随机结构有限元法及可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程结构受生产加工及装配等工艺的影响,其材料性能、结构尺寸、边界条件等具有随机性,实际工作状态下的载荷与设计规定也有偏差。传统的确定性分析方法未能定量考虑这些随机因素的影响,经证明不够科学。因此,发展将确定性有限元法与随机分析理论结合的随机有限元法,分析在这些随机因素影响下复杂结构的响应,以失效概率评价结构的安全性就显得尤为重要。本文针对工程结构中的随机因素,开展了线性与非线性,静力和动力问题的随机有限元法,及以此为基础的结构可靠性研究。主要包括以下几方面的研究工作
     1 随机有限元法研究
     采用Cholesky分解变换或Gram-Schmidt特征正交化变换,将相关随机变量变换为独立的随机变量,再利用Monte Carlo抽样模拟,特别是采用Gram-Schmidt特征正交化变换法可大大缩减随机变量的数目,达到减少计算量的目的。
     研究用谱描述的平稳与非平稳随机过程的三角级数模拟方法,对非平稳随机过程采用确定性函数与平稳随机过程乘积表示。
     结合随机变量的Monte Carlo模拟法,随机场的局部平均法与随机过程的三角级数模拟法,用均值、方差、相关长度及功率谱等,可有效地描述随机变量、随机场、随机过程,及同时具有场与过程随机的变量。
     回顾了线弹性、弹塑性及大变形几何非线性的静力、动力有限元法的基本方程及求解过程。在线性随机方程Neumann级数求解方法的基础上,结合非线性有限元分析方法,进一步研究了非线性随机方程的Neumann级数与增量逐步求解技术的结合的求解方法。该方法可用于求解非线性静力和动力随机问题,其简化形式也可分析线性静力和动力随机问题。证明了Neumann级数求解非线性随机问题的收敛性,同时给出了改进收敛性和计算效率的方法。算例表明了该方法具有较高精度和良好的应用潜力。
     2结构可靠性研究
     在最大熵法中需求解的随机变量的矩约束积分方程组具有高度非线性,通常的非线性方程组的求解方法不能收敛。为此,引入同伦算法,有效求解该积分方程组。通过理论分布的拟合实例表明最大熵法具有高精度,是结构可靠性分析中的一种良好的分析方法。
     基于功能随机过程的极小化变换和首次超越概率,研究结构动力可靠性,
    
    通过完全Moflte Carlo模拟比较表明,这两种方法具有较好的精度和较高的计算
    效率。
     研究了串联、并联及混合联接系统的可靠性分析方法。其中,在系统的动
    力可靠性分析中引入极值变换法,可大大降低分布函数的维数;提出处理系统
    可靠性中的高维累积分布函数的数值积分的Monte Carlo模拟法,使问题得到简
    化,计算分析表明该方法十分有效。研究结构系统可靠性分析的截止枚举法,
    通过截止枚举法可有效的识别对结构系统可靠性较大影响的主要失效模式,从
    而简化系统可靠性计算。研究随机场的相关长度对系统可靠性分析的影响,指
    出一般的结构可靠性分析问题在本质上是系统问题,只有在随机场相关长度相
    对于结构尺寸很大和结构有应力集中等少数情况下,按点可靠性分析简化才有
    较为符合实际的结果,而当前采用随机有限元法进行结构可靠性分析时往往忽
    视了该问题。
    3结构随机性与可靠性分析的程序研制
     研制了结构随机性与可靠性分析的程序系统 SDA,该系统有 Von Mises、
    Tresca、Mohr Coulomb和 D。ekerPrager等四种材料模型,可进行确定性、随
    机性和可靠性分析。主要有以下几个方面的分析能力。
     确定性分析。结构线弹性、弹塑性及大变形几何非线性的静力、动力响应
    分析。
     随机性分析和可靠性分析。随机分析方法:Neurnann随机有限元法和Monte
    car。随机有限元法;可考虑的随机因素有:材料随机性,弹性模量、泊松比、
    屈服应力、密度、阻尼、硬化系数、强度等随机场模型;载荷随机性方面,随
    机场和(或)过程模型;几何随机性,坐标的扰动随机场模型。SDA可求解结
    构线弹性、弹塑性及大变形几何非线性的静力、动力问题结构响应的均值、方
    差及点可靠性和系统可靠性。
Owing to the effects of manufacturing and assembling, material properties > sizes and boundaries of engineering structures are usually stochastic, actually applied loads are also different with planned ones. In traditional determinate method these stochastic factors are neglected originally, which has been proved not to be scientific enough. Therefore, it is especially important to develop stochastic finite element method (SFEM). SFEM combines finite element method with random theories to analyze the random responses of complicated structures and judge the security of structures in terms of failure probability. In this paper stochastic finite element method and SFEM-based reliability evaluation are developed for linear, nonlinear, static and dynamic problems. The research work is mainly concerned with the following three aspects.
    1. SFEM
    At first, Cholesky factorization method and Gram-Schmidt orthogonalization method is used to covert these correlated random variables into independent ones respectively; then, Monte Carlo sampling is applied to simulate them. The two methods are convenient to generate correlated random variables. Especially, Gram-Schmidt orthogonalization method can reduce the number of simulated random variables and hence cut down the computational amount.
    Trigonometric series is used to simulate stationary, non-stationary, Gaussian and non-Gaussin stochastic processes by spectral representation in which the non-stationary stochastic processes are expressed as the product of determinate functions and stationary stochastic processes.
    Combined with Monte Carlo sampling technique, local average discretization of random field and trigonometric series representation of stochastic processes are used to describe random variables, random fields, random processes. These random fields or random processes vary with spatial position and temporal course in aspects of means, variances, correlated lengths and power spectral densities.
    FEM governing equations analyzing linear elastic, elastoplastic, static, dynamic and geometric nonlinear problems are introduced. Then, based on the solving method of linear SFEM equations by Neumann series, the solving method of nonlinear SFEM equations by Neumann expansion combined with increment-solving technique step by step is presented. This method can be used to solve both linear and nonlinear static and dynamic problems. Astringency of Neumann series expansion to solve nonlinear problems is proved and a method to improve the convergence and enhance efficiency is presented. Examples show that the method has higher accuracy and application potential.
    2. Structural reliability
    It is necessary to solve the integral equations with moment constraints of random variables in maximum entropy method of reliability analysis. These equations are
    
    
    severe nonlinear and their solutions cannot be obtained by common solving methods of nonlinear equations. Cognate method is introduced effectively to solve them. The solutions obtained by maximum entropy method are consistent with corresponding theoretic distribution, which shows maximum entropy method is a sort of good method for reliability analysis.
    Based on the extreme transform method and first-cross reliability, dynamic reliability of structures is analyzed. Compared with Monte Carlo method, the two methods have good accuracy and efficiency.
    System reliability analysis methods are investigated for structures in series, parallel, and series-parallel. Among them, the extreme value transform method is presented to cut down the dimension of distribution function. Monte Carlo method is proposed to solve the integral of the multi-dimension probabilistic density function, and related example shows that the method leads to good accuracy and efficiency. Truncated enumeration method (TEM) is presented to identify primary failure modes, which seriously affect system reliability, and to reduce computational amount. Affects of correlated lengths of random fields are investigated. It is emphasized that reliability of general structu
引文
1.王光远,陈树勋.工程结构系统软设计理论及应用.北京:国防工业出版社,1996
    2.杨松林.工程模糊论方法及其应用.北京:科学出版社,1996
    3.蔡开元,文传源,张明廉.模糊可靠性理论中的基本概念.航空学报,14(7),1993:A387-A398
    4.李杰.随机结构系统—分析与建模.北京:科学出版社,1996
    5.陈虬,刘先斌.随机有限元法及其工程应用.成都:西南交通大学出版社,1993
    6.秦权.随机有限元及其进展 Ⅰ.随机场的离散和反应矩的计算.工程力学.11 (4),1994:1-10
    7.秦权,随机有限元及其进展 Ⅱ.可靠度随机有限元及随机有限元的应用,工程力学.12(1),1995:1-9
    8.刘宁,吕泰仁.随机有限元法及其工程应用.力学进展,25(1),1995:114-126
    9.郭书祥,冯元生,吕震宙.随机有限元方法与结构可靠性.力学进展.30(3),2000:343-350
    10.赵雷,陈虬,随机有限元动力分析的研究进展.力学进展.29(1),1999:9-18
    11. Soong T T and Bogdanoff J. On the natural frequencies of a disordered linear chain of n degree of freedom, Int. J. Mech. SCI., 5, 1963:237-265
    12. Boyce E W and Goodwin B E. Random transverse vibration of elastic beams, SIAM Joumal, 12(3), 1964:613-629
    13. Collins J D and Thompson W T. The eigenvalue problem for structural systems with uncertain parameters, AIAA J. 7(4), 1969:642-648
    14. Shinozuka M and Astill J. Random eigenvalue problems in structural mechanics ,AIAA J., 10(4), 1972:456-462
    15. Hart G C and Collins J D. The treatment of randomness in finite element modeling, SAE Shock and Vibrations Symp. Sec. Of Automative Engrs., 1972:2509-2519
    16. Hasselman P C and Hart G C. Model analysis of random structural systems. Proc. ASCE. EM., 98(2), 1972:561-586
    17. Chen P C and Soroka W W. Impulse response of a dynamic system with statistics, Joumal of Sound and Vibration, 31 (3), 309-314
    18. Combou B. Application of first order uncertainty analysis in the finite element method in linear elasticity, Proc. 2nd Int. Conf. on Appli. of Statis. And Probab. In Soil and Structural Eng., London., 1975
    19. Dendrou B. and Houstis, E., An inference finite element model for field problems, Appl. Math. Modeling, 1,1978:109-114
    
    
    20. Hisada T and Nakagiri S. Stochastic finite element method developed for for structural safety and reliability. Proc. 3rd Int. Conf. on Structural Safety and Reliability. Trondneim, Norway. 1981:395-408
    21. Hisada T and Nakagiri S. Stochastic finite element analysis of uncertain structural systems. Proc. 4rd Int. Conf. on Structural Safety and Reliability. Melbourne, Australia. 1982:133-138
    22. Hisada T Nakagiri S and Nagasaki T. Stochastic finite element analysis of uncertain intrinsic stresses caused structural misfits. 7th Int. Conf. on Structural Mechanics in Ractor Technology. Chicago, 1983
    23. Nakagiri S and Hisada T and Nagasaki.T. Stochastic stress analysis of assembled structure, ASEM, 5th Int. Conf. on Pressure Vessel Technology Vol. 1, design and Anaslysis, 1984:197
    24. Nakagiri S and Hisada T. A note on stochastic finite element method(part6) -An application in problem of uncertain elastic foundation, Seisan-Kenkyu, 35(l),1983:20-23
    25. Hisada T and Nakagiri S. Role of the stochastic finite element method in structural safety and reliability. Proc. 4rd Int. Conf. on Structural Safety and Reliability. Melbourne, Australia. 1982:133-138
    26. Nakagiri S and Hisada T. A note on stochastic finite element method(part7) -Time history analysis of structural vibration with uncertain proportional damping, Seisan-Kenkyu, 35(5) ,1983:232-235
    27. Nakagiri S, Hisada T and Toshimitsu K. Stochastic time history analysis of structural vibration with uncertain damping, ASME, Probabilistic Structural Analysis, PVP. 93, 1984:109
    28. Handa K and Anderson K. Application of finite element methods in the statistical analysis of structures. Proc. 3rd Int. Conf. on Structural Safety and Reliability. 1981:409-417
    29. Baecher G B and Ingra T S. Stochastic FEM in settlement predictions, J. Geotech. Engrg. Div., 107(4) , 1981:449-463
    30. Liu W K, Belytschko T and Mani A. Random filed finite elements. Int. J. Numer. Methods Engrg., 23(10) ,1988:1831-1845
    31. Liu P L and Kiureghian A D. F. E. Reliability of geometrically nonlinear uncertain structures. J. Engrg. Mech. ASCE, 117(8) , 1991:1806-1825
    32. Ryu Y S et al, Structural design sensitivity analysis of nonlinear response, Computers & Structure. 21(1/2) , 1985:245-255
    33. Haldar A and Zhou Y, Reliability of geometrically nonlinear PR frames. J. Engrg. Mech., ASCE, 118(10) , 1992:2148-2155
    34. Hisada T and Noguchi H. Development of a nonlinear stochastic FEM and its application. 5th Int. Conf. on Structural Safety and Reliability, Australia, 1989:1097-1104
    35. 刘宁.基于三维弹塑性随机有限元的结构体系可靠度计算.南京:河海大学 博士学位论文.1994
    
    
    36.刘宁,卓家寿.三维弹塑性随机有限元的迭代计算方法研究.河海大学学报,24(1),1996:1-8
    37. Liu W K. et al. Probabilistic finite elements in nonlinear dynamics. Compt. Mech. Appl. Mech. Engrg., 56(1),1986:61-81
    38. Liu W K et al. Transient probabilistic systems, Computer Method in Appl. & Engrg., 67, 1988:27-54
    39.赵雷.随机参数结构动力分析方法及地震可靠度研究.成都:西南交通大学博士学位论文.1996
    40.赵雷,陈虬,不确定结构非线性动力分析的增量随机有限元法.工程力学,1996(增刊)
    41. Liu W K, Ong J S and Uras R A. Finite element stabilization matrices — a unification approach, Comput. Methods. Appl. Mech. Eng., 53, 1985:13-46
    42. Liu W K. Bestefield G and Belytschko T. Variational approach to probabilistic finite element, ASCE J. Engrg. Mech., 114(12), 1988:2115-2133
    43. Hien T D and Kleiber M. Finite element analysis based on stochastic Hamilton variational principle. Compt. And Struct., 37(6), 1990:893-902
    44.刘先斌.随机有限元的误差估计及基于随机场规范展开的有限元法.西南交通大学硕士学位论文,1991
    45.刘先斌,陈虬.随机变分原理和随机有限元法,计算力学理论与应用.北京:科学出版社.1992:360—363
    46.刘先斌.随机力学系统的分叉行为变分方法研究.成都:西南交通大学博士学位论文.1995
    47,张汝清,高行山.随机变量的变分原理及有限元法.应用数学和力学,13(5),1992:383—388
    48.高行山,张汝清.有限变形弹性理论随机变量的变分原理及有限元法.应用数学和力学,15(10),1994:855—862
    49.赵雷,陈虬.结构动力分析的随机变分原理及随机有限元法.计算力学学报.15(3),1998:263-274
    50. Bellman R. On the foundations of a theory stochastic variation processes, Proc. of Symposium on Applied Mathematics, No. 12, 1988:2115-2133
    51. Rice S O. Mathematical analysis of random noise. Selected Papers on Noise and Stochastic Processes. (Ed, N Wax), Dover, 1954:133-294
    52. Housner G W and Jennings. Generation of artificial earthquakes. EMD journal, American Society of Civil Engineer 90. 1964:113-150
    53. Goldberg J E, Bogdanoff J L and Sharpe D R. The response of simple non-linear structure to a random disturbance of earthquake type. Bulletin of the Seismological Society of America, 54, 1964:263-276
    54. Shinozuka M. Simulation of multivariate and multi-dimensional random processes. Journal of the Acoustical Society of America, 49, 1971:357-367
    55. Shinozuka M, and Jan C-M, Digital simulation of random processes and its application. 25(1),1972:111-128
    56. Shinozuka M. and Lenoe E., A probabilistic model for spatial distribution of
    
    material properties. Engng. Fracture Mech. 8, 1976:217-227
    57. Shinozuka M. Digital simulation of random processes in engineering mechanics with the aid FFT technique. University of Waterloo Press, Waterloo, 1974:277-286
    58. Shinozuka M. Monte Carlo solution of structural dynamics, Int. J. Comput. And Struct., 2, 1972:37-40
    59. Shinozuka M and Wen Y K. Monte Carlo solution of Nonlinear vibrations, AIAA J. 10(1) , 1972:37-40
    60. Shinozuka M. Probabilistic modeling of concrete structures, ASCE J. 8, 1972:1433-1451
    61. Shinozuka M and Deodatis G, Simulation of stochastic processes by spectral representation. Appl. Mech. Rev., ASCE,44(4) , 1991:191-203
    62. Shinozuka M and Deodatis G, Simulation of multi-dimensional Gaussian stochastic fields by spectral representation. Appl. Mech. Rev., ASCE,44(4) , 1996:29-53
    63. Shinozuka M and Deodatis G. Response variability of stochastic element systems. J. Eng. Mech., ASCE. 114(8) , 1988:1335-1345
    64. Yang J-N. Simulation of random envelope processes. J Sound Vibration, 25(1) , 1972:73-85
    65. Yang J-N. On the normality and accuracy of simulated random processes. J Sound Vibration, 26(3) , 1973:417-428
    66. Gersch W and Yonemoto J. Synthesis of multi-variate random vibration systems: A two-stage least squares ARMA model approach, J Sound Vib, 52(4) , 1977:553-565
    67. Polhemus N W and Cakmak A S. Simulation of earthquake ground motions using ARMA models, Earthquake Eng. Struct. Dyn., 9(4) , 1981:343-354
    68. Spanos P-TD. ARMA algorithms for ocean spectral modeling, J Energy Resources Tech., ASME, 105(3) , 1983:300-309
    69. Samaras E, Shinozuka M and Tsurui A. ARMA representation of random processes, J Eng. Mech., ASCE, 111(3) , 1985:449-461
    70. Mignolet M P. and Spanos P-TD. Recursive simulation of stationary multi-variate random processes. J. Appl. Mech., ASME, 54(3) , Part I, 1987:674-680, Part E, 1987:681-687
    71. Kozin F. Auto-regressive moving-average models of earthquake records, J. Prob. Eng. Mech., 3(2) , 1988:58-63
    72. Kareem A and Li Y. Simulation of multi-variate stationary and non-stationary random processes: A recent development. Proc. Of 1st Int. Conf. on Comput. Stochastic Mech., Corfu, Greece, Elsevier Appl. Sci., 1991:533-544
    73. Li Y and Kareem A. Simulation of multi-variate random processes: Hybrid DFT and digital filtering approach, J. Eng. Mech. ASCE, 119(5) , 1993a: 1078-1098
    74. Elishakoff I. Possible limitations of probabilistic methods in engineering. Appl. Mech. Rev. 53(2) ,2000:19-36
    
    
    75. Yamazaki F and Shinozuka M. Simulation of stochastic fields by statistical preconditioning, J. Eng. Mech., ASCE. 116(2), 1990:268-287
    76. Ramadan O and Novak M. Simulation of spatially incoherent random ground motions, J. Eng Mech., ASCE. 119(5), 1994:997-1016
    77. Ramadan O and Novak M. Simulation of multidimensional anisotropic ground motions, J. Eng. Mech., ASCE. 120(8), 1994:1773-1785
    78. Gurley K and Kareem A. On the analysis and simulation of random processes utilizing higher order spectra and wavelet transforms, Proc. of 2nd int. Conf. on Comput. Stochastic Mech., Athens, Greece, Balkema, 1995:315-324
    79. Adomian G. Linear stochastic operators, Rev. Modern Phys., 35, 1963:185-207
    80. Yamazaki F, Shinozuka M and Dasgupa G. Neumann expansion for stochastic element analysis, J. Eng. Mech., ASCE. 114(8), 1988:1335-1345
    81. Vanmarcke E. Random Field: Analysis and Synthesis, MIT Press, 1983
    82.朱位秋,任永坚.随机场的局部平均与随机有限元法.航空学报,7(6),1986:604-611
    83.朱位秋,任永坚.基于随机场局部平均的随机有限元法.固体力学学报,4,1988:261-271
    84. Zhu W Q, Ren Y J and Wu W Q, Stochastic FEM based on local averages of random vector fields. J. Engng. Mech., ASCE, 118(3), 1992:496-511
    85. Chen Qiu et al. stochastic finite element analysis of local average random field. Acta Mech. Solida Sinica. 3(2), 1990
    86.陈虬,李贤兴.等参局部平均随机场的随机有限元分析.西南交通大学学报,3,1991:67-72
    87.陈虬,戴志敏.等参局部平均随机场和Neumann随机有限元法.计算结构力学及其应用,8(1),1991:397-402
    88. Der Kiureghian A and Ke J. Stochastic finite element method in structural reliability. Probabilistic Engrg. Mech. 3(2),1988:83-91
    89. Liu W K et al. Random field finite elements, Int. J. Numer. Methods Eng. 23(10). 1986:1831-1845
    90. Takada T and Shinozuka M. Local integration method in stochastic finite element analysis, Proc. Int. Conf. Struct. Safety and Reliability, 1989:1072-1080
    91. Deodatis G. Bounds on response variability stochastic finite element systems. J Engrg. Mech., 116(3), 1990:565-565
    92. Sun T C. A finite element method for random differential equations with random coefficients, SIAM, J. Numer. Anal., 16(6), 1979:1019-1035
    93. Jenson H and Iwan W D. Response variability in structural dynamics, Earthquake Engineering and Structural Dynamics, 20, 1991:949-959
    94. Ghanem R G and Spanos P D. Polynomial chaos in stochastic finite element, J. Appl. Mech., 57, 1990:197-202
    95. Spanos P D et al, Stochastic finite element expansion for random media. J. Engng. Mech. ASCE, 115(5), 1989:1035-1053
    96. Ghanem R G and Spanos P D. Stochastic finite elements: A spectral approach,Springer-Verlag, New York, 1991
    
    
    97.李杰.随机结构分析的扩阶系统方法.(Ⅰ)扩阶系统方程,地震工程与工程振动.15(3),1995:111-118
    98.李杰.随机结构分析的扩阶系统方法.(Ⅱ)结构动力分析,地震工:程与工程振动.15(4),1995:27-35
    99.李杰.复合随机振动的扩阶系统方法.力学学报,28(1),1996:66-75
    100.李杰,魏星.随机结构动力分析的递归聚缩算法.固体力学学报,17(3),1996:263-267
    101.陈铁云,周义先.随机拟协调有限元.计算结构力学及其应用.7(1),1990:17-24
    102.董聪,杨庆雄.现代结构系统可靠性理论发展概况及若干应用.力学进展.23(2),1993:206-213
    103.欧进萍.国外动力可靠性评估.武汉建材学院学报,2,1983
    104.何水清,王善.结构可靠性分析与设计.北京:国防工业出版社,1993
    105.赵国藩.工程结构可靠性理论与应用.大连:大连理工大学出版社,1996
    106.吴世伟,结构可靠度分析.北京:人民交通出版社,1988
    107. Hasofer A M and Lind N C, An exact invafiant second-moment code format, J. Eng. Mech. Div. ASCE, 100(1),1974:111-121
    108. Rackwitz R and Fiessler B, Structural rehability under combined random load sequences. Computers and Structures, 9, 1978:489-494
    109. Wu Y T and Wirsching P H. Application of advanced reliability methods to local strain fatigue analysis. NASA-CR_168198, 1983
    110. Abdo T and Rackwitz R. A new beta-point algorithm for large time-invariant and time variant reliability problems. Reliability and Optimization of Structural System'90, Springer-Verleg, 1990:1-11
    111. Guan X L and Melchers R E. Multitangent-plane surface method for reliability calculation. J. Eng. Mech., 123(10), 1997:996-1002
    112. Faravelli L. A response surface method approach for reliability analysis. J. Eng. Mech., ASCE, 115(12), 1989
    113. Liu Y W and Moses F A. A sequential response surface method and its application in the reliability analysis of aircraft structural system. Structural Safety. 16(112), 1994
    114. Comell C. A Bounds on the reliability of structural systems. J. Struct. Division, ASCE, 93, 1967
    115. Ditlevsen O, Narrow reliability bounds for structural system. J. Struct. Mech. 7(4), 1979:453-472
    116. Vamnarcke E. Matrix formulation of reliability analysis and reliability-based design, Computer & Struct, 3 1973:757
    117. Tichy M and Vorlicak. Safety of reinforced concrete framed structures. Proceedings of the ASCE-ACI International Symposium, 1974
    118.李云贵,赵国藩.结构体系可靠度的近似计算方法.第二届全国工程结构可靠性会议论文集。重庆,1989:9
    
    
    119. 马永欣,普聿修.结构体系可靠度的简化近似计算,第三届全国工程结构可 靠性会议论文集.南京,1992:142
    120. Hohenbichler M and Rackwitz R. First order concepts in system reliability. Struct. Safety,1 1983:177
    121. Hohenbichler M and Rackwitz R. Reliability systems under imposed uniform strain. J. Engrg. Mech. ASCE, 101(4) , 1983
    122. Ang A H-S and Tang W H. Probability concept in engineering planning and design. John Wiley & Sons, New York, 1984
    123. Ang A H-S and Abdelnour J. Analysis of activity network under uncertainty. J. Engrg. Mech. Div., ASCE, 101(4) , 1975:373-387
    124. Breitung K. Asymptotic approximation for mutinormal integrals. J. Engrg. Mech. Div., ASCE, 110(3) , 1984:357-366
    125. Ditlevsen O. Taylor expansion of series system reliability. Engrg. Mech. Div. ASCE, 110(3) , 1984:293
    126. Ruben H. An asymptotic expansion for the multivariate normal distribution and mill's ration. J. Res. Nat. Bur. Stand. Sect B, 68B(1) , 1964:3-33
    127. Moses F. System reliability development in structural Engineering. Struct. Safety. 1(1) , 1982:3-13
    128. Thoft-Christensen P and Murotsu Y. Application of structural systems reliability thoery. Berlin: Springer-Verlag, 1986
    129. 索夫特-克里斯坦森,贝克M J.结构可靠性理论及其应用.北京:科学出版 社,1988
    130. Melchers R E and Tang L K. Dominant failure models in stochastic structural systems. Struct. Safety. 1(1) , 1982
    131. Murotsu Y et al. Stress analysis and failure prevention. Int. Conf. on Reliability. San Francisco, USA, 1980:81-93
    132. Feng Y S. Enumerating significant fail mode of structural system by using criterion methods. Computers & Structures, 50(5) , 1988:1153-1157
    133. Feng Y S and Moses F A. Method of structural optimization based on structural system reliability. J. Struct. Mech., 14(4) , 1986:437-453
    134. Kahn H. Application of Monte Carlo, AECU-3259, 1954
    135. Ditlevsen O et al. Direction simulation in Gaussian processes, DCAMM report No. 359, Technical University of Denmark, Sept. 1987
    136. Bjerager P. Probability integration by direction simulation. J. Engrg. Mech., 114(8) , 1988: 1285-1302
    137. Mori Y and Ellingwood B R. Time-dependent system reliability analysis adaptive importance sampling. Structural Safety, 12(1) , 1993:59-73
    138. Wu Y T et al. Advanced reliability methods for probabilistic structural analysis. Proc. Of ICOSSAR'89
    139. Ziha K. Descriptive sampling in structural safety. Structural Safety. 17(1) , 1995:33-41
    140. 刘长虹,陈虬,吕震宙,郑长卿.用于结构可靠性分析中的系统描述性抽样
    
    法.计算力学学报,17(2),2000:214—217
    141.吕震宙,岳珠峰.结构可靠性计算中的描述性抽样法.力学与实践,20(5),1998:513-520
    142.程耿东,蔡文学.结构可靠度计算的近似重要性抽样方法及其应用.工程力学,14(2),1997:1-7
    143. Rice S O. Mathematical analysis of random noise. Bell System Technical Journal, 23, 1944:282-332, 24, 1945:52-162
    144. Middleton D. An introduction to statistical communication theory. New York: McGraw-Hill, 1960
    145. Wu Y T, Millwater H R and Cruse T A. Advanced probabilistic structural analysis methods for implicit performance functions. AIAA J., 32(8), 1994:1717-1723
    146. Wu Y T. Computational method efficient structural reliability and reliability sensitivity analysis. AIAA J., 32(8), 1994:1717-1723
    147. Ranganthan R. Generation of dominant models and reliability analysis of frames. Struct. Safety, 4, 1987
    148. Courant R. Variational method for solution of problems of equilibrium and vibrations. Bull. Am. Math. Soc. 49. 1943:1~23
    149. Clough R W. The finite element method in plane stress analysis. Pro. 2nd ASME Conference on Electromic Computation, Pittsburgh. Pa., Sept. 1960
    150.王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1995
    151.何君毅,林祥都.工程结构非线性问题的数值解法.北京:国防工业出版社,1994
    152.张汝清,詹先义.非线性有限元分析,重庆大学出版社,1990
    153. Owen D R J and Hinton E. Finite elements in plasticity theory and practice. Prinerige Press limited, 1980
    154. Hibbitt H D, Marcal P V and Rice J R. Finite element formulation for problems of large strain and large displacement. Int J Solids and Structures, 1970:1069-1080
    155. Haisler W E and Stricklin J A. Nonlinear finite element analysis including higherorder strain energy terms, AIAA J, 8(6), 1970:1158-1159
    156. Bathe K J and, Ramm E and Wilson E L. Finite element formulation for large deformation dynamic analysis. International Journal for Numerical Methods in Engineering, Vol. 9, 1975, 353~386
    157.朱位秋,随机振动.北京:科学出版社.1992
    158.欧进萍,王光远.结构随机振动,北京:高等教育出版社.1998
    159.星谷胜.随机振动分析.北京:地震出版社,1977
    160.徐钟济.蒙特卡罗方法.上海:上海科学技术出版社,1985
    161. Righetti R and Williams K H. Finite element analysis of random soil media. J. Geotch. Eng. Div., ASCE, 114, 1988:59-75
    162.朱位秋,吴伟强.基于随机场局部平均的随机有限元法在实特征值中的应用,航空学报,10(2),1989:20-26
    
    
    163.陈虬,戴志敏.随机有限元—最大熵法.工程力学,9(3),1992:1-7
    164. Rosenblueth E. Point estimate for probability moment. In: Proceedings of National Academic Science. USA, 1975
    165.李云贵,赵国藩.结构可靠度的四阶矩分析法.大连理工大学学报,32(4),1992
    166.李庆扬,关治,白峰杉.数值计算原理.北京:清华大学出版社,2000
    167. Liu P L and Liu K G. Selection of random finite mesh in finite element reliability. J. Eng. Mech. ASCE, 119(4), 1993:667-680
    168. Freudenthal A M. The Safety of Structures, Trans. Am. Soc. C.E., vol. 112, 1947:125-180
    169.王珍应,吕文林,潘欣.复合随机因素下航空发动机结构的可靠性分析.航空动力学报.10(3).1995:259-262
    170.王彬.熵与信息.西安:西北工业大学出版社,1990
    171.陈云鹏.矩阵论.西北工业大学出版社,2000
    172.徐士良.FORTRAN常用算法程序集.北京:清华大学出版社,1995
    173.J H威尔金森.代数特征值问题.北京:科学出版社,1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700