脂多糖对小鼠骨髓源性平滑肌祖细胞表达CXCR4的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     通过观察脂多糖(1ipopolysaccharides,LPS)对离体小鼠骨髓源性平滑肌祖细胞(vascular smooth progenitor muscle cell,SPC)膜表面基质细胞衍生因子受体表达的影响,探讨SDF-1/CXCR4轴在动脉粥样硬化发生和发展过程中所起的作用,从而探索抗动脉粥样硬化的可能方法。
     方法:
     复苏本实验室已成功分选出的平滑肌祖细胞,并将其传代培养,按照实验设计分别分为六个组:①正常对照组:加入普通培养基;②低剂量组(L组):加入LPS终浓度为1ug/mL,孵育6h;③中剂量组(M组):加入LPS终浓度为10ug/mL,孵育6 h;④高剂量组(H组):加入LPS终浓度为30ug/mL,孵育6 h;⑤12 h组:加入LPS终浓度为10ug/mL,孵育12 h;⑥24 h组:加入LPS终浓度为10ug/mL,孵育24 h。用免疫荧光染色及共聚焦激光扫描显微镜分析和蛋白免疫印迹检测平滑肌祖细胞基质细胞衍生因子受体蛋白表达,逆转录聚合酶链反应检测平滑肌祖细胞基质细胞衍生因子受体mRNA的表达,观察脂多糖对平滑肌祖细胞表达基质细胞衍生因子受体的时效和浓度关系。
     结果:
     免疫荧光染色和共聚焦激光扫描显微镜分析测得的结果与RT-PCR和Western blot检测的结果相一致,未给予脂多糖刺激的平滑肌祖细胞有基础水平的基质细胞衍生因子受体表达,脂多糖是基质细胞衍生因子受体的强诱导物。当刺激时间恒定时(6h),随着刺激浓度的增加,L组和M组的基质细胞衍生因子受体表达逐渐增强,与正常对照组相比均具有显著性差异(P<0.01),H组开始下降。当刺激浓度恒定时(10ug/mL),随着刺激时间的延长,M组和12h组的表达量也逐级增强,与正常对照组相比均具有显著性差异(P<0.01)。在所有组中,12h组表达最强,其mRNA和蛋白水平分别为基础水平的6.10倍和4.76倍,24h组又下降,但仍高于基础水平。
     结论:
     平滑肌祖细胞能表达低水平的CXCR4,动脉粥样硬化的危险因子脂多糖能够使平滑肌祖细胞的CXCR4水平上调,其作用在一定范围内呈浓度时间依赖性,提示SDF-1/CXCR4轴可能参与了平滑肌祖细胞在血管损伤部位的归巢。
Aims:
     Through observing the effects of 1ipopolysaccharides on exsomatize mice spinal marrow non-odontogenic smooth progenitor muscle cell membrane surface stroma cells derived factor receptor expression, to discuss the role that SDF-1/CXCR4 axis plays in the developing process of atherosclerosis formation, thus to seek the possible ways of anti atherosclerosis.
     Methods:
     Using enhancement type P green-fluorescing cells plasmid recombinant to select the smooth progenitor muscle cell out from the mice marrow mesenchyma stem cells , then subculture them and divide them into six groups as the experiment’s design:①Normal control group: add ordinary culture medium;②Low dosage group(group L): final concentration of the LPS is 1ug/mL, incubating for 6h;③Medium dosage group(group M):final concentration of the LPS is 10ug/mL, incubating for 6h;④High dosage group(group H): final concentration of the LPS is 30ug/mL, incubating for 6h;⑤group12h: final concentration of the LPS is 10ug/mL, incubating for 12h;⑥group24h: final concentration of the LPS is 10ug/mL, incubating for 24h. Use Western blotting and immunofluorescence staining and confocal laser scanning microscope to detect smooth progenitor muscle cell membrane surface stroma cells derived factor receptor protein expression and to use reverse transcription polymerase chain reaction to detect smooth progenitor muscle cell membrane surface stroma cells derived factor receptor mRNA’s expression, thus to observe the relations between lipopolysaccharide’s aging and concentration when the smooth progenitor muscle cell is expressing stroma cells derived factor receptor.
     Results:
     The immunofluorescence staining and confocal laser scanning microscope method have got the identical results with RT-PCR and Western blot detection, those smooth muscle progenitor cells that haven’t been given lipopolysaccharide stimulation have stroma cells derived factor receptor expression of foundation level, lipopolysaccharide is a strong inducer of stroma cells derived factor receptor. When the stimulus time is invariable(6h), as the increasing of the stimulus concentration, stroma cells derived factor receptor expression of group L and group M strengthened gradually, and has significant difference with the normal control group(P<0.01), but group H began to decrease. When the stimulus concentration is invariable(10ug/mL), as the extend of the time, the expression volume of group M and group 12h increased as well, and has significant difference with normal control group(P<0.01). In all the groups, group 12h has the strongest expression, and it’s mRNA and protein level are 6.10 times and 4.76 times as the foundation level respectively, the group 24h decreased, while still higher than the foundation level.
     Conclusion:
     Smooth muscle progenitor cells can express CXCR4 of low level, Atherosclerotic risk factors can lipopolysaccharide smooth muscle progenitor cells increases the level of CXCR4, the effect present concentration and time-dependent, SDF-1/CXCR4 axis involved in the smooth muscle progenitor cells vascular injury in the homing site.
引文
1. Dam(?)s JK, Waehre T, Yndestad A, Ueland T, Müller F, Eiken HG, Holm AM, Halvorsen B, Fr?land SS, Gullestad L, Aukrust P. Stromal cell-derived factor-1alpha in unstable angina: potential anti-inflammatory and matrix-stabilizing effects. Circulation. 2002 Jul 2; 106(1):36-42.
    2. Abi-Younes S, Sauty A, Mach F, Sukhova GK, Libby P, Luster AD. The stromal cell-derived factor-1 chemokine is a potent platelet agonist highly expressed in atherosclerotic plaques. Circ Res. 2000 Feb 4; 86(2):131-8.
    3. Schober A, Knarren S, Lietz M, Lin EA, Weber C. Crucial role of stromal cell-derived factor-1alpha in neointima formation after vascular injury in apolipoprotein E-deficient mice. Circulation. 2003 Nov 18; 108(20):2491-7. Epub 2003 Oct 27.
    4. Chen S, Tuttle DL, Oshier JT, Knot HJ, Streit WJ, Goodenow MM, Harrison JK. Transforming growth factor-beta1 increases CXCR4 expression, stromal-derived factor-1alpha-stimulated signalling and human immunodeficiency virus-1 entry in human monocyte-derived macrophages. Immunology. 2005 Apr;114(4):565-74.
    5. Rivière C, Subra F, Cohen-Solal K, Cordette-Lagarde V, Letestu R, Auclair C, Vainchenker W, Louache F. Phenotypic and functional evidence for the expression of CXCR4 receptor during megakaryocytopoiesis. Blood. 1999 Mar 1; 93(5):1511-23.
    6. Honczarenko M, Douglas RS, Mathias C, Lee B, Ratajczak MZ, Silberstein LE. SDF-1 responsiveness does not correlate with CXCR4 expression levels of developing human bone marrow B cells. Blood. 1999 Nov 1; 94(9):2990-8.
    7. Kowalska MA, Ratajczak J, Hoxie J, Brass LF, Gewirtz A, Poncz M, Ratajczak MZ. Megakaryocyte precursors, megakaryocytes and platelets express the HIV co-receptor CXCR4 on their surface: determination of response to stromal-derived factor-1 by megakaryocytes and platelets. Br J Haematol. 1999 Feb; 104(2):220-9.
    8. Dar A, Kollet O, Lapidot T. Mutual, reciprocal SDF-1/CXCR4 interactions betweenhematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp Hematol. 2006 Aug; 34(8):967-75.
    9. Zhou J, Herring BP. Mechanisms responsible for the promoter-specific effects of myocardin. J Biol Chem. 2005 Mar 18; 280(11):10861-9. Epub 2005 Jan 17.
    10. Hegner B, Weber M, Dragun D, Schulze-Lohoff E. Differential regulation of smooth muscle markers in human bone marrow-derived mesenchymal stem cells. J Hypertens. 2005 Jun; 23(6):1191-202.
    11. Solway J, Seltzer J, Samaha FF, Kim S, Alger LE, Niu Q, Morrisey EE, Ip HS, Parmacek MS. Structure and expression of a smooth muscle cell-specific gene, SM22 alpha. J Biol Chem. 1995 Jun 2; 270(22):13460-9.
    12.余俊,阮秋蓉.利用Psm220α-EGFP-1质粒重组体从小鼠间充质干细胞中分选平滑肌祖细胞中华病理学杂志2007; 36(12): 825-831
    13. Caplice NM。Bunch TJ,Stalboerger PG,et a1. Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantati0n[J].Proc Natl Acad Sci USA,2003:100(8) 4754—4759.
    14.孟寒,阮秋蓉,瞿智玲,黄冠,余俊.小鼠骨髓间充质干细胞体外诱导向平滑肌样细胞分化过程中myocardin的表达中国动脉硬化杂志2008; 16(1): 13-16
    15. Kashiwakura Y, Katoh Y, Tamayose K, Konishi H, Takaya N, Yuhara S, Yamada M, Sugimoto K, Daida H. Isolation of bone marrow stromal cell-derived smooth muscle cells by a human SM22alpha promoter: in vitro differentiation of putative smooth muscle progenitor cells of bone marrow. Circulation. 2003 Apr 29; 107(16):2078-81. Epub 2003 Apr 21.
    16. Ross JJ, Hong Z, Willenbring B, Zeng L, Isenberg B, Lee EH, Reyes M, Keirstead SA, Weir EK, Tranquillo RT, Verfaillie CM. Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells. J Clin Invest. 2006 Dec; 116(12):3139-49. Epub 2006 Nov 9.
    17. Shimizu K, Sugiyama S, Aikawa M, Fukumoto Y, Rabkin E, Libby P, Mitchell RN.Host bone-marrow cells are a source of donor intimal smooth- muscle-like cells in murine aortic transplant arteriopathy. Nat Med. 2001 Jun; 7(6):738-41.
    18. Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, Hirai H, Makuuchi M, Hirata Y, Nagai R. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med. 2002 Apr; 8(4):403-9.
    19. Tanaka K, Sata M, Hirata Y, Nagai R. Diverse contribution of bone marrow cells to neointimal hyperplasia after mechanical vascular injuries. Circ Res. 2003 Oct 17; 93(8):783-90. Epub 2003 Sep 18.
    20. Hirschi KK, Majesky MW. Smooth muscle stem cells. Anat Rec A Discov Mol Cell Evol Biol. 2004 Jan; 276(1):22-33.
    21. Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med. 2002 May 6; 195(9):1145-54.
    22. Zernecke A, Schober A, Bot I, von Hundelshausen P, Liehn EA, M?pps B, Mericskay M, Gierschik P, Biessen EA, Weber C. SDF-1alpha/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells. Circ Res. 2005 Apr 15; 96(7):784-91. Epub 2005 Mar 10.
    23. Schober A. Chemokines in vascular dysfunction and remodeling. Arterioscler Thromb Vasc Biol. 2008 Nov; 28(11):1950-9. Epub 2008 Sep 25.
    24. Vila-Coro AJ, Rodríguez-Frade JM, Martín De Ana A, Moreno-Ortíz MC, Martínez-A C, Mellado M. The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. FASEB J. 1999 Oct; 13(13):1699-710.
    25. Ganju RK, Brubaker SA, Meyer J, Dutt P, Yang Y, Qin S, Newman W, Groopman JE. The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways. J Biol Chem. 1998 Sep 4; 273(36):23169-75.
    26. Schober A, Karshovska E, Zernecke A, Weber C. SDF-1alpha-mediated tissue repairby stem cells: a promising tool in cardiovascular medicine? Trends Cardiovasc Med. 2006 May; 16(4):103-8.
    27. Psenák O. Stromal cell-derived factor 1 (SDF-1). Its structure and function Cas Lek Cesk. 2001 Jun 21;140(12):355-63.
    28. Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996 May 10;272(5263):872-7.
    1. Caplice NM, Doyle B (2005) Vascular progenitor cells: origin and mechanisms of mobilization, differentiation, integration, and vasculogenesis. Stem Cells Dev. 14, 122–139.
    2. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967.
    3. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92, 362–367.
    4. Friedrich EB, Walenta K, Scharlau J, Nickenig G, Werner N (2006) CD34–/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circ. Res. 98, e20–e25.
    5. Kim SY, Park SY, Kim JM, Kim JW, Kim MY, Yang JH, Kim JO, Choi KH, Kim SB, Ryu HM (2005) Differentiation of endothelial cells from human umbilical cord blood AC133-CD14+ cells. Ann. Hematol. 84, 417–422.
    6. Hillebrands JL, Klatter FA, van den Hurk BM, Popa ER, Nieuwenhuis P, Rozing J (2001) Origin of neointimal endothelium and alpha-actin-positive smooth muscle cells in transplant arteriosclerosis. J. Clin. Invest. 107, 1411–1422.
    7. Hillebrands JL, Onuta G, Rozing J (2005) Role of progenitor cells in transplant arteriosclerosis. Trends Cardiovasc. Med.15, 1–8.
    8. Simper D, Wang S, Deb A, Holmes D, McGregor C, Frantz R, Kushwaha SS, Caplice NM (2003) Endothelial progenitor cells are decreased in blood of cardiac allograft patients with vasculopathy and endothelial cells of noncardiac origin are enriched in transplant atherosclerosis. Circulation 108, 143–149.
    9. Saiura A, Sata M, Hirata Y, Nagai R, Makuuchi M (2001) Circulating smooth muscleprogenitor cells contribute to atherosclerosis. Nat. Med. 7, 382–383.
    10.Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, Hirai H, Makuuchi M, Hirata Y, Nagai R (2002) Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat. Med.8, 403–409.
    11.Hu Y, Davison F, Ludewig B, Erdel M, Mayr M, Url M, Dietrich H, Xu Q(2002a) Smooth muscle cells in transplant atherosclerotic lesions are originated from recipients, but not bone marrow progenitor cells. Circulation 106, 1834–1839.
    12.Han CI, Campbell GR, Campbell JH (2001) Circulating bone marrow cells can contribute to neointimal formation.J. Vasc. Res. 38, 113–119.
    13.Atkinson C, Horsley J, Rhind-Tutt S, Charman S, Phillpotts CJ, Wallwork J, Goddard MJ (2004) Neointimal smooth muscle cells in human cardiac allograft coronary artery vasculopathy are of donor origin. J. Heart Lung Transplant.23, 427–435.
    14.Caplice NM, Bunch TJ, Stalboerger PG, Wang S, Simper D, Miller DV, Russell SJ, Litzow MR, Edwards WD (2003) Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proc. Natl. Acad. Sci. USA 100, 4754–4759.
    15. Hu Y, Zhang Z, Torsney E, Afzal AR, Davison F, Metzler B, Xu Q (2004) Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J. Clin. Invest. 113, 1258–1265.
    16. Laufs U, Werner N, Link A, Endres M, Wassmann S, Jurgens K, Miche E, Bohm M, Nickenig G (2004) Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 109, 220–226.
    17.Gill M, Dias S, Hattori K, Rivera ML, Hicklin D, Witte L, Girardi L, Yurt R, Himel H, Rafii S (2001) Vascular trauma induces rapid but transient mobilization of VEGFR2(+) AC133(+) endothelial precursor cells. Circ. Res. 88, 167–174.
    18.Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP (1998) Evidence for circulatingbone marrow-derived endothelial cells. Blood 92, 362–367.
    19. Massa M, Rosti V, Ferrario M, Campanelli R, Ramajoli I, Rosso R, De Ferrari GM, Ferlini M, Goffredo L, Bertoletti A, Klersy C, Pecci A, Moratti R, Tavazzi L (2005) Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood 105, 199–206.
    20. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109, 625–637.
    21. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297, 1186–1190.
    22. Aicher A, Heeschen C, Dimmeler S (2004) The role of NOS3 in stem cell mobilization. Trends Mol. Med. 10, 421–425.
    23. Urao N, Okigaki M, Yamada H, Aadachi Y, Matsuno K, Matsui A, Matsunaga S, Tateishi K, Nomura T, Takahashi T, Tatsumi T, Matsubara H (2006) Erythropoietin-mobilized endothelial progenitors enhance reendothelialization via Akt-endothelial nitric oxide synthase activation and prevent neointimal hyperplasia. Circ. Res. 98, 1405–1413.
    24. Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, Rutten H, Fichtlscherer S, Martin H, Zeiher AM (2001) HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J. Clin. Invest. 108, 391–397.
    25. Hristov M, Zernecke A, Bidzhekov K, Liehn EA, Shagdarsuren E, Ludwig A, Weber C (2007) Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury. Circ. Res. 100, 590–597.
    26.Jevon M,Dorling A,Hornick P. I(2008)Progenitor cells and vascular disease. CellProlif. 41 (Suppl. 1), 146–164
    27. Ceradini DJ, Gurtner GC (2005) Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue.Trends Cardiovasc. Med. 15, 57–63.
    28. Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, Rovner A, Ellis SG, Thomas JD, Dicorleto PE, Topol EJ, Penn MS (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362, 697–703.
    29. Smadja D, Bieche I, Uzan G, Bompais H, Muller L, Boisson-Vidal C, Vidaud M, Aiach M, Gaussem P (2005) PAR-1 Activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arterioscler. Thromb. Vasc. Biol. 25, 2321–2327.
    30. Deb A, Skelding KA, Wang S, Reeder M, Simper D, Caplice NM (2004) Integrin profile and in vivo homing of human smooth muscle progenitor cells. Circulation 110, 2673–2677.
    31. Walter DH, Rittig K, Bahlmann FH, Kirchmair R, Silver M, Murayama T, Nishimura H, Losordo DW, Asahara T, Isner JM (2002) Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation 105, 3017–3024.
    32. Blindt R, Vogt F, Astafieva I, Fach C, Hristov M, Krott N, Seitz B, Kapurniotu A, Kwok C, Dewor M, Bosserhoff AK, Bernhagen J, Hanrath P, Hoffmann R, Weber C (2006) A novel drug-eluting stent coated with an integrin-binding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells. J. Am. Coll. Cardiol. 47, 1786–1795.
    33. Bauer SM, Bauer RJ, Liu ZJ, Chen H, Goldstein L, Velazquez OC (2005) Vascular endothelial growth factor-C promotes vasculogenesis, angiogenesis, and collagen constriction in three-dimensional collagen gels. J. Vasc. Surg. 41, 699–707.
    34. Kiec-Wilk B, Polus A, Grzybowska J, Mikolajczyk M, Hartwich J, Pryjma J,Skrzeczynska J, Dembinska-Kiec A (2005) beta-Carotene stimulates chemotaxis of human endothelial progenitor cells. Clin. Chem. Lab. Med. 43, 488–498.
    35. Wright DE, Bowman EP, Wagers AJ, Butcher EC, Weissman IL. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines. J Exp Med. 2002 May 6; 195(9):1145-54.
    36. Tanaka K, Sata M, Hirata Y, Nagai R. Diverse contribution of bone marrow cells to neointimal hyperplasia after mechanical vascular injuries. Circ Res. 2003 Oct 17; 93(8):783-90. Epub 2003 Sep 18.
    37. Hirschi KK, Majesky MW. Smooth muscle stem cells. Anat Rec A Discov Mol Cell Evol Biol. 2004 Jan; 276(1):22-33.
    38. Zernecke A, Schober A, Bot I, von Hundelshausen P, Liehn EA, M?pps B, Mericskay M, Gierschik P, Biessen EA, Weber C. SDF-1alpha/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells. Circ Res. 2005 Apr 15; 96(7):784-91. Epub 2005 Mar 10.
    39. Kodali R, Hajjou M, Berman AB, Bansal MB, Zhang S, Pan JJ, Schecter AD (2006) Chemokines induce matrix metalloproteinase-2 through activation of epidermal growth factor receptor in arterial smooth muscle cells. Cardiovasc. Res. 69, 706–715.
    40. Buetow BS, Tappan KA, Crosby JR, Seifert RA, Bowen-Pope DF (2003) Chimera analysis supports a predominant role of PDGFRbeta in promoting smooth-muscle cell chemotaxis after arterial injury. Am. J. Pathol. 163, 979–984.
    41.叶仁高陆再英内科学第六版北京:人民卫生出版社2005.263
    42. Chironi G, Walch L, Pernollet MG, Gariepy J, Levenson J, Rendu F, Simon A (2007) Decreased number of circulating CD34 (+) KDR (+) cells in asymptomatic subjects with preclinical atherosclerosis. Atherosclerosis 191, 115–120.
    43. Pellegatta F, Bragheri M, Grigore L, Raselli S, Maggi FM, Brambilla C, Reduzzi A, Pirillo A, Norata GD, Catapano AL (2006) In vitro isolation of circulating endothelialprogenitor cells is related to the high density lipoprotein plasma levels. Int. J. Mol. Med. 17, 203–208.
    44. Tso C, Martinic G, Fan WH, Rogers C, Rye KA, Barter PJ (2006) High-density lipoproteins enhance progenitor-mediated endothelium repair in mice. Arterioscler. Thromb. Vasc. Biol. 26, 1144–1149.
    45. Schober A. Chemokines in vascular dysfunction and remodeling. Arterioscler Thromb Vasc Biol. 2008 Nov; 28(11):1950-9. Epub 2008 Sep 25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700