在线动平衡测试的相关信号处理与标定算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在高速数控机床的单元技术领域中,加快研究电主轴的在线自动平衡技术,不仅会促进我国高速加工技术的发展,而且具有极其重要的科学意义、工业价值和经济价值。在线主动平衡技术是一个涉及计算机控制、传感器技术、测试技术、数字信号处理技术等多学科交叉的复杂问题,设计合理高效的信号处理算法,提取动不平衡信号并进行不平衡量标定是实现高精度在线动平衡的关键。本课题在国家科技重大专项的资助下,对在线动平衡测试中的不平衡动态响应分析、测试方法、测试信号处理、测试系统标定等核心问题开展研究,主要完成的工作如下:
     1、主轴系统不平衡的动态响应分析
     根据主轴系统动力学方程,构建主轴系统有限元动力学的实体模型,对主轴系统进行结构模态分析,揭示主轴系统在自由模态下的动力特性。在此基础上通过动力学模型的理论求解和有限元模型的仿真分析,计算了电主轴在不平衡量作用下的传递特性,分析了主轴系统对不平衡引起的动力响应特性以及不同不平衡量的振动响应变化规律。理论求解和数值仿真的结论同时表明:转速不变,阻尼一定时,电主轴不平衡动态响应是与转速同频的简谐振动,且振幅大小与不平衡量成正比。
     2、电主轴振动信号的成分分析与趋势项处理
     根据在线动平衡测试的原理,对比分析了适合于系统信号采集的几种传感器的原理和特性,并对系统所需的基准信号和振动信号的获取和处理方式分别进行了详细论述。考虑到由于零点漂移等问题,会使加速度信号时域积分后产生趋势项。因此,论文在最小二乘拟合法的基础上,提出了消除趋势项的加速度信号时域积分算法,并通过仿真进行分析验证,为后续的动不平衡信号的特征提取奠定了必要的基础。
     3、动不平衡信号及其特征参数的提取算法
     针对电主轴振动信号低信噪比、强干扰的特点,设计并验证了两种不平衡信号幅值和相位提取的方法。注意到常规互相关分析提取相位时,会因量化误差和近频干扰而降低相位提取精度,论文提出了一种基于改进的互相关分析的不平衡信号提取方法。在两级FIR滤波器消噪和利用减法运算衰减大幅值信号后,再对互相关运算提取相位和幅值的算法进行了修改简化。实验验证该方法在提取振动信号幅值和相位的精度上比之常规互相关方法有明显改善。
     研究表明,自适应冗余第二代小波能有效抑制频率混叠现象,在此基础上,本文提出了一种自适应冗余第二代小波与双变量改进阈值函数相结合的振动信号消噪方法,并通过仿真实验对比分析了不同阈值函数变量参数的取值对信号消噪优劣的影响,验证了双变量改进阈值函数给消噪效果带来的改进。
     4、基于改进影响系数法的在线动平衡测试系统标定方法
     在分析理想状态下动平衡测试标定模型的基础上,深入剖析了测试系统的主要误差对标定的影响。从三种误差的特性入手,引入一元线性回归理论,提出了具有误差修正功能的影响系数标定模型,并设计了快速收敛的不平衡量标定算法,满足在线动平衡实时性要求。利用同一组标定数据,分别采用常规的影响系数方法和基于一元回归理论的影响系数方法对系统进行标定,对比分析的结果验证了本论文方法的有效性和优越性。
     5、在线动平衡测试原型系统
     在上述研究的基础上,逐步完善系统软硬件结构,并构建较为成熟的原型系统,经实验验证其满足了电主轴在线动平衡测试的功能和性能要求。
In order to realize the high speed, high efficiency, high precision machining, the most suitable spindle shape of CNC is directly putting stator and rotor into the interior of spindle unit, which forms an integrated structure of that motor rotor is the spindle and the shell of sprindle unit is motor base. The spindle unit is segregates from drive system and integral structure, called motor spindle. In the technology field of motor spindle, it is vital to speed up researching online dynamic balance technology for the development of high-speed and high-precision CNC. The online dynamic balance technology is a complicated problem which includes multidiscipline knowledge, the key of the online dynamic balance technology is designing reasonable and efficient signal processing algorithm, extracting dynamic unbalance signal and calibrating the amount of imbalance. The subject, funded by National Science and Technology Major Project, applying computer control technology and DSP, researches unbalance dynamic response analysis, test method, test signal processing and calibration for test signal of online dynamic balance. The main work is followed.
     1. the imbalance dynamic response analysis of the motor spindle
     The paper, according to the kinetic equation of motor spindle, constructs finite element solid model and completes the modal analysis, reveals the kinetic characteristics in free modal of motor spindle. Through theoretical solution of kinetic model and simulation analysis of finite element model(FEM), the paper calculates the transfer characteristic of motor spindle in the function of the amount of unbalance, analyses kinetic response characteristics caused by imbalance and the changing rule of vibration response because of different amount of unbalance. The conclusion of theoretical solution and digital simulation simultaneously show that when rotate speed and damp are constant, dynamic response of unbalance is simple harmonic vibration, which is equal to the frequency of rotate speed and the amplitude is proportional to the imbalance amount.
     2. the component anaryzing and trend term processing of the vibration signal of motor spindle
     The paper, according to the theory of online dynamic balance testing, comparatively analyses the theory and characteristics of several sensors, discusses the gain and process method of reference signal and vibration signal in great detail. Because of zero drift, acceleration signal integral in time-domain will generate trend term. So the paper puts forward a time domain integral algorithm of acceleration signal to eliminate the trend term and proves its effectiveness through simulation, which lays necessary foundation for the subsequent characteristics extraction of dynamic unbalance signal.
     3. the extraction and process of the dynamic unbalance signal
     The vibration signal of motor spindle is low SNR and with strong interference, the paper designs and verifies two methods for extracting the amplitude and phase of unbalance signal. Pay attention to the low precision of conventional cross-correlation extraction of phase, which is caused by quantization error and nearly frequency interference, the paper puts forward a kind of improved signal extraction method based on cross-correlation. The method modifies and simplifies the algorithm of cross-correlation operation. The experiment verifies that this method obviously improves the extraction precision of amplitude and phase of vibration signal.
     The research shows that adaptive redundant second generation wavelet can effectively restrain frequency aliasing. On that basis, the paper comes up with a new algorithm of vibration signal de-noising, which combins adaptive redundant second generation wavelet with double variable improved threshold function. The simulation verifies the improvement of signal de-nosing effect resulted by bringing into double variable improved threshold function.
     4. the calibration algorithm of online dynamic balance testing system based on improved influence coefficient method.
     On the basis of the analysis of dynamic balance testing calibration model in ideal situation, the paper analyses the influence on calibration because of the main error of measurement. Starting with the three kind of error characteristics, the paper introduces simple linear regression theory and puts forward an influence coefficient calibration model with error correction function, and designs a amount of unbalance calibration algorithm which is rapid convergence and meets real-time requirement of online dynamic balance. Using the same calibration data, the system is separately demarcated by conventional influence coefficient method and the evolutionary influence coefficient method based on simple linear regression theory. The results show the validity and superiority.
     5. online dynamic balance testing prototype system
     Based on the above research, the paper improves gradually software and hardware of system and builds a prototype system which satisfy the function and characteristics requirements of the online dynamic balance of motor spindle.
引文
[1]蒋红琰.高速电主轴在线动平衡补偿技术研究[D].太原;中北大学,2008.
    [2]孟杰.高速电主轴动力学分析与实验研究[D].重庆;重庆大学,2008.
    [3]刘宏琴.一种带有自动平衡头的电主轴结构设计与特性分析[D].太原;中北大学,2010.
    [4]金鑫.超高速动平衡测试系统的研制[D].沈阳;沈阳理工大学,2009.
    [5]王宁.转子在线自动平衡技术控制原理及工程应用中的研究[D].北京;北京化工大学,2008.
    [6]张仕海,伍良生,周大帅.机床主轴在线动平衡装置现状分析研究[J].现代制造工程,2009,12):146-149.
    [7]臧军.数控立车工件在线动平衡测量系统[D].济南;山东大学,2010.
    [8]秦丽.现场整机动平衡仪的设计与实现[D].长沙;湖南大学,2011.
    [9]P. Baur. Field balancing of rotating machinery-a special report [J]. Power,1983,127(10):51-16.
    [10]K. Koenig, I. Block, A. Nesterov, et al.Programmable high voltage CMOS chips for particle-based high-density combinatorial peptide synthesis [J]. Sensors andActuators B-Chemical,2010,147(2):418-427.
    [11]Prabhu Babu, Petre Stoica. Spectral analysis of nonuniformly sampled data-a review [J]. Digital Signal Processing,2010,20(2):359-378.
    [12]G. A. Hassan. New approach for computer-aided static and dynamic balancing of rigid rotors [J]. Journal of Sound and Vibration,1995,179(5):749-761.
    [13]陶利民.转子高精度动平衡测试与自动平衡技术研究[D].长沙;国防科技大学,2006.
    [14]毛国豪.转子动平衡测试分析系统的开发与研究[D].沈阳;东北大学,2006.
    [15]C. D. Untaroiu, P. E. Allaire, W. C. Foiles. Balancing of flexible rotors using convex optimization techniques:Optimum min-max LMI influence coefficient balancing [J]. Journal of Vibration and Acoustics-Transactions of the Asme,2008,130(2):021006.1-021006.5.
    [16]徐德强.刚性转子在线动平衡测试技术研究[D].哈尔滨;哈尔滨工业大学,2010.
    [17]Lee Soo-Hun, Kim Bong-Suk, Moon Jong-Duck, et al. A study on active balancing for rotating machinery using influence coefficient method [C]. In:Proceedings of the Computational Intelligence in Robotics and Automation,2005 CIRA 2005 Proceedings 2005 IEEE International Symposium on,2005:659-664.
    [18]J. D. Moon, B. S. Kim, S. H. Lee. Development of the active balancing device for high-speed spindle system using influence coefficients [J]. International Journal of Machine Tools & Manufacture,2006,46(9):978-987.
    [19]D. J. Rodrigues, A. R Champneys, M. I. Friswell, et al. Two-plane automatic balancing:A symmetry breaking analysis [J]. International Journal of Non-Linear Mechanics,2011,46(9): 1139-1154.
    [20]Shiyu Zhou and Jianjun Shi.Active Balancing and Vibration Control of Rotating Machinery:A Survey [J]. The Shock and Vibration Digest,2001,33(4):361-371.
    [21]Y Kang, M. H. Tseng, S. M. Wang, et al.An accuracy improvement for balancing crankshafts [J]. Mechanism and Machine Theory,2003,38(12):1449-1467.
    [22]C. Y Tseng, T. W. Shih, J. T. Lin. Dynamic balancing scheme for motor armatures [J].Journal of Sound and Vibration,2007,304(1-2):110-123.
    [23]伍良生,李俊,肖毅川,et al.基于盘状加工件在线动平衡技术的研究[J].北京工业大学学报,2011,37(6):811-815.
    [24]白晖宇,荆建平,孟光.电机不平衡磁拉力研究现状与展望[J].噪声与振动控制,2009,06):5-7.
    [25]邓理博,程礼,李全通,et al.转子动平衡影响系数法改进[J].机械科学与技术,2007,26(05):631-634.
    [26]R E. D. Bishop, G. M. L. Gladwell.THE VIBRATION AND BALANCING OF AN UNBALANCED FLEXIBLE ROTOR (Reprinted from vol 1,1959) [J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science,2009, 223(1):23-34.
    [27]M. S. Darlow. Balancing of High-Speed Machinery:Theory,Methods and Experimental Result, [J]. Mechanical Systems and Signal Processing,1987,1(1):105-134.
    [28]S. Saito, Azuma, T. Balancing of Flexible Rotors by the Complex Modal Method [J]. ASME Transactions, Journal of Vibration,Acoustics, Stress, and Reliability in Design,1983, 105(94-100.
    [29]谈建华.转子动平衡测试系统的开发[D].镇江;江苏大学,2010.
    [30]J. "Van De Vegte, R T. Lake. Balancing of rotating systems during operation [J]. Journal of Sound and Vibration,1978,57(2):225-35.
    [31]J. S. Kim, S. H. Lee. The stability of active balancing control using influence coefficients fora variable rotor system [J]. International Journal of Advanced Manufacturing Technology,2003, 22(7-8):562-567.
    [32]何立东,沈伟,高金吉.转子在线自动平衡及其工程应用研究的进展[J].力学进展,2006,36(04):553-563.
    [33]K. K Shin, J. Ni Adaptive control of multi-plane active balancing systems for speed-varying rotors [J]. Journal of Dynamic Systems Measurement and Control-Transactions of the Asme, 2003,125(3):372-381.
    [34]S. Delvaux, M. Van Barel. Rank structures preserved by the QR-algorithm:The singular case [J]. Journal of Computational and Applied Mathematics,2006,189(1-2):157-178.
    [35]B. Hredzak, G. X. Guo. New electromechanical balancing device for active imbalance compensation [J]. Journal of Sound and Vibration,2006,294(4-5):737-751.
    [36]H. Y Kim, C. W. Lee. Design and control of active magnetic bearing system with Lorentz force-type axial actuator [J]. Mechatronics,2006,16(1):13-20.
    [37]M. Necip Sahinkaya, Abdul-Hadi G. Abulrub, Clifford R. Burrows. An Adaptive Multi-Objective Controller for Flexible Rotor and Magnetic Bearing Systems [J]. Journal of Dynamic Systems Measurement and Control-Transactions of the Asme,2011,133(3): 031003.1-031003.9.
    [38]G. Schweitzer. Safety and reliability aspects for active magnetic bearing applications-a survey [J]. Proceedings of the Institution of Mechanical Engineers Part Ⅰ-Journal of Systems and Control Engineering,2005,219(16):383-392.
    [39]Abdul-Hadi G. Abulrub, M. Necip Sahinkaya, Clifford R Burrows, et al. Performance Assessment of a Multi-Frequency Controller Applied to a Flexible Rotor Magnetic Bearing System-Contact Dynamics [M].2009.
    [40]G. Silva-Navarro, F. Lopez-Medina, A Cabrera-Amado. Unbalance compensation in a rotor-bearing system by dynamic stiffness control and acceleration scheduling [M].2010.
    [41]D. J. Rodrigues, A. R Champneys, M. I. Friswell, et al. Automatic two-plane balancing for rigid rotors [J]. International Journal of Non-Linear Mechanics,2008,43(6):527-541.
    [42]R. Lopez-Medina, G. Silva-Navarro. Dynamic Stiffness Control and Acceleration Scheduling for Unbalance Compensation in a Rotor-bearing System:Experimental Results [J].2010 7th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2010) (Formerly known as ICEEE),2010,494-9.
    [43]M. Regener, L. Huebner. Balancing flexible rotors of large electrical machines [C]. In: Proceedings of the Petroleum and Chemical Industry Conference (PCIC),2010 Record of Conference Papers Indus try Applications Society 57th Annual,2010:1-9.
    [44]赵钧.飞行器动平衡测试技术的实验研究[D].哈尔滨;哈尔滨工业大学,2007.
    [45]肖健.先进控制技术在主动平衡系统中的研究与应用[D].北京;北京化工大学,2008.
    [46]秦鹏.基于全柔性串接式振动系统的高精度动不平衡测量研究[D].上海;上海交通大学,2007.
    [47]张志立.基于DSP的砂轮动平衡测控系统的研制[D].长春;长春工业大学,2011.
    [48]杨晓红.不平衡量信号的精密谱分析及其在砂轮动平衡测控仪中的应用[D].长春;中国科学院长春光学精密机械与物理研究所,2006.
    [49]C. Li, T. Z. Qi, Z. Zhang, et al. A Novel Design of a Hard-bearing Dynamic Balancing Machine [C]. In:Proceedings of the Mechatronics and Machine Vision in Practice,2008 M2VIP 2008 15th International Conference on,2008:408-411.
    [50]I. S. Cade, P. S. Keogh, M. N. Sahinkaya. Fault identification in rotor/magnetic bearing systems using discrete time wavelet coefficients [J]. Mechatronics, IEEE/ASME Transactions on,2005, 10(6):648-657.
    [51]P. Arpaia, E. De Matteis, G. Montenero, et al. Evolutionary design of lifting scheme wavelet-packet adaptive filters for elevator fault detection [C]. In:Proceedings of the Instrumentation and Measurement Technology Conference (I2MTC),2010 IEEE,2010: 1155-1158.
    [52]Juan J. Flores, Mario Graff, Hector Rodriguez. Evolutive design of ARMA and ANN models for time series forecasting [J]. Renewable Energy,2012,44(225-230.
    [53]Shahrokh Asadi, Akbar Tavakoli, Seyed Reza Hejazi. A new hybrid for improvement of auto-regressive integrated moving average models applying particle swarm optimization [J]. Expert Systems with Applications,2012,39(5):5332-5337.
    [54]P. Borghesani, P. Pennacchi, R. B. Randall, et al. Order tracking for discrete-random separation in variable speed conditions [J]. Mechanical Systems and Signal Processing,2012,30(1-22.
    [55]O. R Seryasat, M. Aliyari Shoorehdeli, F. Honarvar, et al. Multi-fault diagnosis of ball bearing using intrinsic mode functions, Hilbert marginal spectrum and multi-class support vector machine [C]. In:Proceedings of the Mechanical and Electronics Engineering (ICMEE),2010 2nd International Conference on,2010:V2-145-V2-149.
    [56]David Coats, Kwangik Cho, Yong-June Shin, et al. Advanced Time-Frequency Mutual Information Measures for Condition-Based Maintenance of Helicopter Drivetrains [J]. Ieee Transactions on Instrumentation and Measurement,2011,60(8):2984-2994.
    [57]Tejas H. Patel, Ashish K. Darpe. Application of Full Spectrum Analysis for Rotor Fault Diagnosis [M].2011.
    [58]Randall Wald, Taghi M. Khoshgoftaar, John C. Sloan, et al. Feature Selection for Vibration Sensor Data Transformed by a Streaming Wavelet Packet Decomposition [M].2011 23rd Ieee International Conference on Tools with Artificial Intelligence.2011:978-985.
    [59]齐伟,赵鼎鼎,蔡萍.基于MUSIC算法的动不平衡信号提取方法研究[J].仪器仪表学报, 2012,33(06):1240-1246.
    [60]牟世刚,冯显英,晏志文,et al.基于小波分析的动平衡机不平衡量提取方法研究[J].山东大学学报(工学版),2011,41(03):62-71.
    [61]李传江,费敏锐,张自强.高精度动平衡测量中不平衡信号提取方法研究[J].振动与冲击,2012,31(14):124-127.
    [62]杨克己.基于谐波小波的自适应滤波在高精度动平衡检测系统中的应用[J].仪器仪表学报,2005,26(8):133-135.
    [63]沈庆根,郑水英.设备故障诊断[M].北京:化学工业出版社,2006.
    [64]董鹏飞.虚拟式现场动平衡测试系统的研究[D].重庆;重庆大学,2010.
    [65]晁慧泉.高速主轴在线动平衡系统的研究应用[D].北京;北京工业大学,2011.
    [66]盖建新.基于数字相关算法的动平衡测试系统的研究[D].哈尔滨;哈尔滨理工大学,2006.
    [67]朱美玲.基于DSP的便携式砂轮主轴在线动平衡仪的开发与研究[D].北京;北京工业大学,2009.
    [68]张玉光.动平衡测试技术研究[D].长沙;国防科学技术大学2006.
    [69]曹晰.开放型嵌入式旋转机械自动平衡系统的研究[D].北京;北京化工大学,2009.
    [70]陈花玲.机械工程测试技术[M].北京:机械工业出版社,2009.
    [71]张健.动平衡测量的若干关键技术问题研究[D].杭州;浙江大学,2007.
    [72]殷祥超.振动理论与测试技术[M].北京:中国矿业大学出版社,2007.
    [73]康海燕.精密高速轴系振动和动平衡检测设备的设计[D].成都;电子科技大学,2008.
    [74]李俊.高速机床主轴系统在线动平衡装置的研究与开发[D].北京;北京工业大学,2010.
    [75]K S. Wang, D. Guo, P. S. Heyns. The application of order tracking for vibration analysis of a varying speed rotor with a propagating transverse crack [J]. Engineering Failure Analysis,2012, 21(91-101.
    [76]O. V.Vasilyev. Solving multi-dimensional evolution problems with localized structures using second generation wavelets [J]. International Journal of Computational Fluid Dynamics,2003, 17(2):151-168.
    [77]秦树人.机械测试系统原理与应用[M].北京:科学出版社,2005.
    [78]陈巧.基于DSP的现场动平衡检测系统测量板的设计[D].武汉;华中科技大学,2009.
    [79]何正嘉,张西宁.现代信号处理及工程应用[M].西安:西安交通大学出版社,2007.
    [80]W. Sweldens. The Lifting Scheme:A Construction of Second Generation Wavelets [J]. SIAM News,1998,29(2):511-511.
    [81]A. R. Calderbank, Ingrid Daubechies, Wim Sweldens, et al.Wavelet transforms that map integers to integers [J]. Applied and Computational Harmonic Analysis,1998,5(3):332-362.
    [82]周瑞.基于第二代小波的机械故障信号处理方法研究[D].哈尔滨;哈尔滨工业大学,2009.
    [83]何正嘉,陈雪峰,李兵,向家伟.小波有限元理论及其工程应用[M].北京:科学出版社,2006.
    [84]楼向明.运转状态下转子不平衡识别方法的研究[D].杭州;浙江大学,2001.
    [85]顾致平,刘永寿.非线性转子系统的传递矩阵技术[M].北京:科学出版社,2010.
    [86]沈春根.高速加工工具系统的动力学特性及应用基础研究[D].苏州;江苏大学,2011.
    [87]孟杰,陈小安.电主轴动力学分析的传递矩阵法[J].机械设计,2008,25(07):37-40.
    [88]高尚晗,孟光.机床主轴系统动力学特性研究进展[J].振动与冲击,2007,26(06):103-109.
    [89]付琪.高速电主轴动力学性能有限元分析[J].中国高新技术企业,2010,24):185-186.
    [90]周大帅.高速电主轴综合性能测试及若干关键技术研究[D].北京;北京化工大学,2011.
    [91]李晓冬.砂轮在线液体自动平衡系统及其平衡精度的研究[D].长春;中国科学院长春光学精密机械与物理研究所,2004.
    [92]张安华.机电设备状态监测与故障诊断技术[M].西安:西北工业大学出版社,1995.
    [93]周传德.传感器与测试技术[M].重庆:重庆大学出版社,2009.
    [94]赵庆亮.基于DSP的自动平衡控制理论与方法研究[D].北京;北京化工大学,2012.
    [95]魏于评.不平衡量对砂轮跳动影响的研究[D].厦门;华侨大学,2011.
    [96]陈为真.大型结构振动信号处理与模态参数识别研究[D].武汉;华中科技大学,2011.
    [97]郭俊华,伍星,柳小勤,et al.转子动平衡中振动信号幅值相位的提取方法研究[J].机械与电子,2011,10):6-10.
    [98]S. Mondal, D. Chakraborty, R. Kar, et al. Novel particle swarm optimization for high pass FIR filter design [C]. In:Proceedings of the Humanities, Science and Engineering Research (SHUSER),2012 IEEE Symposium on,2012:413-418.
    [99]胡广书.数字信号处理导论[M].北京:清华大学出版社,2006.
    [100]Y S. Shmaliy. Suboptimal FIR Filtering of Nonlinear Models in Additive White Gaussian Noise [J]. Signal Processing, IEEE Transactions on,2012,60(10):5519-5527.
    [101]熊诗波,黄长艺.机械工程测试技术基础[M].北京:机械工业出版社,2006.
    [102]Cai Yuchen, Zhao Baojun. Implementation and algorithm analysis of wavelet Lifting Scheme [C]. In:Proceedings of the Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC),2011,2011:1418-1421.
    [103]Hongkai Jiang, Dandan Dou. Incipient Fault Feature Extraction Using Lifting Scheme Packet [C]. In:Proceedings of the Optoelectronics and Image Processing (ICOIP),2010 International Conference on,2010:619-622.
    [104]Zijing Yang, Ligang Cai, Lixin Gao, et al. Adaptive Redundant Lifting Wavelet Transform Based on Fitting for Fault Feature Extraction of Roller Bearings [J]. Sensors,2012,12(4): 4381-4398.
    [105]Gemma Piella, Beatrice Pesquet-Popescu, Henk J. A. M. Heijmans, et al.Combining seminorms in adaptive lifting schemes and applications to image analysis and compression [J]. Journal of Mathematical Imaging and Vision,2006,25(2):203-226.
    [106]Huaxin Chen, Xuefeng Chen, Yanyang Zi, et al.An effective approach to rolling bearing diagnosis based on Adaptive Redundant Second-Generation Wavelet [J]. International Journal of Materials & Product Technology,2008,33(1-2):65-78.
    [107]胡淘.大型汽轮机转子动平衡测控系统研制[D].哈尔滨;哈尔滨工业大学,2008.
    [108]陈佳.新型动平衡机误差分析和性能改进[D].上海;上海交通大学,2008.
    [109]周杏鹏.传感器与检测技术[M].清华大学出版社,2010.
    [110]熊艳艳,吴先球.粗大误差四种判别准则的比较和应用[J].大学物理实验,2010,23(01):66-68.
    [111]吴展.基于嵌入式系统的通用动平衡机测试系统[D].上海;上海交通大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700