北极Svalbard地区Austre Lovenbreen和Pedersenbreen冰川物质平衡及其与气候变化关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冰川是气候变化敏感的指示器。Svalbard地区特殊的地理位置使之成为北极对气候变化响应最明显、最迅速的地区之一,对该地区的研究有助于理解北极冰川与全球气候变化之间的关系。以2005年我国开始观测的Svalbard地区Austre Lovénbreen和Pedersenbreen冰川为研究对象,讨论了两条冰川2005-2010年间的最新的物质平衡、平衡线高度等的变化特征,并分析其与气候变化的关系及对气候变化的敏感性。同时,对WGMS监测的该地区其他主要冰川的物质平衡及累积变化特征进行了研究,有助于同本文研究的主要对象进行对比分析。主要研究结果如下:
     (1)1987-2007年间,Svalbard地区主要冰川变化特征表现为:①冰川的年净物质平衡值与平衡线高度年际变化波动不存在明显的规律性,但都表现出大致相同的变化趋势。所观测的五条冰川大都处于负物质平衡状态,累积物质平衡值不断减小,且有加速减小的趋势。反映了该地区冰川对气候变化响应的一致性。②五条冰川年平均净物质平衡值分别为-0.55 m w.e./a、-0.43 m w.e./a、-0.12 m w.e./a、-0.37 m w.e./a和-0.65m w.e./a,年平均平衡线高度分别为441m、407m、565m、349m和423m,平衡线高度与净物质平衡之间表现出高度的负相关性。
     (2)Austre Lovénbreen和Pedersenbreen冰川2005-2010年物质平衡及平衡线高度等的最新变化特征表现为:①两条冰川的年净物质平衡值表现出相同的变化趋势,但不存在明显的规律性。平均年净物质平衡值分别为-0.15 m w.e./a和0.11m w.e./a,存在较大差异。②两条冰川的累积物质平衡值存在差别巨大。Austre Lovénbreen冰川在2005~2010年间始终处于负物质平衡状态,而Pedersenbreen冰川在2005~2007年处于负物质平衡状态,2007年以后表现为正物质平衡状态,且有加速增长的趋势。③两条冰川年平均平衡线高度分别为399.2m和444.32m,平衡线高度与年净物质平衡值均表现为高度负相关性,且年际变化均较大。年净物质平衡值对平衡线高度的敏感性分别为-0.51m w.e./100m和-0.47m w.e./100m,保持稳定。积累区面积比率与年净物质平衡值变化趋势一致。④年平均消融量分别为-1.11 m w.e./a和-1.01m w.e./a,Pedersenbreen冰川略小。年平均积累量分别为0.97 m w.e./a和1.16m w.e./a,最大积累出现在相同年份。⑤Pedersenbreen冰川年平均运动速度明显大于Austre Lovénbreen冰川。冰川表面观测点的运动方向均表现为向冰川主流线幅和或平行于冰川主流线方向运动。⑥Austre Lovénbreen冰川末端退缩年际变化很大,平均退缩量为11.63m/a。最大退缩量大致都位于冰川中部的控制点处,而最小退缩量的控制点则没有明显固定的位置。
     (3)Ny-(?)lesund地区气候变化特征及其与Austre Lovénbreen和Pedersenbreen冰川变化关系进行研究表明:①Ny-(?)lesund地区的日平均气温的年际变化不明显。冬季气温的变化幅度较大,而夏季气温变化幅度则以细小波动为主。②降水量的变化总体呈现出夏季降水较少,冬季降水较多的特点,年降水总量差别较大。③冰川年净物质平衡值和平衡线高度与气温和冬季降水之间不存在简单的线性相关。冰川消融对气温1℃增温的敏感性分别为0.53 m w.e./a和0.55m w.e./a。冰川积累对年降雪量10%增量的敏感性分别为0.17 m/a和0.26m/a。两条冰川平衡1℃增温产生的冰川消融量分别需要增加大约31.9%和21.3%的年降雪量。表明影响Austre Lovénbreen冰川物质平衡值的主要气象条件是气温,而对Pedersenbreen冰川影响较大的是年降雪量④平衡线高度对气温1℃增温的敏感性分别为185.10 m/a和77.53m/a,对10%年降雪增量的敏感性分别为-19.97 m/a和-32.87m/a。两条冰川平衡1℃增温产生的平衡线高度变化分别需要增加大约92.7%和23.6%的年降雪量。因此,在对平衡线高度的影响上,气温的影响似乎要更大一些。
Glaciers are sensitive indicator of climate change. Svalbard’s special geographic location makes it to be one of the most rapidly place to response to climate change in the Arctic. The research in this area may help to understand the relationship between the Arctic glaciers and global climate change. The glaciers Austre Lovénbreen and Pedersenbreen are the research objects, which are observed from 2005 by us in Svalbard. The latest (2005-2010) variation characteristics of mass balance, equilibrium line altitude etc., the relationship with climate change and the sensitivity to climate change are analyzed. Furthermore, the characteristics of mass balance of other major glaciers monitored by WGMS in this region are discussed, the main results are as follows:
     (1)The major glaciers’variation characteristics in Svalbard between 1987-2007 are:①there is no significant long-term fluctuations regularity in the annual net mass balance of glaciers and the equilibrium line altitude, but they show the similar trends. Most of the observed glaciers’mass balance is negative, the cumulative mass balance continues to fall, and the accelerating trend is decreasing, which reflects the same response to climate change of the glaciers in this area.②the average mass balance of the five glaciers are -0.55 m w.e ./ a, -0.43 m w.e ./ a, -0.12 m w.e ./ a, -0.37 m w.e ./ a and-0.65m w.e ./ a, and the average equilibrium line altitude are 441m, 407m, 565m, 349 mand 423m respectively. The equilibrium line altitude and the net mass balance show a high negative correlation during the observation period.
     (2) During the period of 2005-2010, the characteristics of mass balance and equilibrium line altitude etc. of Austre Lovénbreen and Pedersenbreen as follows:① the variation of annual net mass balance of the two glaciers showed the same trend, but there is no obvious trend. The average annual net mass balance are -0.15 m w.e./a and 0.11m w.e./a, there is a big difference.②the accumulated value of the mass balance of the two glaciers are very different. Austre Lovénbreen always shows a negative mass balance state between 2005 and 2010, but Pedersenbreen shows a negative mass balance from 2005 to 2007, then it shows all positive, and the growth trend is accelerating.③the average equilibrium line altitude of them are 399.2m and 444.32m respectively. There is a high negative correlation between the equilibrium line altitude and mass balance, the interannual changes are both large. The sensitivity of annual net mass balance to equilibrium line altitude are -0.51m w.e. / 100m and-0.47m w.e. / 100m, remain stable. Accumulation area ratio and net mass balance show the same trend.④the average annual ablation volume are -1.11 m w.e. /a and -1.01m w.e. /a, the value of Pedersenbreen is smaller. The average accumulations are 0.97 m w.e. / a and 1.12m w.e. / a, and the maximum accumulation occurs in the same year.⑤Pedersenbreen’s average annual surface velocity is significantly greater than Austre Lovénbreen. The movement direction of points in the surface of glacier is found to converge to the central line of glaciers or be parallel to it.⑥The interannual retreat of Austre Lovénbreen vary greatly, the average value is 11.63m / a. The largest amount of retreat is generally located in the central of the glacier, and the minimum one have not significantly fixed position.
     (3)The characteristics of climate change in Ny-?lesund and the relationship between the variation of Austre Lovénbreen and Pedersenbreen glaciers show that:①The annual daily average temperature did not change significantly in Ny-?lesund. The daily temperature vary greatly in winter, while it luffing smaller in summer.②The feature of precipitation is less precipitation in summer, and more precipitation in winter. The annual total precipitation has a big change.③There is no simple linear correlation between the mass balance , the equilibrium line altitude and daily temperatures and annual snowfall. The ablation sensitivity to daily temperatures increase of +1℃are 0.53 m w.e. / a and 0.55m w.e. / a. The accumulation sensitivity to snowfall increase of +10% are 0.17 m / a and 0.26m / a respectively. 31.9% and 21.3% of annual snowfall are needed to offset the loss of mass balance induced by daily temperatures increase of +1℃. So, the major weather conditions influence the mass balance of Austre Lovénbreen is daily temperatures, as for Pedersenbreen is annual snowfall.④The equilibrium line altitude sensitivity to daily temperatures increase of +1℃are 185.10 m / a and 77.53m / a, and to annual snowfall increase of 10% are -19.97 m / a and-32.87m / a. 92.7% and 23.6% of annual snowfall are needed to offset the change of equilibrium line altitude influenced by the temperatures increase of +1℃.So, the temperatures seems to be the main impact on equilibrium line altitude.
引文
[1]陈立奇,高众勇,杨绪林,等.北极地区碳循环研究意义和展望[J].极地研究. 2004, 16(3): 171-179.
    [2]施雅风.中国冰川与环境——现在、过去和将来[M].科学出版社, 2000.
    [3] Nuth C, Moholdt G, Kohler J, et al. Svalbard glacier elevation changes and contribution to sea level rise[J]. Journal of Geophysical Research. 2010, 115: 1029-1045.
    [4]谢自楚,刘潮海.冰川学导论[M].上海科学普及出版社, 2010.
    [5] Fischer A. Glaciers and climate change:Interpretation of 50 years of direct mass balance of Hintereisferner[J]. Global And Planetary Change. 2010, 71: 13-26.
    [6]叶佰生,陈克恭,施雅风.冰川及其径流对气候变化响应过程的模拟模型——以乌鲁木齐河源一号冰川为例[J].地理科学. 1997, 17(1): 32-39.
    [7] H. Jay Zwally J L A C. Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002[J]. Journal of Glaciology. 2011, 57(201): 88-103.
    [8] Friedrich Obleitner M L. Measurement and simulation of snow and superimposed ice at the Kongsvegen glacier,Svalbard(Spitzbergen)[J]. JOURNAL OF GEOPhysical Research. 2004, 109: 1024-1036.
    [9] Cameron J. Rye N S A. Modelling tht surface mass balance of a high Arctic glacier using the ERA-40 reanalysis[J]. Journal of Geophysical Research. 2010, 115: 1077-1095.
    [10] Mark B. Dyurgerov M F M. Twentieth century climate change:Evidence from small glaciers[J]. Proceedings of the National Academy Of Sciences Of The United States Of America. 2000, 97(4): 1406-1411.
    [11]杨慧安,李忠勤等.过去44年乌鲁木齐河源一号冰川物质平衡及过程研究[J].干旱区地理. 2005, 28(1): 76-80.
    [12]丁一汇.气候变化的关键科学问题与遥感资料应用[R].中国气象局, 2010.
    [13]邓海滨,陆龙骅,卞林根.北极苔原Ny-Alesund地区短期气候特征[J].极地研究. 2005, 17(1): 32-43.
    [14] J. C. Leiva G A C L. 20 years of mass balance on the Piloto glacier,Las Cuevas river basin,Mendoza,Argentina[J]. global And Planetary Change. 2007, 59: 10-16.
    [15] Hirabayashi Y, D?ll P, Kanae S. Global-scale modeling of glacier mass balances for water resources assessments: Glacier mass changes between 1948 and 2006 [J]. Journal of Hydrology. 2010, 390: 245-256.
    [16] G. Ramillien A L A C. Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE[J]. global And Planetary Change. 2006, 53: 198-208.
    [17]世界冰川监测系统[Z].
    [18] Hagen J O, Kohler J, Melvold K. Glaciers in Svalbard:mass balance,runoff and freshwater flux[J]. Polar Research. 2003, 22(2): 145-159.
    [19] Lefauconnier B H J O. Glaciers and climate in Svalbard:statistical analysis and reconstruction of the Broggerbreen mass balance for the last 77 years[J]. Annals of Glaciology. 1990, 14: 148-152.
    [20] David Rippin I W N A. Seasonal patterns of velocity and strain across the tongue of the polythermal glacier midre Lovernbreen,Svalbard[J]. Annals of Glaciology. 2005, 42: 445-453.
    [21]徐明星,闫明,康建成,等.北极Svalbard、斯堪的纳维亚与挪威南部冰川物质平衡对比及其气候意义[J].冰川冻土. 2010, 32(4): 641-649.
    [22] Ziaja W. Response of the Nordenski?ld Land (Spitsbergen) glaciers Grumantbreen, H?bergbreen and Dryadbreen to the climate warming after the Little Ice Age [J]. Annals of Glaciology. 2005, 42: 189-194.
    [23]徐明星,闫明,任贾文,等.北极Svalbard地区Austre Lovenbreen和Pedersenbreen冰川表面物质平衡和运动特征分析[J].极地研究. 2010, 22(1): 10-22.
    [24]艾松涛,鄂栋臣,闫明,等. 2005年北极冰川首期GPS监测[J].极地研究. 2006, 18(1): 1-8.
    [25]任贾文,闫明.中国北极黄河站首次科学考察队冰川考察[J].冰川冻土. 2005, 27(1): 124-127.
    [26]邓海滨,陆龙骅,卞林根.北极苔原新奥尔松地区的地表辐射特征[J].极地研究. 2006, 18(4): 254-262.
    [27]康世昌,姚檀栋,秦大河.北极Svalbard地区气候变化特征及其与青藏高原对比[J].地理科学. 1998, 18(4): 312-319.
    [28] Paterson W S B. THE PHYSICS OF GLACIERS[M]. Pergamon Press, 1981.
    [29] Jaedicke. C G P. The influence of drifting snow on the location of glaciers on western Spitsbergen,Svalbard [J]. Annals of Glaciology. 2005, 42: 237-242.
    [30]丁一汇,张锦.气候系统的演变及其预测[M].气象出版社, 2003.
    [31] Regine Hock P J A L. Modelling the Response of Mountain Glacier Discharge to Climate Warming[J]. Global Change and Mountain Regions. 2005, 23: 243-252.
    [32] Kevin M. Fleming J A D J. Modelling the mass balance of northwest Spitsbergen glaciers and responses to climate change[J]. Annals of Glaciology. 1997, 24: 203-210.
    [33] Agata Weydmann S K. Distribution of Calanus populations in a glaciated fjord in the Arctic(Hornsund,Spitsbergen)—the interplay between biological and physical factors[J]. Polar Biology. 2008, 31: 1023-1035.
    [34] Takayuki Nakatsubo Y S B. Ecosysterm development and carbon cycle on a glacier foreland in the high Arctic,Ny-Alesund,Svalbard[J]. Current Topics In plant Research. 2005, 118: 173-179.
    [35] Andy Hodson T J R. Glacier ecosystem response to episodic nitrogen enrichment in Svalbard,European High Arctic[J]. Biogeochemistry. 2010, 98: 171-184.
    [36] Nicoletta Cannone M G R G. Relationships between vegetation patterns and periglacial land forms in northwestern Svalbard[J]. Polar Biol. 2004, 27: 562-571.
    [37] Hagen J O, Melvold K, Pinglot F. ON THE NET MASS BALANCE OF THE GLACIERS AND ICE CAPS IN SVALBARD,NORWEGIAN ARCTIC[J]. Arctic Antarctic And Alpine Research. 2003, 35(2): 264-270.
    [38] Michael J. Hambrey N F G. The Role of Folding and Foliation Development in the Genesis of Medial Moraines:Examples from Svalbard Glaciers[J]. Journal of Geology. 2003, 111: 471-485.
    [39]闫明,任贾文,张占海等.斯瓦尔巴群岛冰川学研究进展与我国北极冰川监测系统建设[J].极地研究. 2006, 18(2): 137-147.
    [40] Hagen J O, O L, E R. Glacier atlas of Svalbard and Jan Mayen[M]. Meddelelser NR, 1993.
    [41] Caidong, Asgeir S. Modelled mass balance of Xibu glacier,Tibetan Plateau:Sensitivity to climate change[J]. Journal of Glaciology. 2010, 56(196): 235-248.
    [42]丁永健,刘时银,周文娟,等.北半球冰川物质平衡变化的若干特征及其气候意义[J].地球科学进展. 1996, 11(6): 590-596.
    [43] Harald Svendsen A B J O. The physical environment of Kongsfjorden-Krossfjorden,an Arctic fjord systerm in Svalbard[J]. Polar Research. 2002, 21(1): 133-166.
    [44] Grabiec M. An estimation of snow accumulation on Svalbard glaciers on the basis of standardweather-station observations[J]. Annals of Glaciology. 2005, 42: 269-276.
    [45] Thomas V. Schuler R H. Distributed mass-balance an climate sensitivity modelling of Engabreen,Norway[J]. Annals of Glaciology. 2005, 42: 395-401.
    [46]李慧林,李忠勤,秦大河.冰川动力学模式基本原理和参数观测指南[M].气象出版社, 2009.
    [47] Liss M. Andreassen H E B K. Glacier mass-balance and length variation in Norway[J]. Annals of Glaciology. 2005, 42: 306-317.
    [48] Goelzer H, Huybrechts P, Loutre M F. Impact of Greenland and Antarctic ice sheet interactions on climate sensitivity[J]. Clim Dynam. 2010, 10: 457-471.
    [49] Hanssen-Bauer E J F. INCREASED PRECIPITATION IN THE NORWEGIAN ARCTIC:TRUE OR FALSE?[J]. Climatic Change. 2000, 46: 485-509.
    [50] Jana Woelfel R S F P. Microphytobenthos of Arctic Kongsfjorden(Svalbard,Norway):biomass and potential primary production along the shore line[J]. polar Biology. 2010, 33: 1239-1253.
    [51] Keith A. Brugger K A R M. Variation in glacier length and ice volume of Rabots Glacier,Sweden,in response to climate change,1910-2003[J]. Annals of Glaciology. 2005, 42: 180-188.
    [52] Oyvind. Lie S O D A. A theoretical approach to glacier equilibrium-line altitudes using meteorological data and glacier mass-balance records from southern Norway[J]. HOLOCENE. 2003, 13(3): 365-372.
    [53] Reid T D, Brock B W. An energy-balance model for debris-covered glaciers including heat conduction through the debris layer[J]. Journal of Glaciology. 2010, 56(199): 903-916.
    [54] Braithwaite. Roger J R S C B. Estimating equilibrium-line altitude(ELA) from glacier inventory data[J]. Annals of Glaciology. 2009, 50(53): 127-132.
    [55] Katherine C. Leonard A G F. Map-based methods for estimating glacier equilibrium-line altitudes[J]. Journal of Glaciology. 2003, 49(166): 329-336.
    [56] M. Shahgedanova V P A A. Long-term change,interannual and intra-seasonal variability in climate and glacier mass balance in the central Greater Caucasus,Russia[J]. Annals of GLaciology. 2007, 46: 355-361.
    [57] Martin Stuefer H R P S. Glacier Perito Moreno,Patagonia:climate sensitivities and glacier characteristics preceding the 2003/04 and 2005/06 damming events [J]. Journal of Glaciology. 2007, 53(180): 3-16.
    [58]张勇,刘时银.度日模型在冰川与积雪研究中的应用进展[J].冰川冻土. 2006, 28(1): 101-107.
    [59] Roger J. Braithwaite S C B R. Glaciological conditions in seven contrasting regions estimated with the degree-day model[J]. Annals of Glaciology. 2007, 46: 297-302.
    [60] Braithwaite R J. Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling[J]. Journal of Glaciology. 1995, 41: 153-160.
    [61] Mattias De Woul R H. Static mass-balance sensitivity of Arcitc glaciers and ice caps using a degree-day approach[J]. Annals of Glaciology. 2005, 42: 217-224.
    [62] Piero Guilizzoni A M A L. Records of environmental and climate changes during the late Holocene from Svalbard:palaeolimnology of Kongressvatnet[J]. J Paleolimnol. 2006, 36: 325-351.
    [63] Hodson A, Jack K, Brinkhaus M. Multi-year water and surface energy budget of a high latitude polythermal glacier: evidence for over-winter water storage in a dynamic subglacial reservoir[J]. Annals Of Glaciology. 2005, 42(1): 42-46.
    [64] Vivienne Raper J B W K. Interpretation of the anomalous growth of Austfonna,Svalbard,a large Arctic ice cap[J]. Annals of Glaciology. 2005, 42: 373-379.
    [65]施雅风.中国冰川概论[M].科学出版社, 1988.
    [66]王绍武,龚道溢.对气候变暖问题争议的分析[J].地理研究. 2001, 20(2): 153-159.
    [67] Oerlemans J. modelling the response of glaciers to climate warming[J]. Annals of Glaciology. 1998, 42: 249-257.
    [68] Per Holmlund P J R P. A re-analysis of the 58 year mass-balance record of Storglaciaren,Sweden[J]. Annals of GLaciology. 2005, 42: 389-394.
    [69] Popovnin. A34-year-long record of mass balance and geometric changes of the Djankuat Glacier,Caucasus[J]. Bulletin of Glaciological Research. 2005, 22: 121-134.
    [70] Andrew Wright J W M S. Modelling the impact of superimposed ice on the mass balance of an Arctic glacier under scenarios of future climate change[J]. Annals of Glaciology. 2005, 42: 277-283.
    [71]张占海等.冰冻圈的质量平衡[M].海洋出版社, 2010.
    [72] Rupper Summer R G. Glacier Change and Regional Climate:A Mass and Energy Balance Approach[J]. Journal of Climate. 2008, 21(20): 5384-5401.
    [73] Braithwaite R J. Mass-balance characteristics of arctic galciers[J]. Annals of GLaciology. 2005, 42: 225-229.
    [74] M. N. Koul R K G. Impact of inter-and intra-annual variation in weather parameters on mass balance and equilibrium line altitude of Naradu Glacier(Himachal Pradesh),NW Himalaya,India[J]. Climatic Change. 2010, 99: 119-139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700