辛伐他汀抑制损伤血管新生内膜过度增生及促进再内皮化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     内皮细胞损伤和功能不全是血管损伤后有害修复、动脉粥样硬化的始动因素和根本原因,平滑肌细胞增生迁移是其继发因素和外在表现。修复损伤血管的关键在于抑制平滑肌细胞过度增生与促进损伤内皮重建。既往关于增殖性血管疾病治疗的研究热点主要集中于平滑肌细胞增生机制的探讨及如何有效抑制平滑肌细胞过度增生。雷帕霉素和紫杉醇药物洗脱支架是临床防治损伤血管过度的有效手段,但往往会干扰内皮修复,引起损伤血管段再内皮化不全或延迟及迟发性支架内血栓形成。因此,筛选选择性抑制新生内膜增生不影响甚至损伤血管再内皮化的洗脱支架包被药物是新一代洗脱支架的研制方向。
     既往认为,参与损伤血管修复的细胞成分是血管壁平滑肌细胞和内皮细胞。近来研究发现,骨髓中存在血管祖细胞——平滑肌祖细胞(smooth muscle progenitor cells, SPCs)和内皮祖细胞(endothelial progenitor cells, EPCs)。血管损伤后这些细胞可动员入外周血,归巢于损伤血管段,平滑肌祖细胞分化为平滑肌细胞,促进新生内膜生成,同时可导致管腔狭窄;内皮祖细胞分化为内皮细胞,重建管腔内皮细胞单层,抑制损伤血管有害重构。最近动物实验和临床研究均证实新生内膜中约一半以上平滑肌细胞是骨髓来源的,约25%内皮细胞是内皮祖细胞来源的。说明骨髓源平滑肌祖细胞和内皮祖细胞是参与损伤血管修复的重要细胞源。因此,抑制平滑肌祖细胞增殖可减少血管损伤后新生内膜过度增生,促进内皮祖细胞增殖,有助于损伤血管再内皮化,抑制新内膜发展。
     他汀类药物具有良好的调脂作用,能够降低低密度脂蛋白胆固醇和升高高密度脂蛋白胆固醇。同时,在胆固醇水平相当的情况下,他汀类药物能显著降低心血管事件的发生率。此外,他汀类药物还具有抑制血小板聚集和血管中膜平滑肌细胞增殖,改善内皮功能,抑制炎症反应及增加斑块稳定性作用。新近研究显示他汀类药物能增加内皮祖细胞数量、改善内皮祖细胞功能。他汀类药物的这些生物学效应提示其有可能成为理想的第二代洗脱支架药物。由于损伤位点有效药物浓度过低,临床口服他汀类药物并不能抑制支架内再狭窄。局部用药有靶区有效血药浓度高、作用时间长和全身毒性低优点。尚不清楚局部应用他汀类药物能否有效抑制新生内膜增生,同时加速损伤区再内皮化。
     研究目的:
     1.观察临床广泛应用的洗脱支架包被药物雷帕霉素对内皮祖细胞和平滑肌祖细胞分化、增殖、迁移和黏附的影响;2.观察辛伐他汀对血管内皮细胞、平滑肌细胞、内皮祖细胞和平滑肌祖细胞分化、增殖、迁移和黏附的影响。3.观察辛伐他汀对平滑肌细胞表达平滑肌祖细胞趋化因子SDF-1α的影响;4.建立大鼠颈动脉球囊损伤模型,观察局部应用辛伐他汀能否抑制损伤血管新生内膜过度增生并促进损伤血管再内皮化,为应用他汀类药物包被洗脱支架提供实验依据。
     实验方法
     1.观察雷帕霉素对内皮祖细胞和平滑肌祖细胞分化、增殖、迁移和黏附的影响:采用密度梯度离心法从大鼠骨髓获取单个核细胞,分别重悬于平滑肌祖细胞和内皮祖细胞培养基中,接种在纤维连接素包被培养板,加入不同浓度雷帕霉素(0,0.01,0.1,1,10,100 ng/ml),培养12天后,α-SMA和CD34免疫荧光染色鉴定骨髓源性平滑肌祖细胞,荧光显微镜鉴定FITC-UEA-Ⅰ和Di I-acLDL双染阳性细胞为正在分化的内皮祖细胞,并在倒置荧光显微镜下计数。收集原代培养8天贴壁细胞,分别加入不同浓度雷帕霉素(0,0.1,1,10,100,200 ng/ml)培养0、12、24、48、96 h。然后分别采用MTT比色法、改良的Boyden小室和黏附能力测定实验观察内皮祖细胞和平滑肌祖细胞的增殖、迁移和黏附能力。
     2.观察辛伐他汀对血管内皮细胞、平滑肌细胞、内皮祖细胞和平滑肌祖细胞分化、增殖、迁移和黏附的影响:分别采用酶消化法和组织块法分离培养大鼠血管内皮细胞和平滑肌细胞,加入不同浓度辛伐他汀(0,0. 01,0.1,1,10μmol/L)培养0、6、12、24、48 h,然后分别采用3H-TdR掺入法、改良的Boyden小室和黏附能力测定实验观察内皮细胞和平滑肌细胞的增殖、迁移能力。采用前述方法分离培养内皮祖细胞和平滑肌祖细胞,将其接种在纤维连接素包被培养板,加入不同浓度辛伐他汀(0,0. 01,0.1,1,10μmol/L),培养8 d,前述方法鉴定内皮祖细胞和平滑肌祖细胞,倒置荧光显微镜下计数。收集原代培养8 d的内皮祖细胞和平滑肌祖细胞,分别加入不同浓度辛伐他汀(0,0. 01,0.1,1,10μmol/L)培养0、6、12、24、48 h。然后分别采用3H-TdR掺入法、改良的Boyden小室和黏附能力测定实验观察内皮祖细胞和平滑肌祖细胞的增殖、迁移和黏附能力。Western blot检测不同浓度辛伐他汀(0,0. 01,0.1,1,10μmol/L)作用24小时对内皮细胞、平滑肌细胞、内皮祖细胞和平滑肌祖细胞周期抑制蛋白P27表达的影响。
     3.观察辛伐他汀对平滑肌细胞表达平滑肌祖细胞趋化因子SDF-1α的影响:不同浓度辛伐他汀(0,0. 01,0.1,1,10μmol/L)干预平滑肌细胞24 h,1μmol/L辛伐他汀干预平滑肌细胞6~48 h ,RT-PCR检测SDF-1αmRNA表达。
     4.局部应用辛伐他汀对损伤血管新生内膜过度增生和再内皮化影响:建立大鼠颈动脉球囊损伤模型,将400μg辛伐他汀溶于50μl F-127基质胶中,加在颈动脉外膜区域模拟洗脱支架。2周后,处死动物,取目标血管段,固定,石蜡包埋切片,HE染色观察新生内膜厚度,vWF染色观察损伤血管再内皮化程度。
     主要结果
     1.雷帕霉素对内皮祖细胞和平滑肌祖细胞分化、增殖、迁移和黏附的影响:成功分离培养骨髓源内皮祖细胞和平滑肌祖细胞。内皮祖细胞vWF染色阳性,UEA-Ⅰ和DiLDL双染色阳性,可见梭形细胞首尾相连形成线状结构。平滑肌祖细胞α-SMA、CD34染色阳性。雷帕霉素浓度依赖性抑制骨髓单个核细胞向内皮祖细胞和平滑肌祖细胞分化。0.1 ng/ml的雷帕霉素作用12天,分化EPC数量减少59.3±5.8%(n=5,P<0.01),平滑肌祖细胞数量减少70.5±34.5%(n=5,P<0.01)。雷帕霉素浓度和时间依赖性抑制内皮祖细胞和平滑肌祖细胞增殖。1 ng/ml作用24 h显著抑制EPC (1 ng/ml雷帕霉素组与对照组之比为0.418±0.018 vs 0.580±0.034,n=5,P<0.01)和SPC(1 ng/ml雷帕霉素组与对照组之比为0.476±0.016 vs 0.687±0.043,n=5,P<0.01)增殖。1 ng/ml雷帕霉素作用12 h对EPC和SPC增殖无明显影响(n=5,P>0.05)。0.1 ng/ml雷帕霉素对EPC和SPC增殖影响不明显(n=5,P>0.05)。雷帕霉素也浓度依赖性抑制EPC和SPC迁移和黏附能力。
     2.辛伐他汀对血管内皮细胞、平滑肌细胞、内皮祖细胞和平滑肌祖细胞分化、增殖、迁移和黏附的影响:辛伐他汀浓度和时间依赖性抑制平滑肌细胞增殖和迁移。0.01μmol/L辛伐他汀即可抑制平滑肌细胞增殖(0.01μmol/L辛伐他汀组与对照组之比为5647±268 vs 6038±218,n=5,P<0.05)和迁移(0.01μmol/L辛伐他汀组与对照组之比为41±3 vs 45±3,n=5,P<0.05)。0.01~10μmol/L的辛伐他汀不影响内皮细胞增殖(10μmol/L辛伐他汀组与对照组之比为4310±132 vs 4321±133,n=5,P>0.05)和迁移(10μmol/L辛伐他汀组与对照组之比为35±5 vs 37±5,n=5,P>0.05)。辛伐他汀浓度依赖性抑制骨髓单个核细胞向平滑肌祖细胞分化,促进其向内皮祖细胞分化。1μmol/L辛伐他汀作用24小时分化平滑肌祖细胞减少62.1±3.5%(1μmol/L辛伐他汀与对照组之比为32±5 vs 85±4,n=5,P<0.01),内皮祖细胞增加1.2±0.1倍(1μmol/L辛伐他汀与对照组之比为87±5 vs 39±4,n=5,P<0.01)。辛伐他汀浓度和时间依赖性促进内皮祖细胞增殖,最大作用剂量1.0μmol/ L,24 h达作用高峰。浓度和时间依赖性抑制平滑肌祖细胞增殖,1.0μmol/ L辛伐他汀作用24小时,内皮祖细胞数量增加2.2±0.1倍(1μmol/L辛伐他汀与对照组之比为3762±138 vs 1249±146,n=5,P<0.01),平滑肌祖细胞数量减少62.1±5.6%(1μmol/L辛伐他汀与对照组之比为1962±145 vs 4070±184,n=5,P<0.01)。辛伐他汀也抑制平滑肌祖细胞迁移和黏附,促进内皮祖细胞迁移和黏附。辛伐他汀浓度依赖性促进平滑肌细胞和平滑肌祖细胞周期抑制蛋白P27表达,抑制内皮祖细胞P27表达,不影响内皮细胞P27表达。
     3.辛伐他汀对平滑肌细胞表达平滑肌祖细胞趋化因子SDF-1α的影响:辛伐他汀浓度和时间依赖性抑制平滑肌细胞SDF-1αmRNA表达。
     4.局部应用辛伐他汀对大鼠损伤血管新生内膜过度增生和再内皮化影响:局部应用辛伐他汀抑制大鼠损伤颈动脉新生内皮过度增生,对照组与辛伐他汀组新生内膜面积之比为0.58±0.13 mm~2 vs 0.27±0.12 mm~2 (n=6,P<0.01),辛伐他汀组内膜/中膜比减少(对照组与辛伐他汀组之比为1.95±0.27 vs 0.97±0.24,n=6,P<0.01)。内皮细胞vWF免疫组化染色未观察到对照组和辛伐他汀组再内皮化差异。
     全文结论
     1.雷帕霉素时间和浓度依赖性抑制骨髓源平滑肌祖细胞分化、增殖、迁移和黏附;雷帕霉素也减少骨髓源内皮祖细胞数量和抑制其功能。寻找新的洗脱支架药物需考虑其对平滑肌祖细胞和内皮祖细胞的影响。
     2.辛伐他汀选择性促进骨髓单个核细胞向内皮祖细胞分化,促进内皮祖细胞增殖、迁移和黏附,抑制其向平滑肌祖细胞分化。抑制平滑肌细胞和平滑肌祖细胞增殖、迁移和黏附,不影响内皮细胞增殖和迁移。
     3.辛伐他汀浓度和时间依赖性抑制平滑肌细胞SDF-1αmRNA表达,间接抑制平滑肌祖细胞参与的新生内膜增生。
     4.局部应用辛伐他汀能有效抑制损伤动脉新内膜过度增生,不影响损伤血管段再内皮化。
BACKGROUND
     The injury and dysfunction of endothelial cells play a key role in the starting events of atherosclerasis and harmful renovation and induce vascular injuries, proliferation and migration of smooth muscle cells(SMCs). To inhibit smooth SMCs proliferation and accelerate reendothelialization is the key for the repairment of injured vessel. In the past decades, intense efforts has been applied to discern the mechanisms that regulate SMCs proliferation after angioplasty and to develop therapies to inhibit SMCs overgrowth. Drug-eluting stents that employing cytostatic/immunomodulatory compound rapamycin and the chemotherapeutic paclitaxcel have been show to induce neointimal lesion formation. These therapies can also perturb endothelial recovery, and lead to incomplete, delayed reendothelialization or late stent thrommosis. Accordingly, identification of compounds that select to inhibit neointimal formation, as well as do not adversely affect endothelial regrowth could be of substantial clinical usefulness and is regarded as the main target for evolutionary concepts toward the development of next generation drug-eluting stents.
     In traditional opinions, it is thought that vascular SMCs and ECs were the predominant cells which take part in repairment of injured vessel. Recent studies found that vascular function not only depends on cells within the vessels, but also significantly modulated by circulating smooth muscle progenitor cells(SPCs) and endothelial progenitor cells(EPCs) derived from the bone marrow. Following vascular injuries, vascular progenitor cells can be mobilized into the peripheral blood flow, home to the site of vascular injury, and SPCs can differentiate into smooth muscle cells and accelerate neointima formation and lead to luminal stenosis; and EPCs differentiate into endothelial cells and rebuild luminal endothelial cells layer and inhibit bad vascular remodeling. Recent animal and clinic studies both showed that the most of neointima SMCs were derived from bone marrow and about 25% ECs at the vascular injury site came from the differentiated EPCs. These data indicate that SPCs and EPCs derived from bone marrow are important sources of repairing cells after vascular injury. Therefore, inhibition of SPCs proliferation can induce neointima formation, and improvement of EPCs proliferation can accelerate reendothelialization of injured vessel and inhibit restenosis.
     Statins can effectively modulate the lipid profile of an individual patient. Moreover, there is compelling evidence that statins may also exhibit non cholesterol dependent pleiotropic effects, such as inhibiting SMCs poliferation, promoting EPCs proliferation, improving endothelial function, inhibiting platelet function, anti-inflammation and stabilizing atherosclerotic plaques. These biological properties of statins suggest that it can be a perfect candidate for coat compound of next generation drug-eluting stents. However, systemic statin therapy is not effective for the limitation of human coronary artery neointima formation because bioactive concentrations were neither achieved nor maintained at the site of the potential lesion. Local delivery of vasculature facilitates the achievement of high regional drug concentration, with prolonged retention at therapeutic doses less likely to product systemic toxicity. Nevertheless, it remains unknown whether local statin therapy can effectively inhibit restenosis and accelerate endothelial regrowth.
     OBJECTIVES
     1. To investigate effects of sirolimus on the differentiation, proliferation, adhension, and migration of EPCs and SPCs.
     2. To study effects of simvastin on EPCs and SPCs differentiation, in addition, on proliferation, adhension, and migration of ECs, SMCs, EPCs and SPCs.
     3. To explore effects of simvasation on SMCs SDF-1αm RNA expression.
     4. To study effects of locally delivered simvastatin on neointima formation and reendothelialization after vascular injury.
     METHODS
     1. Effects of sirolimus on EPCs and SPCs differentiation, proliferation, adhension, and migration: (1) The bone marrow mononuclear cells(MNCs) were isolated from the bone marrow of rats by density gradient centrifugation with Ficoll. MNCs were cultured in fibronectin-coated dishes in endothelial progenitor cells growth medium or smooth muscle progenitor cells growth supplements with or without sirolimus(final concentrations: 0.01, 0.1, 1, 10, 100 ng/ml) for 12 days. (2) After 8 days primarily cultured, attached cells were treated with sirolimus(final concentrations: 0.1, 1, 10, 100, 200 ng/ml) or vehicle for various time points(0h, 12h, 24h, 48h, 96h). SPCs were identified as adherent cells positive forα-SMA by indirect immunofluorescent staining. And EPCs were characterized as adherent cells double positive stained for DiI-acLDL-uptake and FITC-UEA-Ⅰ(lectin) binding under immunofluence microscope by direct fluorescent staining. EPCs and SPCs proliferation, migration were assayed with MTT assay and modified Boyden chamber assay respectively. Adhension assay of EPCs and SPCs were performed by replating them on fibronectin-coated dishes, and the adhension cells were then courted.
     2. To study effects of simvastin on EPCs and SPCs differentiation, in addition, on proliferation, adhension, and migration of ECs, SMCs, EPCs and SPCs: Rat aorta SMCs were cultured in high-glucose DMEM medium and Rat aorta ECs were cultured in M199 medium. EPCs and SPCs were cultured based on above meathod. Treatment with simvastatin was performed in fully supplemented media for the indicated time(0h, 6h, 12h, 24h, 48 h) and concentration ranges(0,0. 01,0.1,1,10μmol/L). The proliferation of SMCs, ECs, EPCs and SPCs were assayed with 3H-TdR incorporation assay. Migration and adhension assay of SMCs, ECs, EPCs and SPCs were performed as same as above procedure. In addition, western blot was performed for the assessment of effects of a series concentration of simvastatin(0,0. 01,0.1,1,10μmol/L) on cyclin-dependent kinase inhibitor p27 protein expression of ECs, SMCs, EPCs and SPCs for 24 hours.
     3. To explore effects of simvasation on SMCs SDF-1αm RNA expression: SMCs were treated with a range concentration of simvastatin(0,0. 01,0.1,1,10μmol/L) for 24h or with 1μmol/L simvastatin for 0h, 6h, 12h, 24h, 48 h. SDF-1αmRNA expression was detected by RT-PCR.
     4. To study effects of locally delivered simvastatin on neointima formation and reendothelialization after vascular injury: the model of vascular restenosis established by balloon injury of rat carotid arteries was used. 400μg of simvastatin suspended in 100μL of Pluronic F-127 gel was administrated to the perivascular area of injured vessel, and the same volume of Pluronic gel without simvastatin was used in control group. Two weeks after surgery, rats were sacrificed. The common carotid arteries were embedded in paraffin, and cross sections were made. Sections were stained with hematoxylin-eosin for assessement of Neointima thickness and with vWF antibody for observation of endothelial coverage.
     RESULTS
     1. Effects of sirolimus on EPCs and SPCs differentiation, proliferation, adhension, and migration: EPCs and SPCs were successfully cultured in vitro. EPCs were doubly stained by DiI-acLDL and FITC-UEA-Ⅰwith“line”structure. SPCs were positive forα-SMA and CD34 and mRNA forα-SMA was detected in adherent SPCs. The number ofα-SMA-positive SPCs and DiI-acLDL and FITC-UEA-Ⅰ-double-positve EPCs differentiated from MNCs at 12 days was significantly lower in sirolimus treated cells than that of vehicle-treated cells in dose-depended manner. At a concentration as low as 0.1 ng/mL, sirolimus dramatically reduced the number of SPCs to 59.3±5.8% of control(0.1 ng/mL sirolimus versus control: 23±3 versus 78±5, n=5,P<0.01) and reduced the number of EPCs to 70.5±34.5%(0.1 ng/mL sirolimus versus control: 37±5 versus 90±7, n=5,P<0.01). Sirolimus significantly inhibited the proliferative capacity of EPCs and SPCs in a time and dose dependent manner. There was no significant effects on EPCs and SPCs proliferation by sirolimus at 0.1 ng,mL, whereas at higher concentration(≥1 ng/mL), sirolimus inhibited the proliferation of EPCs(1 ng/mL sirolimus versus control: 0.414±0.019 versus 0.580±0.034, n=5,P<0.01) and SPCs(1 ng/mL sirolimus versus control: 0.476±0.016 versus 0.687±0.043, n=5,P<0.01). Moreover, sirolimus also significantly dose-dependently inhibited the migratory and adhensive capacity of EPCs and SPCs.1ng/mL sirolimus significantly inhibited EPCs adhension(1 ng/mL sirolimus versus control: 34±5 versus 52±6, n=5,P<0.01) and SPCs adhension(1 ng/mL sirolimus versus control: 27±2 versus 51±3, n=5,P<0.01).
     2. To study effects of simvastin on EPCs and SPCs differentiation, in addition, on proliferation, adhension, and migration of ECs, SMCs, EPCs and SPCs: Rat SMCs proliferation was inhibited by simvastatin at concentration as low 0.01μmol/L(0.01μmol/L simvastatin versus control: 5647±268 versus 6038±218 , n=5,P<0.05), the same concentration had no significant effect on rat ECs proliferation. Treatment with simvastatin at dosages of 1μmol/L or higher led to very prominent growth arrest in SMCs but not ECs. Remarkably, 3H-TdR incorporation was constantly maintained at significantly higher levels in ECs with increasing relative differences at higher simvastatin concentrations. (10μmol/L simvastatin versus control: 4310±132 versus 4321±133, n=5,P>0.05)In addition, simvastatin led to dose dependent inhibition of SMCs migration(0.01μmol/L simvastatin versus control: 41±3 vs 45±3, n=5,P<0.05). In contrast to SMCs, simvastatin had no detectable effect on migration of ECs at concentrations of 0.01 to 10μmol/L in vitro(10μmol/L simvastatin versus control: 35±5 versus 37±5, n=5,P>0.05). EPCs and SPCs are also important tools for assessment of stent-coated compounds. Incubation of isolated rat MNCs with simvastatin dose-dependently increased the number of EPCs differentiated from MNCs and decreased the number of SPCs. The number of differentiating EPCs significantly increased 1.2±0.1 fold(1μmol/L simvastatin versus control: 87±5 versus 39±4, n=5,P<0.01) at concentration of 1μmol/L simvastatin and the number of differentiating SPCs dramatically reduced 62.1±3.5% of control(1μmol/L simvastatin versus control: 32±5 versus 85±4, n=5,P<0.01) at the same concentration. In addition, simvastatin time- and dose-dependently promoted EPCs proliferation, while reached the maximum 24 hours after the simulation at 1μmol/L. In contrast with EPCs, SPCs proliferation was significantly inhibited by simvastatin in a time and dose dependent manner. The number of EPCs increased 2.2±0.1 fold at concentration of 1μmol/L simvastatin for 24 hours(1μmol/L simvastatin versus control: 3762±138 versus 1249±146, n=5,P<0.01), and that of SPCs decreased 62.1±5.6% of control at the same concentration for the same time(1μmol/L simvastatin versus control: 1962±145 versus 4070±184, n=5,P<0.01). Moreover, simvastatin also dose-dependently promoted EPCs adhension and migration, while dose-dependently inhibited SPCs adhension and migration. Consistent with above results, simvastatin dose-dependently promoted the p27 expression of SMCs and SPCs, and inhibited the p27 expression of EPCs, and had no effect on the p27 expression of ECs.
     3. To explore effects of simvasation on SMCs SDF-1αm RNA expression: simvastatin significantly reduced the SDF-1αm RNA expression of SMCs at a time and dose dependent manner.
     4. To study effects of locally delivered simvastatin on neointima formation and reendothelialization after vascular injury: local delivery of simvastatin significantly reduced neointimal formation(neointimal area 0.58±0.13 mm~2 versus 0.27±0.12 mm~2; intima/media ratio 1.95±0.27 versus 0.97±0.24,n=6,P<0.01) . Immunohistochemical assessment of injured segments with an endothelial cell marker(von Willebrand factor) revealed no appreciable difference between animals receiving simvastatin administration and control.
     CONCLUSIONS
     1. Inhibition of bone marrow-derived endothelial progenitor cells maybe reslt in delayed reendothelialization, which may lead to fatal late thrombosis. The clinical efficacy of sirolimus-eluting stent against restenosis might be achieved, at least in part, through its inhibitory effect on smooth muscle progenitor cells derived from bone marrow. It is necessary that think about the effects of new generation drug-eluting stent-coated compounds on the bone marrow-derived EPCs and SPCs.
     2. Simvastatin of equal dosage displayed a differential effect on SMCs and SPCs as compared to ECs and EPCs with regard to differentiation, proliferation, migration and adhension, inhibiting SPCs differentiation from the bone marrow MNCs, promoting EPCs differentiation from the bone marrow MNCs, limiting proliferation, migration and adhension of SMCs and SPCs, promoting proliferation, migration and adhension of EPCs, but having no effect on proliferation and migration of ECs.
     3. Simvastatin significantly reduced the SDF-1αm RNA expression of SMCs at a time and dose dependent manner, which might indirectly inhibiting neointimal hyperplasia by reducing mobilization and recruitment of the bone marrow smooth muscle progenitor cells.
     4. Local delivery of simvastatin can significantly reduce neointima hyperproliferation in injured artery, together without adverse interfere of reendothelialization.
引文
1. Kearney, M, Pieczek, A, Haley, L, et al. Histopathology of in-stent restenosis in patients with peripheral artery disease[J]. Circulation, 1997,95(8):1998-2002.
    2. Leon, M B, Teirstein, P S, Moses, J W, et al. Localized intracoronary gamma-radiation therapy to inhibit the recurrence of restenosis after stenting[J]. N Engl J Med, 2001,344(4):250-6.
    3. Kolodgie, F D, John, M, Khurana, C, et al. Sustained reduction of in-stent neointimal growth with the use of a novel systemic nanoparticle paclitaxel[J]. Circulation, 2002,106(10):1195-8.
    4. Virmani, R, Guagliumi, G, Farb, A, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious?[J]. Circulation, 2004,109(6):701-5.
    5. Bittl, J A, Sanborn, T A, Tcheng, J E, et al. Clinical success, complications and restenosis rates with excimer laser coronary angioplasty. The Percutaneous Excimer Laser Coronary Angioplasty Registry[J]. Am J Cardiol, 1992,70(20):1533-9.
    6. Fischman, D L, Leon, M B, Baim, D S, et al. A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators[J]. N Engl J Med, 1994,331(8):496-501.
    7. Liistro, F, Stankovic, G, Di Mario, C, et al. First clinical experience with a paclitaxel derivate-eluting polymer stent system implantation for in-stent restenosis: immediate and long-term clinical and angiographic outcome[J]. Circulation, 2002,105(16):1883-6.
    8. Morice, M C, Serruys, P W, Sousa, J E, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization[J]. N Engl J Med, 2002,346(23):1773-80.
    9. Waksman, R, Bhargava, B, Mintz, G S, et al. Late total occlusion after intracoronary brachytherapy for patients with in-stent restenosis[J]. J Am Coll Cardiol, 2000,36(1):65-8.
    10. Farb, A, Heller, P F, Shroff, S, et al. Pathological analysis of local delivery of paclitaxel via a polymer-coated stent[J]. Circulation, 2001,104(4):473-9.
    11. Ross, R. The pathogenesis of atherosclerosis: a perspective for the 1990s[J]. Nature,1993,362(6423):801-9.
    12. Margariti A, Zeng L, Xu Q. Stem cells, vascular smooth muscle cells and atherosclerosis[J]. Histol Histopathol JT-Histology and histopathology, 2006,21(9): 979-85.
    13. Sata M, Fukuda D, Tanaka K, et al. The role of circulating precursors in vascular repair and lesion formation[J]. J Cell Mol Med JT - Journal of cellular and molecular medicine, 2005,9(3):557-68.
    14. Torsney E, Mandal K, Halliday A, et al. Characterisation of progenitor cells in human atherosclerotic vessels[J]. Atherosclerosis, 2006.
    15. Fukuda D, Sata M, Tanaka K, et al. Potent inhibitory effect of sirolimus on circulating vascular progenitor cells[J]. Circulation JT - Circulation, 2005,111(7):926-31.
    16. Cho HJ, Kim TY, Cho HJ, et al. The effect of stem cell mobilization by granulocyte-colony stimulating factor on neointimal hyperplasia and endothelial healing after vascular injury with bare-metal versus Paclitaxel-eluting stents[J]. J Am Coll Cardiol JT - Journal of the American College of Cardiology, 2006,48(2):366-74.
    17. Saiura A, Sata M, Hirata Y, et al. Circulating smooth muscle progenitor cells contribute to atherosclerosis[J]. Nat Med, 2001,7(4):382-3.
    18. Plump AS, Smith JD, Hayek T, et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells[J]. Cell, 1992,71(2):343-53.
    19. Sata M, Saiura A, Kunisato A, et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis[J]. Nat Med JT - Nature medicine, 2002,8(4):403-9.
    20. Tanaka, K, Sata, M, Hirata, Y, et al. Diverse contribution of bone marrow cells to neointimal hyperplasia after mechanical vascular injuries[J]. Circ Res, 2003,93(8): 783-90.
    21. Murayama, T, Tepper, O M, Silver, M, et al. Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo[J]. Exp Hematol, 2002,30(8):967-72.
    22. Fukuda D, Sata M, Tanaka K, et al. Potent inhibitory effect of sirolimus on circulating vascular progenitor cells[J]. Circulation, 2005,111(7):926-31.
    23. Schmidt-Lucke C, Rossig L, Fichtlscherer S, et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair[J]. Circulation, 2005,111(22):2981-7.
    24. Vasa, M, Fichtlscherer, S, Adler, K, et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease[J]. Circulation, 2001,103(24):2885-90.
    25. Mayr U, Zou Y, Zhang Z, et al. Accelerated arteriosclerosis of vein grafts in inducible NO synthase(-/-) mice is related to decreased endothelial progenitor cell repair[J]. Circ Res, 2006,98(3):412-20.
    26. Losordo, D W, Isner, J M, Diaz Sandoval, L J. Endothelial recovery: the next target in restenosis prevention[J]. Circulation, 2003,107(21):2635-7.
    27. Maron, D J, Fazio, S, Linton, M F. Current perspectives on statins[J]. Circulation, 2000,101(2):207-13.
    28. Sposito, A C, Chapman, M J. Statin therapy in acute coronary syndromes: mechanistic insight into clinical benefit[J]. Arterioscler Thromb Vasc Biol, 2002,22(10):1524-34.
    29. Huhle, G, Abletshauser, C, Mayer, N, et al. Reduction of platelet activity markers in type II hypercholesterolemic patients by a HMG-CoA-reductase inhibitor[J]. Thromb Res, 1999,95(5):229-34.
    30. Bellosta, S, Bernini, F, Ferri, N, et al. Direct vascular effects of HMG-CoA reductase inhibitors[J]. Atherosclerosis, 1998,137 Suppl:S101-9.
    31. McGillicuddy, F C, O'Toole, D, Hickey, J A, et al. TGF-beta1-induced thrombospondin-1 expression through the p38 MAPK pathway is abolished by fluvastatin in human coronary artery smooth muscle cells[J]. Vascul Pharmacol, 2006,44(6):469-75.
    32. Jones, S P, Gibson, M F, Rimmer, D M 3rd, et al. Direct vascular and cardioprotective effects of rosuvastatin, a new HMG-CoA reductase inhibitor[J]. J Am Coll Cardiol, 2002,40(6):1172-8.
    33. Scalia, R, Gooszen, M E, Jones, S P, et al. Simvastatin exerts both anti-inflammatory and cardioprotective effects in apolipoprotein E-deficient mice[J]. Circulation, 2001,103(21):2598-603.
    34. Sakai, M, Kobori, S, Matsumura, T, et al. HMG-CoA reductase inhibitors suppress macrophage growth induced by oxidized low density lipoprotein[J]. Atherosclerosis, 1997,133(1):51-9.
    35. Kusuyama T, Omura T, Nishiya D, et al. The Effects of HMG-CoA Reductase Inhibitor on Vascular Progenitor Cells[J]. J Pharmacol Sci, 2006,101(4):344-9.
    36. 陈君柱, 张芙荣, 朱建华,等. 他汀类药物对外周血内皮祖细胞数量和功能的影响[J]. 中华心血管病杂志, 2004,32(04): 346-350.
    37. Inoue T, Sata M, Hikichi Y, et al. Mobilization of CD34-Positive Bone Marrow-Derived Cells After Coronary Stent Implantation. Impact on Restenosis[J]. Circulation, 2007.
    38. 崔斌, 黄岚, 宋耀明. 冠心病患者循环内皮祖细胞与相关危险因素及冠状动脉病变的关系[J]. 中华心血管病杂志, 2005,33(9): 785-788.
    39. Jin H, Aiyer A, Su J, et al. A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature[J]. J Clin Invest, 2006,116(3):652–662.
    40. Hegner B, Weber M, Dragun D, et al. Differential regulation of smooth muscle markers in human bone marrow-derived mesenchymal stem cells[J]. J Hypertens, 2005,23(6):1191-202.
    41. Moses, J W, Leon, M B, Popma, J J, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery[J]. N Engl J Med, 2003,349(14):1315-23.
    42. Zohlnhofer, D, Klein, C A, Richter, T, et al. Gene expression profiling of human stent-induced neointima by cDNA array analysis of microscopic specimens retrieved by helix cutter atherectomy: Detection of FK506-binding protein 12 upregulation[J]. Circulation, 2001,103(10):1396-402.
    43. Shoji M, Sata M, Fukuda D, et al. Temporal and spatial characterization of cellular constituents during neointimal hyperplasia after vascular injury: Potential contribution of bone-marrow-derived progenitors to arterial remodeling[J]. Cardiovasc Pathol JT - Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology, 2004,13(6):306-12.
    44. 韩雅玲, 康建, 李少华. 成年鼠骨髓间质细胞在体外培养中分化为平滑肌细胞[J]. 中华医学杂志, 2003(09): 778-781.
    45. Ong, A T, Aoki, J, Kutryk, M J, et al. How to accelerate the endothelialization of stents[J]. Arch Mal Coeur Vaiss, 2005,98(2):123-6.
    46. Virmani, R, Kolodgie, F D, Farb, A. Drug-eluting stents: are they really safe?[J]. Am Heart Hosp J, 2004,2(2):85-8.
    47. Rekhter, M D, Mironov, A A. Quantitative analysis of tissue organization of the rat aorta endothelium during regeneration[J]. Cor Vasa, 1990,32(6):492-501.
    48. Chen D, Weber M, Shiels PG, et al. Post-injury vascular intimal hyperplasia in mice is completely inhibited by CD34+bone marrow-derived progenitor cells expressing membrane-tethered anticoagulant fusion proteins[J]. J Thromb Haemost, 2006.
    49. Hill, J M, Zalos, G, Halcox, J P, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk[J]. N Engl J Med, 2003,348(7):593-600.
    50. Parry, T J, Brosius, R, Thyagarajan, R, et al. Drug-eluting stents: sirolimus and paclitaxel differentially affect cultured cells and injured arteries[J]. Eur J Pharmacol, 2005,524(1-3):19-29.
    51. 崔斌, 黄岚, 宋耀明. 冠心病人循环内皮祖细胞与尿酸检测及相关性研究[J]. 中国动脉硬化杂志, 2006,14(1): 52-56.
    52. Farb, A, Burke, A P, Kolodgie, F D, et al. Pathological mechanisms of fatal late coronary stent thrombosis in humans[J]. Circulation, 2003,108(14):1701-6.
    53. Farb, A, John, M, Acampado, E, et al. Oral everolimus inhibits in-stent neointimal growth[J]. Circulation, 2002,106(18):2379-84.
    54. Guagliumi, G, Virmani, R, Musumeci, G, et al. Drug-eluting versus bare metal coronary stents: long-term human pathology. Findings from different coronary arteries in the same patient[J]. Ital Heart J, 2003,4(10):713-20.
    55. Shepherd, J, Cobbe, S M, Ford, I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group[J]. N Engl J Med, 1995,333(20):1301-7.
    56. Strandberg, T E, Pyorala, K, Cook, T J, et al. Mortality and incidence of cancer during 10-year follow-up of the Scandinavian Simvastatin Survival Study (4S)[J]. Lancet, 2004,364(9436):771-7.
    57. Faxon, D P, Fuster, V, Libby, P, et al. Atherosclerotic Vascular Disease Conference: Writing Group III: pathophysiology[J]. Circulation, 2004,109(21):2617-25.
    58. Klag, M J, Ford, D E, Mead, L A, et al. Serum cholesterol in young men and subsequent cardiovascular disease[J]. N Engl J Med, 1993,328(5):313-8.
    59. Kinlay, S, Schwartz, G G, Olsson, A G, et al. High-dose atorvastatin enhances the decline in inflammatory markers in patients with acute coronary syndromes in the MIRACL study[J]. Circulation, 2003,108(13):1560-6.
    60. Chan, A W, Bhatt, D L, Chew, D P, et al. Relation of inflammation and benefit of statins after percutaneous coronary interventions[J]. Circulation, 2003,107(13):1750-6.
    61. Stone, G W, Ellis, S G, Cox, D A, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease[J]. N Engl J Med, 2004,350(3):221-31.
    62. Vinals, F, Chambard, J C, Pouyssegur, J. p70 S6 kinase-mediated protein synthesis is a critical step for vascular endothelial cell proliferation[J]. J Biol Chem, 1999,274(38):26776-82.
    63. Guba, M, von Breitenbuch, P, Steinbauer, M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor[J]. Nat Med, 2002,8(2):128-35.
    64. Kipshidze, N, Dangas, G, Tsapenko, M, et al. Role of the endothelium in modulating neointimal formation: vasculoprotective approaches to attenuate restenosis after percutaneous coronary interventions[J]. J Am Coll Cardiol, 2004,44(4):733-9.
    65. Dimmeler, S, Aicher, A, Vasa, M, et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway[J]. J Clin Invest, 2001,108(3):391-7.
    66. Jaschke B, Michaelis C, Milz S, et al. Local statin therapy differentially interferes with smooth muscle and endothelial cell proliferation and reduces neointima on a drug-eluting stent platform[J]. Cardiovasc Res JT - Cardiovascular research, 2005,68(3):483-92.
    67. Laufs, U, Fata, V L, Liao, J K. Inhibition of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase blocks hypoxia-mediated down-regulation of endothelial nitric oxide synthase[J]. J Biol Chem, 1997,272(50):31725-9.
    68. Laufs, U, Marra, D, Node, K, et al. 3-Hydroxy-3-methylglutaryl-CoA reductase inhibitors attenuate vascular smooth muscle proliferation by preventing rho GTPase-induced down-regulation of p27(Kip1)[J]. J Biol Chem, 1999,274(31):21926-31.
    69. Yin, S, Ma, L, Xu, L. [Influence of pravastatin therapy on expression of P-selectin][J]. Zhonghua Xue Ye Xue Za Zhi, 1998,19(9):461-3.
    70. Paumelle R, Blanquart C, Briand O, et al. Acute antiinflammatory properties of statins involve peroxisome proliferator-activated receptor-alpha via inhibition of the protein kinase C signaling pathway[J]. Circ Res, 2006,98(3):361-9.
    71. 朱军慧, 陶谦民, 陈君柱,等. 他汀类药物对外周血内皮祖细胞的影响(英文)[J]. 生理学报, 2004(03).
    72. Klemke, R L, Leng, J, Molander, R, et al. CAS/Crk coupling serves as a "molecular switch" for induction of cell migration[J]. J Cell Biol, 1998,140(4):961-72.
    73. Bayraktutan, U. Nitric oxide synthase and NAD(P)H oxidase modulate coronary endothelial cell growth[J]. J Mol Cell Cardiol, 2004,36(2):277-86.
    74. Costa, M A, Simon, D I. Molecular basis of restenosis and drug-eluting stents[J]. Circulation, 2005,111(17):2257-73.
    75. Massberg S, Konrad I, Schurzinger K, et al. Platelets secrete stromal cell-derived factor 1{alpha} and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo[J]. J Exp Med, 2006,203(5):1221-33.
    76. 武晓静, 黄岚, 晋军,等. 自体内皮细胞移植在损伤动脉再内皮化及抑制新生内膜增生中的作用[J]. 中国病理生理杂志, 2004,20(06): 919-922.
    77. Schober, A, Knarren, S, Lietz, M, et al. Crucial role of stromal cell-derived factor-1alpha in neointima formation after vascular injury in apolipoprotein E-deficient mice[J]. Circulation, 2003,108(20):2491-7.
    78. Zernecke, A, Schober, A, Bot, I, et al. SDF-1alpha/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells[J]. Circ Res, 2005,96(7):784-91.
    79. Kodali R, Hajjou M, Berman AB, et al. Chemokines induce matrix metalloproteinase-2 through activation of epidermal growth factor receptor in arterial smooth muscle cells[J]. Cardiovasc Res JT - Cardiovascular research, 2006,69(3):706-15.
    80. Amara, A, Lorthioir, O, Valenzuela, A, et al. Stromal cell-derived factor-1alpha associates with heparan sulfates through the first beta-strand of the chemokine[J]. J Biol Chem, 1999,274(34):23916-25.
    81. Netelenbos, T, Zuijderduijn, S, Van Den Born, J, et al. Proteoglycans guide SDF-1-induced migration of hematopoietic progenitor cells[J]. J Leukoc Biol, 2002,72(2):353-62.
    82. Zernecke A, Schober A, Bot I, et al. SDF-1alpha/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells[J]. Circ Res, 2005,96(7):784-91.
    83. Abi Younes, S, Sauty, A, Mach, F, et al. The stromal cell-derived factor-1 chemokine is a potent platelet agonist highly expressed in atherosclerotic plaques[J]. Circ Res, 2000,86(2):131-8.
    84. Nuhrenberg, T G, Voisard, R, Fahlisch, F, et al. Rapamycin attenuates vascular wall inflammation and progenitor cell promoters after angioplasty[J]. FASEB J, 2005,19(2):246-8.
    85. 朱光旭,谢燕,王小华,周舟,楼淑芬,余争平. L-carnitine 对缺氧/复氧新生大鼠心肌细胞能量生成及 CPT-Ⅱ mRNA 表达的影响[J]. 第三军医大学学报, 2004,26(3): 201-204.
    86. Ara, T, Tokoyoda, K, Okamoto, R, et al. The role of CXCL12 in the organ-specific process of artery formation[J]. Blood, 2005,105(8):3155-61.
    87. Bleul, C C, Fuhlbrigge, R C, Casasnovas, J M, et al. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1)[J]. J Exp Med, 1996,184(3): 1101-9.
    88. Peled, A, Petit, I, Kollet, O, et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4[J]. Science, 1999,283(5403):845-8.
    89. Ponomaryov, T, Peled, A, Petit, I, et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function[J]. J Clin Invest, 2000,106(11):1331-9.
    90. Salvucci, O, Yao, L, Villalba, S, et al. Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1[J]. Blood, 2002,99(8):2703-11.
    91. Gupta, S K, Lysko, P G, Pillarisetti, K, et al. Chemokine receptors in human endothelial cells. Functional expression of CXCR4 and its transcriptional regulation by inflammatory cytokines[J]. J Biol Chem, 1998,273(7):4282-7.
    92. Salcedo, R, Wasserman, K, Young, H A, et al. Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: In vivo neovascularization induced by stromal-derived factor-1alpha[J]. Am J Pathol, 1999,154(4):1125-35.
    93. Schober A, Karshovska E, Zernecke A, et al. SDF-1alpha-Mediated Tissue Repair by Stem Cells: A Promising Tool in Cardiovascular Medicine?[J]. Trends Cardiovasc Med, 2006,16(4):103-8.
    94. Weber, C, Schober, A, Zernecke, A. Chemokines: key regulators of mononuclear cell recruitment in atherosclerotic vascular disease[J]. Arterioscler Thromb Vasc Biol, 2004,24(11):1997-2008.
    95. Weber, C. Novel mechanistic concepts for the control of leukocyte transmigration: specialization of integrins, chemokines, and junctional molecules[J]. J Mol Med, 2003,81(1):4-19.
    96. Sata, M, Saiura, A, Kunisato, A, et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis[J]. Nat Med, 2002,8(4):403-9.
    97. Hillebrands, J L, Klatter, F A, Rozing, J. Origin of vascular smooth muscle cells and the role of circulating stem cells in transplant arteriosclerosis[J]. Arterioscler Thromb Vasc Biol, 2003,23(3):380-7.
    98. Sakihama, H, Masunaga, T, Yamashita, K, et al. Stromal cell-derived factor-1 and CXCR4 interaction is critical for development of transplant arteriosclerosis[J]. Circulation, 2004,110(18):2924-30.
    99. Yamani, M H, Ratliff, N B, Cook, D J, et al. Peritransplant ischemic injury is associated with up-regulation of stromal cell-derived factor-1[J]. J Am Coll Cardiol, 2005,46(6):1029-35.
    100. Zeiffer, U, Schober, A, Lietz, M, et al. Neointimal smooth muscle cells display a proinflammatory phenotype resulting in increased leukocyte recruitment mediated by P-selectin and chemokines[J]. Circ Res, 2004,94(6):776-84.
    101. Lataillade, J J, Clay, D, Dupuy, C, et al. Chemokine SDF-1 enhances circulating CD34(+) cell proliferation in synergy with cytokines: possible role in progenitor survival[J]. Blood, 2000,95(3):756-68.
    102. Abbott, J D, Huang, Y, Liu, D, et al. Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury[J]. Circulation, 2004,110(21): 3300-5.
    103. Askari, A T, Unzek, S, Popovic, Z B, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy[J]. Lancet, 2003,362(9385):697-703.
    104. Ceradini, D J, Kulkarni, A R, Callaghan, M J, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1[J]. Nat Med, 2004,10(8):858-64.
    105. Shirozu M, Nakano T, Inazawa J, et al. Structure and Chromosomal Localization of the Human Stromal Cell-Derived Factor 1 (SDF1) Gene[J]. Genomics, 1995,28(3): 495-500.
    106. Fedyk, E R, Jones, D, Critchley, H O, et al. Expression of stromal-derived factor-1 is decreased by IL-1 and TNF and in dermal wound healing[J]. J Immunol, 2001,166(9):5749-54.
    107. Zhang LN, Wilson DW, da Cunha V, et al. Endothelial NO Synthase Deficiency Promotes Smooth Muscle Progenitor Cells in Association With Upregulation of Stromal Cell-Derived Factor-1{alpha} in a Mouse Model of Carotid Artery Ligation[J]. Arterioscler Thromb Vasc Biol, 2006.
    108. Gear, A R, Suttitanamongkol, S, Viisoreanu, D, et al. Adenosine diphosphate strongly potentiates the ability of the chemokines MDC, TARC, and SDF-1 to stimulate platelet function[J]. Blood, 2001,97(4):937-45.
    109. Janowska Wieczorek, A, Majka, M, Kijowski, J, et al. Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment[J]. Blood, 2001,98(10):3143-9.
    110. Avecilla, S T, Hattori, K, Heissig, B, et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis[J]. Nat Med, 2004,10(1):64-71.
    111. De Falco E, Porcelli D, Torella AR, et al. SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells[J].Blood, 2004,104(12):3472-82.
    112. Liehn, E A, Schober, A, Weber, C. Blockade of keratinocyte-derived chemokine inhibits endothelial recovery and enhances plaque formation after arterial injury in ApoE-deficient mice[J]. Arterioscler Thromb Vasc Biol, 2004,24(10):1891-6.
    113. Grech, E D. ABC of interventional cardiology: percutaneous coronary intervention. I: history and development[J]. BMJ, 2003,326(7398):1080-2.
    114. Komatsu, R, Ueda, M, Naruko, T, et al. Neointimal tissue response at sites of coronary stenting in humans: macroscopic, histological, and immunohistochemical analyses[J]. Circulation, 1998,98(3):224-33.
    115. Camici GG, Steffel J, Akhmedov A, et al. Dimethyl Sulfoxide Inhibits Tissue Factor Expression, Thrombus Formation, and Vascular Smooth Muscle Cell Activation. A Potential Treatment Strategy for Drug-Eluting Stents[J]. Circulation, 2006,14(114):1512-1521.
    116. Steffel J, Latini RA, Akhmedov A, et al. Rapamycin, but not FK-506, increases endothelial tissue factor expression: implications for drug-eluting stent design[J]. Circulation, 2005,112(13):2002-11.
    117. Stahli BE, Camici GG, Steffel J, et al. Paclitaxel enhances thrombin-induced endothelial tissue factor expression via c-Jun terminal NH2 kinase activation[J]. Circ Res, 2006,99(2):149-55.
    118. Steffel J, Luscher TF, Tanner FC. Tissue factor in cardiovascular diseases: molecular mechanisms and clinical implications[J]. Circulation, 2006,113(5):722-31.
    119. Waksman, R, Ajani, A E, White, R L, et al. Intravascular gamma radiation for in-stent restenosis in saphenous-vein bypass grafts[J]. N Engl J Med, 2002,346(16):1194-9.
    120. Liuzzo, J P, Ambrose, J A, Coppola, J T. Sirolimus- and taxol-eluting stents differ towards intimal hyperplasia and re-endothelialization[J]. J Invasive Cardiol, 2005,17(9):497-502.
    121. Sakamoto, K, Murata, T, Chuma, H, et al. Fluvastatin prevents vascular hyperplasia by inhibiting phenotype modulation and proliferation through extracellular signal-regulated kinase 1 and 2 and p38 mitogen-activated protein kinase inactivation in organ-cultured artery[J]. Arterioscler Thromb Vasc Biol, 2005,25(2):327-33.
    122. Hoffmann, J, Simon, P, Zimmermann, A K, et al. Thrombospondin 1 as possible keyfactor in the hemocompatibility of endocoronary prostheses[J]. Biomaterials, 2005,26(25):5240-50.
    123. Virmani, R, Kolodgie, F D, Farb, A, et al. Drug eluting stents: are human and animal studies comparable?[J]. Heart, 2003,89(2):133-8.
    124. Schwartz, R S, Edelman, E R, Carter, A, et al. Drug-eluting stents in preclinical studies: recommended evaluation from a consensus group[J]. Circulation, 2002, 106(14):1867-73.
    1. Ross, R. Atherosclerosis--an inflammatory disease. N Engl J Med, 1999,340:115-26.
    2. Sarjeant JM, Rabinovitch M. Understanding and treating vein graft atherosclerosis. Cardiovasc Pathol JT - Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology, 2002,11:263-71.
    3. Nobuyoshi M, Kimura T, Nosaka H, et al. Restenosis after successful percutaneous transluminal coronary angioplasty: serial angiographic follow-up of 229 patients. J Am Coll Cardiol JT - Journal of the American College of Cardiology, 1988,12:616-23.
    4. Kearney M, Pieczek A, Haley L, et al. Histopathology of in-stent restenosis in patients with peripheral artery disease. Circulation JT - Circulation, 1997,95:1998-2002.
    5. Sata M, Perlman H, Muruve DA, et al. Fas ligand gene transfer to the vessel wall inhibits neointima formation and overrides the adenovirus-mediated T cell response. Proc Natl Acad Sci U S A, 1998,95:1213-7.
    6. Margariti A, Zeng L, Xu Q. Stem cells, vascular smooth muscle cells and atherosclerosis. Histol Histopathol JT - Histology and histopathology, 2006,21:979-85.
    7. Sata M, Fukuda D, Tanaka K, et al. The role of circulating precursors in vascular repair and lesion formation. J Cell Mol Med JT - Journal of cellular and molecular medicine, 2005,9:557-68.
    8. Torsney E, Mandal K, Halliday A, et al. Characterisation of progenitor cells in human atherosclerotic vessels. Atherosclerosis, 2006.
    9. Fukuda D, Sata M, Tanaka K, et al. Potent inhibitory effect of sirolimus on circulating vascular progenitor cells. Circulation JT - Circulation, 2005,111:926-31.
    10. Cho HJ, Kim TY, Cho HJ, et al. The effect of stem cell mobilization by granulocyte- colony stimulating factor on neointimal hyperplasia and endothelial healing after vascular injury with bare-metal versus Paclitaxel-eluting stents. J Am Coll Cardiol JT - Journal of the American College of Cardiology, 2006,48:366-74.
    11. Saiura A, Sata M, Hirata Y, et al. Circulating smooth muscle progenitor cells contribute to atherosclerosis. Nat Med, 2001,7:382-3.
    12. Plump AS, Smith JD, Hayek T, et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells.Cell, 1992,71:343-53.
    13. Sata M, Saiura A, Kunisato A, et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med JT - Nature medicine, 2002,8:403-9.
    14. Tanaka, K, Sata, M, Hirata, Y, et al. Diverse contribution of bone marrow cells to neointimal hyperplasia after mechanical vascular injuries. Circ Res, 2003,93:783-90.
    15. Murayama, T, Tepper, O M, Silver, M, et al. Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol, 2002,30:967-72.
    16. Ross R. Rous-Whipple Award Lecture. Atherosclerosis: a defense mechanism gone awry. Am J Pathol JT - The American journal of pathology, 1993,143:987-1002.
    17. Pollman, M J, Hall, J L, Mann, M J, et al. Inhibition of neointimal cell bcl-x expression induces apoptosis and regression of vascular disease. Nat Med, 1998,4:222-7.
    18. Sata, M, Maejima, Y, Adachi, F, et al. A mouse model of vascular injury that induces rapid onset of medial cell apoptosis followed by reproducible neointimal hyperplasia. J Mol Cell Cardiol, 2000,32:2097-104.
    19. Furukawa, Y, Matsumori, A, Ohashi, N, et al. Anti-monocyte chemoattractant protein-1/monocyte chemotactic and activating factor antibody inhibits neointimal hyperplasia in injured rat carotid arteries. Circ Res, 1999,84:306-14.
    20. Hayashi S, Watanabe N, Nakazawa K, et al. Roles of P-selectin in inflammation, neointimal formation, and vascular remodeling in balloon-injured rat carotid arteries. Circulation, 2000,102:1710-7.
    21. Zohlnhofer, D, Klein, C A, Richter, T, et al. Gene expression profiling of human stent-induced neointima by cDNA array analysis of microscopic specimens retrieved by helix cutter atherectomy: Detection of FK506-binding protein 12 upregulation. Circulation, 2001,103:1396-402.
    22. Billingham ME. Cardiac transplant atherosclerosis. Transplant Proc, 1987,19:19-25.
    23. Sata, M. Circulating vascular progenitor cells contribute to vascular repair, remodeling, and lesion formation. Trends Cardiovasc Med, 2003,13:249-53.
    24. Hillebrands JL, Klatter FA, van den Hurk BM, et al. Origin of neointimal endothelium and alpha-actin-positive smooth muscle cells in transplant arteriosclerosis. J Clin InvestJT - The Journal of clinical investigation, 2001,107:1411-22.
    25. Hillebrands J, van den Hurk BM, Klatter FA, et al. Recipient origin of neointimal vascular smooth muscle cells in cardiac allografts with transplant arteriosclerosis. J Heart Lung Transplant JT - The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation, 2000,19:1183-92.
    26. Shimizu K, Sugiyama S, Aikawa M, et al. Host bone-marrow cells are a source of donor intimal smooth- muscle-like cells in murine aortic transplant arteriopathy. Nat Med, 2001,7:738-41.
    27. Grimm, P C, Nickerson, P, Jeffery, J, et al. Neointimal and tubulointerstitial infiltration by recipient mesenchymal cells in chronic renal-allograft rejection. N Engl J Med, 2001,345:93-7.
    28. Lagaaij, E L, Cramer Knijnenburg, G F, van Kemenade, F J, et al. Endothelial cell chimerism after renal transplantation and vascular rejection. Lancet, 2001,357:33-7.
    29. Zernecke A, Schober A, Bot I, et al. SDF-1alpha/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells. Circ Res, 2005,96:784-91.
    30. Sata, M, Tanaka, K, Ishizaka, N, et al. Absence of p53 leads to accelerated neointimal hyperplasia after vascular injury. Arterioscler Thromb Vasc Biol, 2003,23:1548-52.
    31. Sata, M, Sugiura, S, Yoshizumi, M, et al. Acute and chronic smooth muscle cell apoptosis after mechanical vascular injury can occur independently of the Fas-death pathway. Arterioscler Thromb Vasc Biol, 2001,21:1733-7.
    32. Caplice NM, Bunch TJ, Stalboerger PG, et al. Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proc Natl Acad Sci U S A JT - Proceedings of the National Academy of Sciences of the United States of America, 2003,100:4754-9.
    33. Ferrara N. Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res, 2000,55:15-35; discussion 35-6.
    34. Folkman J. Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med, 1995,333:1757-63.
    35. Moulton KS, Vakili K, Zurakowski D, et al. Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. ProcNatl Acad Sci U S A, 2003,100:4736-41.
    36. Moulton KS, Heller E, Konerding MA, et al. Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation, 1999,99:1726-32.
    37. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997,275:964-7.
    38. Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 2000,95:952-8.
    39. Iwami Y, Masuda H, Asahara T. Endothelial progenitor cells: past, state of the art, and future. J Cell Mol Med, 2004,8:488-97.
    40. Schatteman GC, Awad O. In vivo and in vitro properties of CD34+ and CD14+ endothelial cell precursors. Adv Exp Med Biol, 2003,522:9-16.
    41. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res, 1999,85:221-8.
    42. Hristov M, Weber C. Endothelial progenitor cells: characterization, pathophysiology, and possible clinical relevance. J Cell Mol Med, 2004,8:498-508.
    43. Jansen J, Hanks S, Thompson JM, et al. Transplantation of hematopoietic stem cells from the peripheral blood. J Cell Mol Med, 2005,9:37-50.
    44. Fujiyama S, Amano K, Uehira K, et al. Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoattractant protein-1-dependent manner and accelerate reendothelialization as endothelial progenitor cells. Circ Res, 2003,93:980-9.
    45. Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 2001,105:369-77.
    46. Lagasse E, Connors H, Al-Dhalimy M, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med, 2000,6:1229-34.
    47. Sahara M, Sata M, Matsuzaki Y, et al. Comparison of various bone marrow fractions in the ability to participate in vascular remodeling after mechanical injury. Stem Cells, 2005,23:874-8.
    48. Wagers AJ, Sherwood RI, Christensen JL, et al. Little evidence for developmentalplasticity of adult hematopoietic stem cells. Science, 2002,297:2256-9.
    49. Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 2004,428:668-73.
    50. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002,418:41-9.
    51. Sata M, Nagai R. Inflammation, angiogenesis, and endothelial progenitor cells: how do endothelial progenitor cells find their place?. J Mol Cell Cardiol, 2004,36:459-63.
    52. Gehling UM, Ergun S, Schumacher U, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood, 2000,95:3106-12.
    53. Vasa, M, Fichtlscherer, S, Adler, K, et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation, 2001,103:2885-90.
    54. Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res, 2001,89:E1-7.
    55. Shintani S, Murohara T, Ikeda H, et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation, 2001,103:2776-9.
    56. Hill, J M, Zalos, G, Halcox, J P, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med, 2003,348:593-600.
    57. Gulati R, Jevremovic D, Peterson TE, et al. Autologous culture-modified mononuclear cells confer vascular protection after arterial injury. Circulation, 2003,108:1520-6.
    58. Urbich C, Heeschen C, Aicher A, et al. Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation, 2003,108:2511-6.
    59. Gill M, Dias S, Hattori K, et al. Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ Res, 2001,88:167-74.
    60. Rauscher FM, Goldschmidt-Clermont PJ, Davis BH, et al. Aging, progenitor cell exhaustion, and atherosclerosis. Circulation, 2003,108:457-63.
    61. Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest, 2002,109:337-46.
    62. Luttun A, Tjwa M, Moons L, et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med, 2002,8:831-40.
    63. Amano K, Okigaki M, Adachi Y, et al. Mechanism for IL-1 beta-mediated neovascularization unmasked by IL-1 beta knock-out mice. J Mol Cell Cardiol, 2004,36:469-80.
    64. Moldovan NI. Functional adaptation: the key to plasticity of cardiovascular "stem" cells?. Stem Cells Dev, 2005,14:111-21.
    65. Paunescu V, Suciu E, Tatu C, et al. Endothelial cells from hematopoietic stem cells are functionally different from those of human umbilical vein. J Cell Mol Med, 2003,7:455-60.
    66. Liu C, Nath KA, Katusic ZS, et al. Smooth muscle progenitor cells in vascular disease. Trends Cardiovasc Med, 2004,14:288-93.
    67. Deb A, Skelding KA, Wang S, et al. Integrin profile and in vivo homing of human smooth muscle progenitor cells. Circulation, 2004,110:2673-7.
    68. Zalewski A, Shi Y, Johnson AG. Diverse origin of intimal cells: smooth muscle cells, myofibroblasts, fibroblasts, and beyond?. Circ Res, 2002,91:652-5.
    69. Hu Y, Zhang Z, Torsney E, et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest, 2004,113: 1258-65.
    70. Korbling M, Katz RL, Khanna A, et al. Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl J Med, 2002,346:738-46.
    71. Korbling M, Estrov Z. Adult stem cells for tissue repair - a new therapeutic concept?. N Engl J Med, 2003,349:570-82.
    72. LaBarge MA, Blau HM. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell, 2002,111:589-601.
    73. Terada N, Hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature, 2002,416:542-5.
    74. Ying QL, Nichols J, Evans EP, et al. Changing potency by spontaneous fusion. Nature, 2002,416:545-8.
    75. Wang X, Willenbring H, Akkari Y, et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature, 2003,422:897-901.
    76. Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cell fusion. Nature, 2003,422:901-4.
    77. Campbell JH, Tachas G, Black MJ, et al. Molecular biology of vascular hypertrophy. Basic Res Cardiol, 1991,86 Suppl 1:3-11.
    78. Saiura, A, Sata, M, Washida, M, et al. Little evidence for cell fusion between recipient and donor-derived cells. J Surg Res, 2003,113:222-7.
    79. Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A, 2003,100:12313-8.
    80. Matsuo, Y, Imanishi, T, Hayashi, Y, et al. The effect of senescence of endothelial progenitor cells on in-stent restenosis in patients undergoing coronary stenting. Intern Med, 2006,45:581-7.
    81. Scheubel, R J, Zorn, H, Silber, R E, et al. Age-dependent depression in circulating endothelial progenitor cells in patients undergoing coronary artery bypass grafting. J Am Coll Cardiol, 2003,42:2073-80.
    82. Tso C, Martinic G, Fan WH, et al. High-Density Lipoproteins Enhance Progenitor- Mediated Endothelium Repair in Mice. Arterioscler Thromb Vasc Biol, 2006.
    83. Urbich C, Knau A, Fichtlscherer S, et al. FOXO-dependent expression of the proapoptotic protein Bim: pivotal role for apoptosis signaling in endothelial progenitor cells. FASEB, 2005,19:974-6.
    84. Moses, J W, Leon, M B, Popma, J J, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med, 2003,349:1315-23.
    85. Marks, A R. Sirolimus for the prevention of in-stent restenosis in a coronary artery. N Engl J Med, 2003,349:1307-9.
    86. Fukuda D, Sata M, Tanaka K, et al. Potent inhibitory effect of sirolimus on circulating vascular progenitor cells. Circulation, 2005,111:926-31.
    87. 崔斌,黄岚,宋耀明. 冠心病患者循环内皮祖细胞与相关危险因素及冠状动脉病变的关系. 中华心血管病杂志, 2005,33:785-788.
    88. 张坡,黄岚,朱光旭. 小鼠骨髓基质细胞的生物学特性及血管新生能力. 中华心血管病杂志, 2006,34:1021-1025.
    89. Inoue T, Sata M, Hikichi Y, et al. Mobilization of CD34-Positive Bone Marrow-Derived Cells After Coronary Stent Implantation. Impact on Restenosis. Circulation, 2007.
    90. Imanishi T, Kobayashi K, Kuki S, et al. Sirolimus accelerates senescence of endothelial progenitor cells through telomerase inactivation. Atherosclerosis, 2006,189:288-96.
    91. McFadden EP, Stabile E, Regar E, et al. Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet, 2004,364:1519-21.
    92. Miller AM, McPhaden AR, Wadsworth RM, et al. Inhibition by leukocyte depletion of neointima formation after balloon angioplasty in a rabbit model of restenosis. Cardiovasc Res, 2001,49:838-50.
    93. Nagata S, Golstein P. The Fas death factor. Science, 1995,267:1449-56.
    94. Nagata S. Apoptosis by death factor. Cell, 1997,88:355-65.
    95. Sata M, Luo Z, Walsh K. Fas ligand overexpression on allograft endothelium inhibits inflammatory cell infiltration and transplant-associated intimal hyperplasia. J Immunol, 2001,166:6964-71.
    96. Luo Z, Sata M, Nguyen T, et al. Adenovirus-mediated delivery of fas ligand inhibits intimal hyperplasia after balloon injury in immunologically primed animals. Circulation, 1999,99:1776-9.
    97. Sata M, Walsh K. TNFalpha regulation of Fas ligand expression on the vascular endothelium modulates leukocyte extravasation. Nat Med, 1998,4:415-20.
    98. Richardson BC, Lalwani ND, Johnson KJ, et al. Fas ligation triggers apoptosis in macrophages but not endothelial cells. Eur J Immunol, 1994,24:2640-5.
    99. Sata M, Suhara T, Walsh K. Vascular endothelial cells and smooth muscle cells differ in expression of Fas and Fas ligand and in sensitivity to Fas ligand-induced cell death: implications for vascular disease and therapy. Arterioscler Thromb Vasc Biol, 2000,20:309-16.
    100. Yang J, Sato K, Aprahamian T, et al. Endothelial overexpression of Fas ligand decreases atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol, 2004,24:1466-73.
    101. Laufs, U, Werner, N, Link, A, et al. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation, 2004,109:220-6.
    102. Kong, D, Melo, L G, Gnecchi, M, et al. Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries. Circulation, 2004,110:2039-46.
    103. Takamiya, M, Okigaki, M, Jin, D, et al. Granulocyte colony-stimulating factor-mobilized circulating c-Kit+/Flk-1+ progenitor cells regenerate endothelium and inhibit neointimal hyperplasia after vascular injury. Arterioscler Thromb Vasc Biol, 2006,26:751-7.
    104. Cho, H J, Kim, H S, Lee, M M, et al. Mobilized endothelial progenitor cells by granulocyte-macrophage colony-stimulating factor accelerate reendothelialization and reduce vascular inflammation after intravascular radiation. Circulation, 2003,108:2918-25.
    105. Kang HJ, Kim HS, Zhang SY, et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet, 2004,363:751-6.
    106. Jaschke B, Michaelis C, Milz S, et al. Local statin therapy differentially interferes with smooth muscle and endothelial cell proliferation and reduces neointima on a drug-eluting stent platform. Cardiovasc Res JT - Cardiovascular research, 2005,68: 483-92.
    107. Losordo, D W, Isner, J M, Diaz Sandoval, L J. Endothelial recovery: the next target in restenosis prevention. Circulation, 2003,107:2635-7.
    108. Kipshidze, N, Dangas, G, Tsapenko, M, et al. Role of the endothelium in modulating neointimal formation: vasculoprotective approaches to attenuate restenosis after percutaneous coronary interventions. J Am Coll Cardiol, 2004,44:733-9.
    109. Shirota, T, Yasui, H, Shimokawa, H, et al. Fabrication of endothelial progenitor cell (EPC)-seeded intravascular stent devices and in vitro endothelialization on hybrid vascular tissue. Biomaterials, 2003,24:2295-302.
    110. Blindt, R, Vogt, F, Astafieva, I, et al. A novel drug-eluting stent coated with anintegrin-binding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells. J Am Coll Cardiol, 2006,47:1786-95.
    111. Aoki, J, Serruys, P W, van Beusekom, H, et al. Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. J Am Coll Cardiol, 2005,45:1574-9.
    112. Griese, D P, Achatz, S, Batzlsperger, C A, et al. Vascular gene delivery of anticoagulants by transplantation of retrovirally-transduced endothelial progenitor cells. Cardiovasc Res, 2003,58:469-77.
    113. Griese, D P, Ehsan, A, Melo, L G, et al. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: implications for cell-based vascular therapy. Circulation, 2003,108:2710-5.
    114. Schober A, Hoffmann R, Opree N, et al. Peripheral CD34+ cells and the risk of in-stent restenosis in patients with coronary heart disease. Am J Cardiol, 2005,96:1116-22.
    115. Zulli, A, Buxton, B F, Black, M J, et al. CD34 Class III positive cells are present in atherosclerotic plaques of the rabbit model of atherosclerosis. Histochem Cell Biol, 2005,124:517-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700