500米口径射电望远镜FAST结构安全及精度控制关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
FAST(Five-hundred-meter Aperture Spherical radio Telescope)是500米口径球冠状射电望远镜,是世界上正在计划及建造中最大的单体射电望远镜,开创了建造巨型射电望远镜的新模式。反射面结构是FAST最主要部分,其本质上是一个轻型的跨度超大、形式复杂、形状实时可调的高精度索网结构。历经13年的预研究,在结构方案、形态优化、变位策略等方面取得了丰硕成果。然而在前期研究中未曾深入研究的,但是对FAST将来的建造、运行以及维护有着重要影响的结构安全与精度控制关键问题,仍亟待研究和解决。这些问题的研究不仅在FAST项目建设中有着迫切的需求,而且在类似巨型射电望远镜结构中也几乎处于空白阶段,没有参考依据,因而有着广泛应用前景,具有明确的工程应用价值和理论创新意义。本文进行了如下几方面的工作:
     1、FAST日照非均匀温度场模拟及效应分析
     综合考虑了太阳辐射作用、阴影遮挡、空气对流换热等多种影响因素,建立了FAST真实环境下的结构温度场数值模型,其中,提出了复杂地形下FAST反射面结构日照阴影分析方法;采用时程分析方法,计算了FAST反射面结构日照非均匀温度场,在此基础上,分析了日照温度场对不同位置抛物面的面形拟合均方根RMS(Root Mean Square)的影响规律。结果表明该影响不容忽视,依据结构特性和结构日照温度场特性,提出了日照作用下反射面面形精度RMS值的有效调控方法。
     2、FAST结构参数敏感性分析
     总结分析了目前各种参数敏感性分析方法的优缺点,针对FAST反射面结构特点,提出基于随机抽样和相关性的参数敏感性分析方法,其中,引入了拉丁超立方抽样方法和线性相关系数显著性检验方法,解决了敏感性分析时由于大规模结构参数的随机抽样和矩阵运算而导致的计算困难问题;依据实际情况建立了各结构参数的概率统计模型,应用本文方法进行了大量计算,得出了各结构参数随机误差对反射面面形精度RMS值的影响规律。依据敏感性分析结果,提出了结构参数精度控制建议。
     3、FAST结构变位疲劳性能研究
     针对FAST长时巡天跟踪观测和随机独立跟踪观测的工作方式,对结构变位疲劳寿命需求进行了分析,提出了长期变位疲劳应力的计算方法,并基于MATLAB和ANSYS软件编制了相应程序,提出了疲劳全寿命应力历程的等效简化方法,编制了随机、变幅应力历程的实时雨流计数程序,基于S-N试验曲线和Miner线性累积损伤准则,对结构变位疲劳寿命进行了数值计算,获得了疲劳寿命统计分布和疲劳危险区域。研究表明:考虑安全系数2.0后,FAST结构变位疲劳寿命仍满足要求。最后进行了钢绞线和钢拉杆的疲劳试验。
     4、FAST结构故障诊断与安全评定
     依据FAST反射面结构特性及其主动变位工作方式,提出结构失效故障的三种基本模式,并针对性地提出了结构故障诊断方法,实现了结构故障位置的在线诊断和失效单元的离线诊断,针对反映结构安全状态的两个主要指标——结构剩余疲劳寿命与结构静力安全储备,提出了结构安全评定方法;基于MATLAB和ANSYS软件编制相应程序,进行了数值模拟分析,验证了本文所提方法的有效性。
     5、FAST结构健康监测系统的开发与集成
     针对FAST反射面结构特点,提出了系统构成、功能和监测内容;对各类传感器进行优化选型和测点优化布置,对数据采集硬件合理选型并提出了传输布线方案;综合利用LabVIEW、MATLAB、ANSYS、Delphi等软件平台,编制结构变位分析、结构故障诊断与安全评定等的核心模块,开发设计了FAST结构健康监测集成软件系统,实现了其自动化、可视化功能。其中,监测系统已在FAST 30m模型张拉成形试验中得到应用。
Five-hundred-meter aperture spherical riado telescope (FAST) is expected to be the largest telescope among those telescopes in the plan or under construction in the world. FAST pioneers a new model for constructing the giant telescope. The reflector structure as the main part of FAST is essentially a lightweight and complex cable-net structure with a super-long span and a real-time adjustable shape. Though the results in structure scheme, shape-state optimization, shape-changing strategy and etc, have been achieved during the 13-year preliminary research. However, the key issues of structural safety and accuracy control is still not studied in-depth in the previous research, and obviously, these issues will have a significant impact on the construction, running and maintenance of FAST. The research on these issues is urgent for the construction of FAST, and also has a broad application in other similar giant radio telescopes because it is nearly at blank stage for those structures. Therefore, the research is of obviously engineering applicatoin value and theoretical innovation significance, and needs in-depth study. The main contents in this paper are shown as following.
     1. Simulation and effect analysis of non-uniform solar temperature field of FAST
     The finite element model of FAST in the actual environment for structural temperature field analysis is established, with the factors of solar radiation, shadow in surrounding environment, periodic air temperature and etc taken into consideration at the same time. The non-uniform solar temperature field is computed using the transient analysis method, and subsequently, the RMS values of fitting of the reflecting surface for working paraboloids in different locations of the spherical cap under sunshine are analyzed. The results show that the impact of the non-uniform solar temperature field on RMS values should not be ignored. Finally the control method of RMS value under sunshine is proposed according to the structural features and characteristics of the temperature field.
     2. Parameter sensitivity analysis of FAST structure
     The advantages and disadvantages of various methods for parameter sensitivity analysis are summarized and analyzed. According to the characteristics of FAST reflector structure, the paremeter sensitivity analysis method based on random sampling and correlation is proposed, and in order to solve the calculation difficulty induced by random sampling and matrix operations of large-scale parameters, the LHS sampling method and correlation coefficient significance test method, are introduced. The probability-0statistic models of FAST structural parameters are established based on practical situation, and the influence of structural parameter random errors on RMS value is obtained by a great lot of computations. Finally, suggestions for accuracy control of structural parameters are presented.
     3. Shape-changing fatigue analysis of FAST structure
     The requirement analysis of fatigue life is carried out according to the working mode of longtime sky survey and independent random tracing observation, and the computation method of shape-changing fatigue stresses is proposed and programmed based on sofewares of MATLAB and ANSYS. And then the simiplication method of life-cycle stress course is put forward, the realtime rainflow counting method for random and variable amplitude stress course is programmed. Subsequently, the structural fatigue life is calculated by numerical simulation based on S-N test curve and Miner linear cumulative damage method, and the statistical distribution of fatigue life and fatigue risk zone are obtained. Finally, the fatigue property of strand cable and steel rod is tested.
     4. Fault diagnosis and safety assessment of FAST structure
     Three basic modes of structural failure are presented according to the structural features and the active shape-changing work mode, and the method for structural fault diagnosis is proposed and studied to realize the on-line diagnosis of structural fault region and off-line diagnosis of failure members. The method for structural safety assessment is proposed, which is aimed at the two leading indicators of structural long-term safety, the residual fatigue life and the static safety stock. Then the two methods are programmed and validated by numerical simulation.
     5. Development and integration of structural health monitoring system of FAST
     The frame, functions and monitored variables of the system are determined according to the characteristics of FAST reflector structure. The optimal lectotype and location of sensors are analyzed, the hardware for acquisition is selected in reason, and the transmission wiring scheme is designed. The integrated software system for health monitoring is developed with the functions of automatization and visualization, synthetically using softwares of LabVIEW, MATLAB, ANSYS, Delphi and etc, and wherein the core modules for active shape-changing analysis, structural fault diagnosis and safety assessment and ect are programmed. The monitoring system has already been applied in the stretch forming test of FAST 30m model.
引文
1 500米口径球面射电望远镜(FAST)项目初步设计书.中国科学院国家天文台, 2008, 11.
    2 Y. H. Qiu. A Novel Design for Giant Radio Telescopes with an Active Spherical Main Reflector. Chinese Journal of Astronomy and Astrophysics. 1998, 22(3): 361~368.
    3 R. D. Nan, G. X. Ren. Adaptive Cable-Mesh Reflector for the FAST. Acta Astronomica Sinica. 2003, 44(2):13~18.
    4 R. D. Nan, B. Peng. A Chinese Concept for the 1km2 Radio Telescope. Acta Astronautica. 2000, 46(10):667~675.
    5南仁东. 500 m球反射面射电望远镜FAST.中国科学G辑. 2005, 35(5): 449~466.
    6 R. D. Nan, Y. P. Nie, B. Peng, et al. Site Surveying for the LT in Guizhou Province of China. Proceedings of the LTWG-3 & W-STR, Beijing, 1996:59~66.
    7贵州省平塘县大窝凼FAST候选台址综合工程地质初勘报告.贵州地质工程勘察院. 2006, 9.
    8钱宏亮. FAST主动反射面支承结构理论与试验研究.哈尔滨工业大学博士学位论文. 2007, 5.
    9 F. Fan, H. L. Qian, S. Z. Shen. The Design of the Cable-net Structure for Supporting the Reflector of FAST. IASS-APCS, Beijing, 2006:136~137.
    10钱宏亮,范峰,沈世钊等. FAST反射面支承结构整体索网方案研究.土木工程学报. 2005, 38(12):18~23.
    11 H. L. Qian, F. Fan, S. Z. Shen. Form Selection and Optimization of FAST Back-structure. Proceedings of Second International Conference on Modelling and Simulation, Vol.7, Manchester, England, UK, May, 2009:306~311.
    12金晓飞. FAST 30m模型健康监测系统研究.哈尔滨工业大学硕士学位论文. 2006, 6.
    13 R. J. Goldstein, E. R. G. Eckert, W. E. Lbele, et al. Heat Transfer– a Review of 2000 Literature. Heat and Mass Transfer. 2002, 45(14):2853~2957.
    14 Christian A. Gueymard. The Sun’s Total and Spectral Irradiance for Solar Energy Applications and Solar Radiation Models. Solar Energy. 2004, 76(4):423~453.
    15 C. Shen, Y. L. He, Y. W. Liu, et al. Modelling and simulation of solar radiation data processing with simulink. Simulation Modelling Practice and Theory. 2008, 16(7):721~735.
    16肖勇全,王菲.太阳辐射下建筑围护结构的动态热平衡模型及实例分析.太阳能学报. 2006, 27(3):270~273.
    17孔祥谦.有限单元法在传热学中的应用.科学出版社, 1998.
    18李红梅,金伟良,叶甲淳等.建筑围护结构的温度场数值模拟.建筑结构学报. 2004, 25(6):93~98.
    19张丹,张之颖.结构温度场数值模拟.第16届全国结构工程学术会议论文集(第Ⅲ册).太原, 2007:485~490.
    20边广生.空间结构温度效应理论分析及试验研究.东南大学硕士学位论文. 2004, 3.
    21张淑杰.空间可展桁架结构的设计与热分析.浙江大学博士学位论文. 2001, 6.
    22 Y. Bai, Y. J. Shi, Y. Q. Wang. Finite Element Analysis on Temperature Field of Long-span Steel Structure under Fire Conditions. Proceedings of the Fourth International Conference on Advances in Steel Structures, 2005:1035~1040.
    23朱敏波.星载大型可展开天线热分析技术研究.西安电子科技大学博士学位论文. 2007, 4.
    24 L. Yang, H. L. Guo, X. J. Li. Numerical Simulation on Antenna Temperature Field of Complex Structure Satellite in Solar Simulator. Acta Astronautica. 2009, 65(7-8):1098~1106.
    25 W. C. Jiang, J. M. Gong, S. D. Tu, et al. Modelling of Temperature Field and Residual Stress of Vacuum Brazing for Stainless Steel Plate-fin Structure. Journal of Materials Processing Technology. 2009, 209(2):1105~1110.
    26 N. Liu, B. Hu, Z. W. Yu. Stochasitic Finite Element Method for Random Temperature in Concrete Structures. International Journal of Solids and Structures. 2001, 38(38-39):6965~6983.
    27马庆芳等.实用热物理性质手册.中国农业机械出版社, 1986.
    28 G. A. Bonan. A Computer Model of the Solar Radiation, Soilmoisture, and Soil Thermal Regimes in Boreal Forests. Ecological Modelling. 1989, 45(4):275~306.
    29 M. L. Gennusa, A. Nucara B, M.Pietrafesa, et al. A Model for Managing andEvaluating Solar Radiation for Indoor Thermal Comfort. Solar Energy. 2007, 81(5):594~606.
    30 F.凯尔别克著,刘兴法等译.太阳辐射对桥梁结构的影响.中国铁道出版社, 1981.
    31 Ebrahim Hajidavalloo, Mohamad Mohamadianfard. Effect of Sun Radiation on the Thermal Behavior of Distribution Transformer. Applied Thermal Engineering. 2010, 30(10):1133~1139.
    32彭友松,强士中,李松.哑铃形钢管混凝土拱日照温度分布研究.中国铁道科学. 2006, 27(5):71~75.
    33 L. F. Romero, S. Tabik, J. M. Vías, et al. Fast Clear-sky Solar Irradiation Computation for Very Large Digital Elevation Models. Computer Physics Communications. 2008, 178(11):800~808.
    34 M. Hadavand, M. Yaghoubi. Thermal Behavior of Curved Roof Buildings Exposed to Solar Radiation and Wind Flow for Various Orientations. Applied Energy. 2008, 85(8):663~679.
    35 M. Elbadry, A. Ghali. Temperature Variations in Concrete Bridges. Journal of Structural Engineering, ASCE. 1983, 109(10):2355~2374.
    36徐崇刚,胡远满,常禹等.生态模型的灵敏度分析.应用生态学报. 2004, 15(6):1056~1062.
    37 J. C. Helton. Uncertainty and Sensitivity Analysis Techniques for Use in Performance Assessment for Radioactive Waste Disposal. Reliability Engineering and System Safety. 1993, 42(23):327~367.
    38 R. L. Iman, J. C. Helton. A Comparison of Uncertainty and Sensitivity Analysis Techniques for Computer Models. Report NUREGICR-3904, SAND 84~1461. Sandia National Laboratories, Albuquerque, New Mexico, 1985.
    39 J. C. Helton, J. D. Johnson, C. J. Sallaberry, et al. Survey of Sampling-Based Methods for Uncertainty and Sensitivity Analysis. Reliability Engineering and System Safty. 2006, 91(10-11):1175~1209.
    40 J. C. Helton, F. J. Davis, J. D. Johnson. A Comparison of Uncertainty and Sensitivity Analysis Results Obtained with Random and Latin Hypercube Sampling. Reliability Engineering and System Safty. 2005, 89(3):305~330.
    41 A. Vikhansky, M. Kraft. A Monte Carlo Method for Identification and Sensitivity Analysis of Coagulation Processes. Journal of Computational Physics. 2004, 200(1):50~59.
    42 I. M. Sobol. Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates. Mathematics and Computers in Simulation. 2001, 55(1-3):271~280.
    43 T. Homma, A. Saltelli. Importance Measures in Global Sentitivity Analysis of Nonlinear Models. Reliability Engineering and System Safty. 1996, 52(1):1~17.
    44 M. Crosetto, S. Tarantola, A. Saltelli. Sensitivity and Uncertainty Analysis in Spatial Modelling Based on GIS. Agriculture, Ecosystems and Environment. 2000, 81(1):71~79.
    45 C. G. Xu, G. Z. Gertner. Uncertainty and Sensitivity Analysis for Models with Correlated Parameters. Reliability Engineering and System Safty. 2008, 93(10):1563~1573.
    46袁志发,周静芋.多元统计分析.科学出版社, 2002.
    47 G. Manache, C. S. Melching. Identification of Reliable Regression- and Correlation-Based Sensitivity Measures for Importance Ranking of Water-quality Model Parameters. Environmental Modelling and Software. 2008, 23(5):549~562.
    48王海燕,杨方廷,刘鲁.标准化系数与偏相关系数的比较与应用.数量经济技术经济研究. 2006, 23(9):150~155.
    49 M. Sanayei, G. R. Imbaro. Structural Model Updating Using Experimental Static Measurements. Journal of Structural Engineering, ASCE. 1997, 123(6):792~798.
    50 Y. C. Lu, S. Mohanty. Sensitivity Analysis of a Complex, Proposed Geologic Waste Disposal System Using the Fourier Amplitude Sensitivity Test Method. Reliability Engineering and System Safety. 2001, 72(3):275~291.
    51 J. C. Helton, F. J. Davis. Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems. Reliability Engineering and System Safty. 2003, 81(1):23~69.
    52任重. ANSYS实用分析教程.北京大学出版社, 2003.
    53 R. L. Iman, W. J. Conover. Small Sample Sensitivity Analysis Techniques for Computer Models, with an Application to Risk Assessment. Communications in Statistics. 1980, 56(17):1749~1842.
    54 D. J. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures. Florida: CRC Press, 2004.
    55沈世钊,徐崇宝,赵臣等.悬索结构设计.中国建筑工业出版社, 1997.
    56卢家森,张其林,杨联萍等.建筑结构用钢丝束拉索的抗力分项系数研究.同济大学学报. 2005, 33(2):149~152.
    57戴公连,吕海燕.预应力钢绞线弹性模量及应变修正系数的分析.长沙铁道学院学报. 1993, 11(1):27~32.
    58邹春明,张恩炜,毛爱菊.预应力钢绞线弹性模量的确定.金属制品. 1996, 22(4):46~49.
    59杨伟军,赵传智.土木工程结构可靠度理论与设计.人民交通出版社, 1999.
    60李舜酩.机械疲劳与可靠性设计.科学出版社, 2006.
    61张发明,赵维炳,刘宁等.预应力锚索锚固荷载的变化规律及预测模型.岩石力学与工程学报. 2004, 23(1):39~43.
    62 F. Cluni, V. Gusella, F. Ubertini. A Parametric Investigation of Wind-induced Cable Fatigue. Engineering Structures. 2007, 29(11):3094~3105.
    63 M. Raoof, T. J. Davies. Axial Fatigue Design of Sheathed Spiral Strands in Deep Water Applications. International Journal of Fatigue. 2008, 30(12):2220~2238.
    64 M. Raoof, I. Kraincanic. Determination of Wire Recovery Length in Steel Cables and Its Practical Applications. Computers and Structure. 1998, 68(5):445~459.
    65 J. L. Bogdanoff, F. Kozin. Effect of Length on Fatigue Life of Cables. Jouranl of Engineering Mechanics, ASCE. 1987, 113(6):925~940.
    66马林.国产1860级低松弛预应力钢绞线疲劳性能研究.铁道标准设计. 2000, 20(5):21~23.
    67 M. Raoof. Axial Fatigue of Multilayered Strands. Jouranl of Engineering Mechanics, ASCE. 1990, 116(10):2083~2099.
    68 M. Raoof, Y. P. Huang. Axial and Free-Bending Analysis of Spiral Strands Made Simple. Jouranl of Engineering Mechanics, ASCE. 1992, 118(2):2335~2351.
    69 T. H. T. Chan, Z. X. Li, J. M. Ko. Fatigue Analysis and Life Prediction of Bridges with Structural Health Monitoring Data—Part II: Application. International Journal of Fatigue. 2001, 23(1):55~64.
    70 Z. X. Li, T. H. T. Chan, J. M. Ko. Fatigue Analysis and Life Prediction of Bridges with Structural Health Monitoring Data—Part I: Methodology and Strategy. International Journal of Fatigue. 2001, 23(1):45~53.
    71 S. Kaci. Experimental Study of Mechanical Behavior of Composite Cables for Prestress. Jouranl of Engineering Mechanics, ASCE. 1995, 121(6):709~716.
    72廖红卫.钢丝绳的疲劳行为特征与损伤机理研究.武汉理工大学博士学位论文. 2006, 12.
    73 R. E. Taylor, E. R. Jefferys. Variability of Hydrodynamic Load Predictions for aTension Leg Platform. Ocean Engineering. 1986, 13(5): 449~490.
    74赵少汴.概率疲劳设计方法与设计数据.机械设计. 2004, 4(4):8~10.
    75兰成明.平行钢丝斜拉索全寿命安全评定方法研究.哈尔滨工业大学博士学位论文. 2009, 2.
    76倪侃.随机疲劳累积损伤理论研究进展.力学进展. 1999, 29(1):43~65.
    77 W. X. Yao. Stress Field Intensity Approach Prediction Fatigue Life. International Journal of Fatigue. 1993, 15(3):233~245.
    78査小鹏.高耸结构风致疲劳安全预警的理论和方法.武汉理工大学博士学位论文. 2008, 10.
    79翁恩豪.空间网格结构整体疲劳分析的研究.浙江大学硕士学位论文. 2005, 2.
    80 C. H. McInnes, P. A. Meehan. Equivalence of Four-point and Three-point Rainflow Cycle Counting Algorithms. International Journal of Fatigue. 2008, 30(3):547~559.
    81 R. J. Anthes. Modified Rainflow Counting Keeping the Load Sequence. International Journal of Fatigue. 1997, 19(7):529~535.
    82 S. D. Downing, D. F. Socie. Simple Rainflow Counting Algorithms. International Journal of Fatigue. 1982, 4(1):31~40.
    83 M. Alani, M. Raoof. Eeffect of Mean Axial Load on Axial Fatigue Life of Spiral Strands. International Journal of Fatigue. 1997, 19(1):1~11.
    84刘士林,王似舜.斜拉桥设计.人民交通出版社, 2006.
    85宋新民,李金良.抽样调查技术(第2版).中国林业出版社, 2007.
    86 A. AHS, M. WH. Practical Reliability Basis for Structural Fatigue. Preprint No.2494, ASCE National Structural Engineering Conference, New Orleans, 1975.
    87 A. G. Paton, N. F. Casey, J. Fairbairn, W. M. Banks. Advances in the Fatigue Assessment of Wire Ropes. Ocean Engineering. 2001, 28(5):491~518.
    88李惠,欧进萍.斜拉桥结构健康监测系统的设计与实现I:系统设计.土木工程学报. 2006, 39(4):39~44.
    89 H. N. Li, D. S. Li, G. B. Song. Recent Applications of Fiber Optic Sensors to Health Monitoring in Civil Engineering. Engineering Structures. 2004, 26(11):1647~1657.
    90 D. C. Kammer. Sensor Placement for On-orbit Modal Identification and Correlation of Large Space Structures. Journal of Guidance, Control and Dynamics. 1991, 14(2):251~258.
    91李国强,沈黎元,罗永锋.索结构形状确定的逆迭代法.建筑结构. 2006, 36(4):74~76.
    92 W. B. Kratzig, Y. S. Peteryna. Structural Damage and Life-time Estimates by Nonlinear FE Simulation. Engineering Structures. 2005, 27(12):1726~1740.
    93王新岐.斜拉桥破损诊断技术的研究.天津大学硕士学位论文. 2001, 12.
    94蔡晶,吴智深,李兆霞.静力荷载作用下结构参数识别及状态评估的统计分析.工程力学. 2004, 21(6):76~83.
    95陶澍.应用数理统计方法.中国环境科学出版社, 1994.
    96张德然.统计数据中异常值的检验方法.统计研究. 2003, 5(5):53~55.
    97陈忡生.基于Matlab7.0的统计信息处理.湖南科学技术出版社, 2005.
    98雷英杰,张善文,李续武等. MATLAB遗传算法工具箱及应用.西安电子科技大学出版社, 2005.
    99孙鸿敏,李宏男.土木工程结构健康监测研究进展.防灾减灾工程学报. 2003, 23(3):92~98.
    100 S. Bhalla, Y. W. Yang, J. Zhao, et al. Structural Health Monitoring of Underground Facilities-Technological Issues and Challenges. Tunnelling and Underground Space Technology. 2005, 20(5):487~500.
    101 W. Y. Liu, B.P. Tang, Y. H. Jiang. Status and Problems of Wind Turbine Structural Health Monitoring Techniques in China. Renewable Energy. 2010, 35(7):1414~1418.
    102孙汝蛟,孙利民,孙智. FBG传感技术在大型桥梁健康监测中的引用.同济大学学报(自然科学版). 2008, 36(2):149~154.
    103 D. Pines, A. E. Aktan. Status of Structural Health Monitoringof Long-span Bridges in the United States. Progress of Structure Engineering and Materials. 2002, 4(4):372~380.
    104 X. Zhao, S. F. Yuan, Z. H. Yu, W. S. Ye, J. Cao. Designing Strategy for Multi-agent System Based Large Structural Health Monitoring. Expert Systems with Applications. 2008, 34(2):1154~1168.
    105何浩祥.空间结构健康监测的理论与试验研究.北京工业大学博士学位论文. 2006, 4.
    106 H. Zui, T. Shinke, Y. H. Namita, Practical Formulas for Estimation of Cable Tension by Vibration Method. Journal of Structural Engineering, ASCE. 1996, 122(6):651~656.
    107 B. H. Kima, T. Park. Estimation of Cable Tension Force Using the Frequency-based System Identification Method. Journal of Sound and Vibration. 2007, 304(3-5):660~676.
    108魏建东,刘山洪.基于拉索静态线形的索力测定.工程力学. 2003, 20(3):104~107.
    109方义庆.基于疲劳寿命计的大型钢桥疲劳监测关键技术研究.南京航空航天大学硕士学位论文. 2006, 1.
    110 M. Meo, G. Zumpano. On the Optimal Sensor Placement Techniques for a Bridge Structure. Engineering Structures. 2005, 27(10):1488~1497.
    111王化杰. FAST健康监测数据采集系统的研究与开发.哈尔滨工业大学硕士学位论文. 2008, 6.
    112 G. Raupp, G. Neu, W. Treutterer, V. Mertens, D. Zasche, Th. Zehetbauer. Control Process Structure of ASDEX Upgrade’s New Control and Data Acquisition System. Fusion Engineering and Design. 2005, 74(1-4):697~705.
    113 L. Angrisani, P. Daponte, S. Sangiovanni. Data Acquisition Systems with Intelligent Trigger Capability. Measurement. 2006, 39(4):371~380.
    114李惠,周文松,欧进萍等.大型桥梁结构智能健康监测系统集成技术研究.土木工程学报. 2006, 39(2):46~52.
    115吴庆鸣,程怀舟,陈东等.基于虚拟仪器的连续实时数据采集系统.机械与电子. 2005, 16(4):57~59.
    116 J. M. Ko, Y. Q. Ni. Technology Developments in Structural Health Monitoring of Large-scale Bridges. 5HEngineering Structures. 2005, 27(12):1715~1725.
    117邓炎等. Labview7.1测试技术与仪器应用.机械工业出版社, 2005.
    118 K. N. Whitley, Alan F. Blackwell. Visual Programming in the Wild: A Survey of LabVIEW Programmers. Journal of Visual Languages and Computing. 2001, 12(4):435~472.
    119 F. Klocke, O. Dambon, U. Schneider, et al. Computer-based Monitoring of the Polishing Processes Using LabView. Journal of Materials Processing Technology. 2009, 209(20):6039~6047.
    120 B. Reitz Frederick, H. Pollack Gerald. Labview Virtual Instruments for Calcium Buffer Calculations. Computer Methods and Programs in Biomedicine. 2003, 70(1):61~69.
    121汪菁,刘恒,刘晖等.复杂体型网架结构工作状态安全预警系统研究.武汉理工大学学报. 2009, 31(19):73~77.
    122罗尧治,沈雁彬,童若飞等.空间结构健康监测与预警技术.施工技术. 2009, 38(3):4~8.
    123陈明. FAST健康监测数据管理及集成系统的研究与开发.哈尔滨工业大学硕士学位论文. 2008, 6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700