulmonary arteries.[J]. Life Sci, 1998, 62(1): 1-12.
    21.Vieillard-Baron A, Frisdal E, Raffestin B, et al. Inhibition of matrix metalloproteinases by lung TIMP-1 gene transfer limits monocrotaline-induced pulmonary vascular remodeling in rats.[J]. Hum Gene Ther, 2003, 14(9): 861-869.
    22.Herget J, Bibova J, Novotna J. [Mechanisms of remodeling of pulmonary blood vessels in chronic hypoxia][J]. Cesk Fysiol, 1999, 48(4): 179-184.
    23.Christou H, Yoshida A, Arthur V, et al. Increased vascular endothelial growth factor production in the lungs of rats with hypoxia-induced pulmonary hypertension.[J]. Am J Respir Cell Mol Biol, 1998, 18(6): 768-776.
    24.Pfeifer M, Blumberg F C, Wolf K, et al. Vascular remodeling and growth factor gene expression in the rat lung during hypoxia.[J]. Respir Physiol, 1998, 111(2): 201-212.
    25.Barst R J. PDGF signaling in pulmonary arterial hypertension.[J]. J Clin Invest, 2005, 115(10): 2691-2694.
    26.Jeffery T K, Morrell N W. Molecular and cellular basis of pulmonary vascular remodeling in pulmonary hypertension.[J]. Prog Cardiovasc Dis, 2002, 45(3): 173-202.
    27.Liu Y, Zhang B, Zhang S, et al. Nerve growth factor mediated SH2-Bbeta/Akt signal pathway activated in allergic airway challenge in mice.[J]. Respirology, 2010, 15(1): 80-87.
    28.刘毅,董明清,牛雯, et al.阿米洛利抑制NHE-1减轻低氧性肺动脉平滑肌细胞增殖[J].中国应用生理学杂志, 2007(04).
    29.Zhang B, Liu Y, Luo Y, et al. Alteration of serotonin 2C receptor expression in the aorta and the pulmonary artery in rats exposed to hypoxia.[J]. Chin J Physiol, 2008, 51(6): 338-347.
    30.罗颖,李志超,张齐.慢性低氧对大鼠主动脉与肺动脉平滑肌细胞增殖影响的差异性[J].陕西医学杂志, 2006(04).
    31.罗颖,李志超,张齐, et al. VEGF和PCNA在慢性低氧性肺动脉及高压大鼠主动脉、肺动脉平滑肌细胞中表达[J].细胞与分子免疫学杂志, 2006(01).
    32.彭利静,李伟,段永宏, et al.低氧条件培养的PASMCs凋亡与p53表达变化[J].第四军医大学学报, 2007(16).
    33.彭利静,李志超,李伟, et al.慢性低氧性肺动脉高压大鼠肺组织P53表达增高[J].基础医学与临床, 2006(09).
    34.Xu M, Dong M Q, Cao F L, et al. Tanshinone IIA reduces lethality and acute lung injury in LPS-treated mice by inhibition of PLA2 activity.[J]. Eur J Pharmacol, 2009, 607(1-3): 194-200.
    35.Orlandi A, Bennett M. Progenitor cell-derived smooth muscle cells in vascular disease.[J]. Biochem Pharmacol, 2010.
    36.Simper D, Stalboerger P G, Panetta C J, et al. Smooth muscle progenitor cells in human blood.[J]. Circulation, 2002, 106(10): 1199-1204.
    37.Majka S M, Jackson K A, Kienstra K A, et al. Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration.[J]. J Clin Invest, 2003, 111(1): 71-79.
    38.Hirschi K K, Majesky M W. Smooth muscle stem cells.[J]. Anat Rec A Discov Mol Cell Evol Biol, 2004, 276(1): 22-33.
    39.Beltrami A P, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration.[J]. Cell, 2003, 114(6): 763-776.
    40.Hu Y, Zhang Z, Torsney E, et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice.[J]. J Clin Invest, 2004, 113(9): 1258-1265.
    41.Ch Wang W S R W. Markers of smooth muscle progenitor cells[Z]. Vancouver : 20045.
    42.Yeh E T, Zhang S, Wu H D, et al. Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo.[J]. Circulation, 2003, 108(17): 2070-2073.
    43.Furukawa Y, Matsumori A, Hwang M W, et al. Cytokine gene expression during the development of graft coronary artery disease in mice.[J]. Jpn Circ J, 1999, 63(10): 775-782.
    44.Hayashi S, Watanabe N, Nakazawa K, et al. Roles of P-selectin in inflammation, neointimal formation, and vascular remodeling in balloon-injured rat carotid arteries.[J]. Circulation, 2000, 102(14): 1710-1717.
    45.Sata M, Saiura A, Kunisato A, et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis.[J]. Nat Med, 2002, 8(4): 403-409.
    46.Grimm P C, Nickerson P, Jeffery J, et al. Neointimal and tubulointerstitial infiltration by recipient mesenchymal cells in chronic renal-allograft rejection.[J]. N Engl J Med, 2001, 345(2): 93-97.
    47.Tanaka K, Sata M, Hirata Y, et al. Diverse contribution of bone marrow cells to neointimal hyperplasia after mechanical vascular injuries.[J]. Circ Res, 2003, 93(8): 783-790.
    48.Schober A, Hoffmann R, Opree N, et al. Peripheral CD34+ cells and the risk of in-stent restenosis in patients with coronary heart disease.[J]. Am J Cardiol, 2005, 96(8): 1116-1122.
    49.Ohtani K, Egashira K, Ihara Y, et al. Angiotensin II type 1 receptor blockade attenuates in-stent restenosis by inhibiting inflammation and progenitor cells.[J]. Hypertension, 2006, 48(4): 664-670.
    50.Van Oostrom O, Fledderus J O, De Kleijn D, et al. Smooth muscle progenitor cells: friend or foe in vascular disease?[J]. Curr Stem Cell Res Ther, 2009, 4(2): 131-140.
    51.Sirker A A, Astroulakis Z M, Hill J M. Vascular progenitor cells and translational research: the role of endothelial and smooth muscle progenitor cells in endogenous arterial remodelling in the adult.[J]. Clin Sci (Lond), 2009, 116(4): 283-299.
    52.Firth A L, Yao W, Ogawa A, et al. Multipotent Mesenchymal Progenitor Cells are Present in Endarterectomized Tissues from Patients with Chronic Thromboembolic Pulmonary Hypertension.[J]. Am J Physiol Cell Physiol, 2010.
    53.Zaruba M M, Franz W M. Role of the SDF-1-CXCR4 axis in stem cell-based therapies forischemic cardiomyopathy.[J]. Expert Opin Biol Ther, 2010, 10(3): 321-335.
    54.Veldkamp C T, Seibert C, Peterson F C, et al. Structural basis of CXCR4 sulfotyrosine recognition by the chemokine SDF-1/CXCL12.[J]. Sci Signal, 2008, 1(37): a4.
    55.Petit I, Jin D, Rafii S. The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis.[J]. Trends Immunol, 2007, 28(7): 299-307.
    56.Majka M, Ratajczak M Z. Biological role of the CXCR4-SDF-1 axis in normal human hematopoietic cells.[J]. Methods Mol Biol, 2006, 332: 103-114.
    57.Broxmeyer H E, Hangoc G, Cooper S, et al. AMD3100 and CD26 modulate mobilization, engraftment, and survival of hematopoietic stem and progenitor cells mediated by the SDF-1/CXCL12-CXCR4 axis.[J]. Ann N Y Acad Sci, 2007, 1106: 1-19.
    58.Ratajczak M Z, Zuba-Surma E, Kucia M, et al. The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis.[J]. Leukemia, 2006, 20(11): 1915-1924.
    59.Lima E S R, Shen J, Hackett S F, et al. The SDF-1/CXCR4 ligand/receptor pair is an important contributor to several types of ocular neovascularization.[J]. FASEB J, 2007, 21(12): 3219-3230.
    60.Kucia M, Reca R, Miekus K, et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis.[J]. Stem Cells, 2005, 23(7): 879-894.
    61.Tan Y, Li Y, Xiao J, et al. A novel CXCR4 antagonist derived from human SDF-1beta enhances angiogenesis in ischaemic mice.[J]. Cardiovasc Res, 2009, 82(3): 513-521.
    62.Devine S M, Vij R, Rettig M, et al. Rapid mobilization of functional donor hematopoietic cells without G-CSF using AMD3100, an antagonist of the CXCR4/SDF-1 interaction.[J]. Blood, 2008, 112(4): 990-998.
    63.Xu J, Torres E, Mora A L, et al. Attenuation of obliterative bronchiolitis by a CXCR4 antagonist in the murine heterotopic tracheal transplant model.[J]. J Heart Lung Transplant,2008, 27(12): 1302-1310.
    64.Hatse S, Princen K, De Clercq E, et al. AMD3465, a monomacrocyclic CXCR4 antagonist and potent HIV entry inhibitor.[J]. Biochem Pharmacol, 2005, 70(5): 752-761.
    65.Perez A L, Bachrach E, Illigens B M, et al. CXCR4 enhances engraftment of muscle progenitor cells.[J]. Muscle Nerve, 2009, 40(4): 562-572.
    66.Yu J, Li M, Qu Z, et al. SDF-1/CXCR4-mediated migration of transplanted bone marrow stromal cells towards areas of heart myocardial infarction via activation of PI3K/Akt.[J]. J Cardiovasc Pharmacol, 2010.
    67.Wang Y, Deng Y, Zhou G Q. SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model.[J]. Brain Res, 2008, 1195: 104-112.
    68.Vaidyanathan B. Drug therapy: Sildenafil for post-operative pulmonary hypertension and Eisenmenger syndrome - A brief review of literature and survey of expert opinion.[J]. Ann Pediatr Cardiol, 2008, 1(1): 70-74.
    69.Kashiwakura Y, Katoh Y, Tamayose K, et al. Isolation of bone marrow stromal cell-derived smooth muscle cells by a human SM22alpha promoter: in vitro differentiation of putative smooth muscle progenitor cells of bone marrow.[J]. Circulation, 2003, 107(16): 2078-2081.
    70.Ceradini D J, Kulkarni A R, Callaghan M J, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1.[J]. Nat Med, 2004, 10(8): 858-864.
    71.Yu J, Li Y, Li M, et al. Oxidized low density lipoprotein-induced transdifferentiation of bone marrow-derived smooth muscle-like cells into foam-like cells in vitro.[J]. Int J Exp Pathol, 2010, 91(1): 24-33.
    72.Liu C, Nath K A, Katusic Z S, et al. Smooth muscle progenitor cells in vascular disease.[J]. Trends Cardiovasc Med, 2004, 14(7): 288-293.
    73.Churchman A T, Siow R C. Isolation, culture and characterisation of vascular smoothmuscle cells.[J]. Methods Mol Biol, 2009, 467: 127-138.
    74.Raoul W, Wagner-Ballon O, Saber G, et al. Effects of bone marrow-derived cells on monocrotaline- and hypoxia-induced pulmonary hypertension in mice.[J]. Respir Res, 2007, 8: 8.
    75.Sahara M, Sata M, Morita T, et al. Diverse contribution of bone marrow-derived cells to vascular remodeling associated with pulmonary arterial hypertension and arterial neointimal formation.[J]. Circulation, 2007, 115(4): 509-517.
    76.Spees J L, Whitney M J, Sullivan D E, et al. Bone marrow progenitor cells contribute to repair and remodeling of the lung and heart in a rat model of progressive pulmonary hypertension.[J]. FASEB J, 2008, 22(4): 1226-1236.
    77.Mancuso P, Peccatori F, Rocca A, et al. Circulating endothelial cell number and viability are reduced by exposure to high altitude.[J]. Endothelium, 2008, 15(1): 53-58.
    78.Young K C, Torres E, Hatzistergos K E, et al. Inhibition of the SDF-1/CXCR4 axis attenuates neonatal hypoxia-induced pulmonary hypertension.[J]. Circ Res, 2009, 104(11): 1293-1301.
    79.Nemenoff R A, Simpson P A, Furgeson S B, et al. Targeted deletion of PTEN in smooth muscle cells results in vascular remodeling and recruitment of progenitor cells through induction of stromal cell-derived factor-1alpha.[J]. Circ Res, 2008, 102(9): 1036-1045.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700