钱营孜煤矿构造发育特征及复杂程度定量评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地质构造是影响矿井安全生产的主要地质因素,直接制约着生产计划的安排和采掘方式的选择。钱营孜煤矿为新建矿井,地质构造比较复杂且发育规律不清,给生产管理带来不利影响,为保障煤矿安全生产,深入开展矿井地质构造规律分析研究,进行地质构造成因机制分析及复杂程度分区评价,已成当务之急。
     论文通过分析整理采掘资料,以F22和F17断层为界将全矿井自西向东分为三个分区,研究了断层发育规律,得出矿井发育的断层类型有正断层、逆断层和枢纽断层,以正断层为主,占65%,逆断层较发育,断层规模以落差小于20m的中小断层为主;矿井内正断层切割逆断层,发育地垒、地堑、阶梯状和叠瓦状等断层组合,断层发育逐级控制;利用断层密度、断层强度和断裂分维值对断层发育强度进行定量分析,得出一区和三区断层密度和断裂分维值较大,二区较小。
     分析研究褶皱构造展布特征,得出矿井主体褶皱为向南东仰起的宽缓向斜。F25断层以西发育轴向东西的褶皱构造,F25断层以东发育轴向北东的褶皱构造,者大致以F25逆断层分隔。利用褶皱平面变形系数对褶皱构造变形程度进行定量分析,得出平面变形系数高值区基本都位于褶皱的轴部及其附近区域。
     分析研究钱营孜煤矿构造的形成期次,并根据矿井地质构造形态和组合规律分析了古构造应力场,得出矿区构造格架是印支期、燕山早期、燕山晚期和喜山晚期多期构造运动形成的结果,喜山早期构造运动对矿井构造影响不大。
     利用测井曲线并结合煤体结构宏观特征井下观察对32煤层煤体结构进行解译,分析了构造煤分布特征,得出三区构造煤发育最强烈,厚度普遍在0.3m以上,一区次之,二区构造煤发育较弱,构造煤发育强度与断裂分维值以及平面变形系数总体上呈现正相关关系。
     选取断层密度、断层强度、断裂分维值、褶皱平面变形系数和构造煤厚度五个评价指标,利用灰色模糊综合评价方法对钱营孜煤矿构造复杂程度进行定量评价,编制了构造复杂程度综合分区图,得出整个研究区以构造较简单区和构造较复杂区为主,构造简单区和构造复杂区占的比重较小,呈零星分布趋势,为煤矿采掘工程设计提供地质依据。
Geological structure is the main geological factors that affect mine safety production, it directly restricts the production plan arrangement and the choice of the ways of mining. Qian Ying Zi coal mine is a new mine, geological structure is complicated and development law is unclear, bring production management adverse effects to ensure coal mine safety production, making a thorough study on mine geology structure rule, mechanism analysis of geological tectonic formation and zoning evaluate of complicated degree, become an urgent task.
     By analyzing and arranging Qian Ying Zi coal mine's mining data, taking F22 and F17 fault for boundary all mine from west to east is divided into three regions, and study tectonic development rules based on this, obtained that mine development fault types are normal faults, reverse faults and hinge faults, normal faults are the main, accounting for 65%, reverse fault relatively developed,fault size uses small middle fault age that gap less than 20m as main faults; normal faults cut reverse faults in coal mine, fault combination such as development horst, graben, stepladder and imbricate, fault development is controlled step by step; quantitative analysis of fault development by using fault density, fault strength and fractal dimension, fault density and fractal dimension is larger in the first and third area, the second area is smaller.
     Analysis the character of fold structure exhibition, elicit that the main fold is width sustained syncline that lifted from south east. West of F25 fault developed EW direction fold structure, east of F25 fault developed NE direction fold structure the two is separated by F25 reverse fault. Quantitative analysis of fold deformation by using fold plane deformation coefficient, elicit that plane deformation coefficients high values are located in fold axis and its surrounding area.
     Analysis and research of Qian Ying Zi coal mine's structure formation times, and according to the mine geology tectonic form and combination rule analysis of ancient tectonic stress field, elicit that structural lattice frame is the results of indo-Chinese epoch and Yanshan early, late Yanshan period of tectonic movement and XiShan late forming, early Himalayan tectonic movement is little affected to mine tectonic.
     Interpretation of the 32 structure coal seam by using logging curve combined with observed macroscopic characteristics of underground coal structure, analysis tectonic coal distribution characteristics, elicit that the third area's tectonic coal development is the strongest, in general the thickness is more than 0.3m, the first area takes second place, tectonic coal development of the second area is relatively weak, tectonic coal development strength and fracture fractal dimension and the plane deformation coefficient presents positive correlation.
     Select fault density, fault strength and fracture fractal dimension, plane deformation coefficient and tectonic coal thickness five evaluation indexes, by using the grey fuzzy comprehensive evaluation method to quantitative evaluate Qian Ying Zi coal mine's tectonic complexity,make mine tectonic complexity comprehensive zoning maps, elicit that the entire study area take relatively simple structure and relatively complex structure as main, simple structure area and complex structure area take up a smaller proportion, show sporadic distribution trend, consistent with the production of exposed, provides geological basis for coal mining engineering design.
引文
[1]张跃,邹寿平,宿芬.模糊数学方法及其应用[M].北京:煤炭工业出版社,2005,1-5.
    [2]曹代勇,王佟,琚宜文等.中国煤田构造研究现状与展望[J].中国煤炭地质,2008(10).
    [3]李福文,司君杰.泉沟井田大中型断裂构造统计分析[J].山东煤炭科技,2003(4).
    [4]王桂梁等.论煤层流变[J].中国矿业大学学报,1988(3).
    [5]Stach E, Mackowsky M, Teichmuller M. Stach's Textbook of Coal Petrology[M]. Borntraeger, Stuttgart,1982.
    [6]R. J. Lisle,吴伟成译.确定剪应力方向的一种简易作图法[J].地质地球化学.1991(2).
    [7]H. Omer,门桂珍译.断层带的随机模型化与模拟[J].国外煤田地质,1991(4).
    [8]曹代勇,穆宣社.河北蔚县崔家寨井田构造复杂程度定量评价[J].地质力学学报,2000,6(4):88-94.
    [9]王俊庸.综采地质条件的设计评价.矿井地质(试刊)[J].1987.
    [10]詹才高,范念寒等.应用等性块段指数法定量划分华北煤矿勘探类型[J].煤炭地质与勘探,1985;5:16-24.
    [11]等性块段指数法在综采地质条件评价中的应用[J].同煤科技,2002,91(1):5-7.
    [12]徐杨,周延,孙鑫等.基于模糊层次分析法的矿井安全综合评价[J].中国安全科学学报2009(05).
    [13]王桂粱,龙荣生,徐凤银等.矿井构造预测[M].北京:煤炭工业出版社,1993.
    [14]徐凤银,郑守权,黄占兴.矿井构造的灰色预测与综合评价[J].煤田地质与勘探,1994(5).
    [15]朱宝龙,夏玉成.基于人人工神经网络的矿井构造定量评价[J].中国煤田地质,2001(03).
    [16]孙正义,高兴坤,曹锡玲.钻井卡钻事故预测及诊断专家系统模型的建立与实现[J].石油钻采工艺,1996(01).
    [17]刘光萍,王琨.多重关联分析与铀资源预测[J].成都理工大学学报(自然科学版),2005(6).
    [18]赵理中,付学军,翟建山.高产高效矿井地质条件的定量预测与检验模型[J].煤田地质与勘探,1998(04).
    [19]赵理中,付学军,李式范.煤矿开采地质条件的模糊综合评价预测与检验[J].山西煤炭管理干部学院学报,1999(01).
    [20]辛厚文.分形理论及其应用[M].合肥:中国科学技术大学出版社,1993.
    [21]徐志斌,谢和平,王继尧.分维—评价矿井断裂复杂程度的综合性指标[J].中国矿业大学学报,1996(3).
    [22]刘明举,何俊,刘希亮.断层分维特征与瓦斯突出的关系[J].焦作工学院学报,1998(06).
    [23]赵存明,石炳华,邢少春等.张小楼井田七煤未采区小断层定量预测[J].煤田地质与勘探,1995(08).
    [24]薛喜成.煤矿地质构造评价指标系统的建立与优选[J].煤炭技术,2010(2).
    [25]郝吉生,袁崇孚,张子戌.构造煤及其对煤与瓦斯突出的控制作用[J].焦作工学院学报,2000,19(6):404—406.
    [26]刘咸卫,曹运兴,刘瑞旬.正断层两盘的瓦斯突出分布特征及其地质成因浅析[J].煤炭学报,2000,25(6):571—575.
    [27]曹运兴,彭立世.顺煤层断层的基本特征及其地质意义[J].地质论评,1993,39(6):522-528.
    [28]张玉贵,张子敏,张小兵.构造煤演化的力化学作用机制[J].中国煤炭地质,2008(10).
    [29]王恩营,邵强,王红卫等.华北板块晚古生代煤层构造煤区域分布的大地构造控制及演化[J].煤矿安全,2010(2).
    [30]中国矿业学院物探教研室.中国煤田地球物理勘探[M].北京:煤炭工业出版社,1981.
    [31]PHILLIPSON,SANDIN E. Effects of late Paleozoic foreland deformation on underground coal mine ground instability, Illinois and Appalachian[J]. Int J Coal Geol,2005,64(1-2):3-19.
    [31]曹代勇,穆宣社,傅正辉等.为现代化矿井建设服务的地质构造定量研究技术[C].//世纪之交煤矿地质学术论文集.西安:西安地图出版社,1999.
    [32]曹代勇,周云霞,魏迎春.矿井地质构造定量评价信息系统的开发与应用[J].煤炭学报,2002,27(4):379-382.
    [33]贾建称,陈建,柴宏有等.矿井构造研究现状与发展趋势[J].煤炭科学技术,2008,36(10):72-77.
    [34]徐凤银,王桂梁.矿井构造预测与评价的发展途径[J].中国矿业大学学报,1995(24)
    [35]周云霞,曹代勇.矿井地质构造定量评价模型探讨[J].煤田地质与勘探,2001,29(2):16-18.
    [36]夏玉成,白红梅.断裂信息维在矿井构造相对复杂程度预测中的应用[J].湖南科技大学学报,2005(20):1-4.
    [37]夏玉成,王佟.煤炭开采地质条件量化预测技术及程序设计[M].西安:陕西科学技术出版社,2002.
    [38]VLADISLAV K. Computer mapping of faults in coal mining[J]. Int J Coal Geol, 2005,64(1-2):79-84.
    [39]HOWER J C, GREB S F. Geologic hazards in coal mining:Prediction and prevention[J]. Int J Coal Geol,2005,64 (1-2):1-2.
    [40]ZIOLKOWSKI A, LEROILL W E. A simple approach to high resolution seismic profiling for coal[J]. Geophysical Prospecting,1979(27):360-393.
    [41]阎海珠,朱炎铭,曹代勇.唐山矿岳胥区地质构造复杂性综合评价[c]//煤矿深部开采地质保障技术研究与应用.徐州:中国矿业大学出版社,2008.
    [42]张品刚,曹代勇,王强等.东欢坨矿构造特征及断裂构造定量研究[J].中国煤炭地质,2009,20(7):4-6.
    [43]张梁.地质灾害风险评价理论与方法[J].中国地质矿产经济,1996,4:40-45.
    [44]杨伦标,高英仪.模糊数学原理及其应用[M].华南理工大学出版社,1995.
    [45]刘衡秋,刘钦甫,孟召平.模糊综合评判在煤层顶板稳定性评价中的应用[J].煤田地质与勘探,2002,(4):18-20.
    [46]蒋良奎.模糊一致矩阵在层次分析法中的应用[J].上海海运学院学报,1998,19(2):55-60.
    [47]张吉军.模糊层次分析法(FAHP)[J].模糊系统与数学,2000,14(2):80-88.
    [48]吕跃进.基于模糊一致矩阵的模糊层次分析法的排序[J].模糊系统与数学,2002,16(2):79-85.
    [49]邓聚龙.灰色聚类基木方法[M].武吕,华中理土人学出版社,1987.
    [50]刘思峰,郭大榜,党耀国.灰色系统理论及其应用[M].北京,科学出版社,1999.
    [51]韩立岩,汗培庄.应用模糊数学(修订版)[M].北京:首都经济贸易大学出版社,1998.
    [52]黄崇福,王家鼎.模糊信息分析与利用[M].北京:北京师范大学出版社,1992.
    [53]王新洲,史中文,王树良.模糊空间信息处理[M].武汉大学出版社,2003.
    [54]朱志敏,沈冰,刘飞燕.辽宁阜新盆地煤层气地质条件模糊综合评判[J].中国地质灾害与防治学报,2006,17(3):77-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700