涡阳矿区煤炭资源条件探采对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭具有不可再生的特点。在现有技术条件下,如何提高资源采出率显得尤为重要。搞好探采对比,对指导矿井生产、合理利用资源、提高资源采出率均具有重要意义。
     论文通过对刘店矿、涡北矿回采地质资料和勘探地质资料的统计分析,得出刘店矿103采区、104采区、涡北一采区实际平均煤厚和勘探平均煤厚。通过对比分析,刘店矿103采区和涡北一采区实际平均煤厚小于勘探平均煤厚;104采区实际平均煤厚大于勘探平均煤厚。本文定性的分析了断层、褶皱以及顶板砂岩的冲刷作用对煤层厚度变化的影响。
     通过对刘店矿、涡北矿三维地震资料与回采地质资料的分析研究,以每Km长度上出现落差大于等于5m的断层断点数为评价指标,得出断裂构造对比差异。其中刘店矿103采区和104采区回采过程中的断点数为与三维地震勘探的断点数大致相同,差值为0.17。涡北矿一采区、二采区断点数对比差异较大,实际揭露的断点数为1.79,而三维地震勘探的断点数为0.8。
     利用分形理论,将刘店矿和涡北矿共划分了101个块段。以断层分维值为评价指标,对刘店矿和涡北矿落差大于等于5m的断层发育程度进行了定量评价。根据断裂构造发育程度与分维值之间的关系,将井田断裂构造发育程度分为四个等级,并最终得到断层发育程度分区图。对三维地震落差大于等于5m断层的分维值与生产揭露落差小于5m的断层断点数研究发现,随着断层分维值增大,每km长度上出现落差小于5m的断层断点数也随之增大。
     图[28]表[27]参[45]
Coal is our country's main energy which has renewable characteristics. Therefore, how to improve the resource recovery rate is very important. Doing well in the prospecting contrast has important significance in directing the mine production, reasonably using the resources and improving mining rate of resource. And it also has the instruction function to the productive supplementary exploration of coal mining area.
     This paper does a statistical analysis on the stoping and exploration of the geologic information in Liudian coal mine and Guobei coal mine, and obtains the the average and exploratory actual thickness of the coal in Mining Area103and104at Liudian coal mine and Mining Area1at Guobei coal mine. By comparison and analysis, the average actual thickness of the coal in Mining Area103and Mining Area1are less than the exploratory average thickness in there; and the average actual thickness of the coal is greater than the exploratory average thickness in Mining Area104. This paper does a qualitative analysis of the effect on thickness variation of coal bed by the scouring action of fault, fold and roof sandstone.
     Through analyzing and discussing of the3D seismic data and the stoping of the geologic information in Liudian coal mine and Guobei coal mine, and using the break points with the drop height in each kilometer being equal or greater than5meters as the evaluation index, we can obtain the contrastive differences of the fault structure. Among them, the break points in stoping process of Mining Area103and104at Liudian coal mine are approximately same with which in the3D seismic exploration, and the difference value is0.17. The contrastive differences of the break points in Mining Areal and2at Guobei coal mine is large, the break point in the actual production condition is1.79, while the the break point in the3D seismic exploration is0.8.
     Based on the fractal theory, we divide the Liudian coal mine and Guobei coal mine into101block sections. Using fault fractal dimensions as the evaluation index, we make a quantitative evaluation on the development degree of the the break points with the drop height being equal or greater than5meters in Liudian coal mine and Guobei coal mine. According to the relationship between the development degree of fault structure and the fractal dimension value, we divide the development degree of fault structure into four levels, and finally obtain the zone map of fault development degree. Studies of fractal dimension value of the3d seismic break points with the drop height being equal or greater than5meters and the fault break points with the actual production condition less than5meters found that the drop height less than5meters in each kilometer will also increase with the increase of the fractal dimension of faults.
     Figure [28] table [27] reference [45]
引文
[1]陈良立,刘永峰.平煤股份八矿探采对比[J].中州煤炭,2010,(8):39-43
    [2]赵鹏大.矿产勘查理论与方法[M].武汉:中国地质大学出版社,2006
    [3]赵刚,陈铁光,崔大勇.红透山铜矿探采资料对比浅析[J].有色矿冶,2010,26(1):15-17
    [4]肖金成.浅谈湘南煤田探采对比方法及意义[J].2007,35(10):94-97
    [5]肖永洲,刘殿元,施凤刚等.青龙煤矿采探对比及构造分析[J].中国煤炭地质,2008,20(6):81-83
    [6]牛志刚,徐连利.河南登封新登煤矿水文地质条件探采对比[J].中国煤田地质,2005,17(6):20-22
    [7]柳立群,赵雪芹,张喜平.某矿体探采对比及地质储量正变原因的分析[J].有色金属,2009,61(1):21-24
    [8]隋丽华.石拐矿区长汉沟煤矿探采对比[J].阴山学刊,2001(6):58-59
    [9]窦文明.新密市超化煤矿探采资料对比[J].能源技术与管理,2006,(5):40-41.
    [10]王世彬,郭厚亮.煤层厚度变化地质成因分析[J].煤炭技术,2005,24(6):6-7
    [11]阳伟,苏时才,陈长永等.四川绿水洞井田煤层稳定性探采对比及其影响因素探讨[J]中国煤炭地质,2010.22(10):1-4
    [12]杨中乾,姚香.湖北阳新赤马山铜矿床探采对比规律分析[J].有色金属(矿山部分),2005,4:17-19
    [13]刘程,李向东,杨守国.地质构造对煤层厚度的影研究[J].煤矿安全,2008,5(05):14-16
    [14]杨荣丰,刘新华,曹运江.影响红卫矿区煤与瓦斯突出的地质因素浅析[J].煤炭科学技术,2006.34(11):72-74
    [15]琚宜文,王桂梁,胡超.海孜煤矿构造变形及其对煤厚变化的控制作用[J].中国矿业大学学报,2002.31(4):374-379
    [16]曹代勇,刘钦甫,彭苏萍,等.超化井田煤厚变化的构造控制因素研究[J].中国矿业大学学报,1998.27(4):393-397
    [17]薛庆远.徐州九里山矿区山西组沉积特征和煤厚变化规律[J].中国矿业大学学报,1992,21(2):59-69
    [18]高荣斌,贺志强,来争武,等.豫西新安煤田煤层厚度变化规律及其控制因素[J].煤田地质与勘探,2011,39(4):13-15
    [19]陈平,陈永民,强孟东.充州煤田兴隆庄煤矿探采对比研究[J].中国煤田地质,2007,19(4):25-28
    [20]李新敏.探采结合扩大生产规模的生产实践[J].中国矿山工程,2009,38(3):17-18
    [21]彭苏萍,程桦.煤矿安全高效开采地质保障体系[M].北京:煤炭工业出版社,2001.103-109
    [22]王建成.三维地震采勘对比及再分析[J].科技情报开发与经济,2011,21(16):185-187
    [23]程建远,赵伟,曹丁涛,等.煤矿采区三维地震探采对比效果的分析与思考[J].中国煤炭地质,2010,22(18):67-72
    [24]王言剑.采区三维地震勘探的实践与认识[J].煤矿开采,2007,12(2)17-18
    [25]吕霖.淮南矿区三维地震探采对比效果与实例分析[J].煤田地质与勘探,2010,38(4):69-71
    [26]张均,周乔伟.川西北地区控矿断裂的分形特征及其预测意义[J].长春科技大学学报,2000,30(4):342-346
    [27]李本亮,张喜慧,孙岩,等.断裂分维值对矿产资源预测的意义[J]高校地质学报,1999,5(1):17-21
    [28]Mandelbrot B B. Self-affine fractals and fractal dimension[J]. Physica Scripta, 1985,32:257-260
    [29]Turcotte D L. Implication of chaos, scale-invariance and fractal statistics in geology[J]. Global and Planetary Change,1990,89:301-308
    [30]Vignes-Adler M, Page A L, Adler P M. Fractal analysis of fracturing in two African regions, from satellite imagery to ground scale[J]. Tectonophysics,1991,196:69-86
    [31]刘玉林.分形理论在霍林河煤田构造复杂程度评价中的应用[J].煤炭技术,2004,23(11):91-93
    [32]徐志斌,王继尧,张大顺,等.煤矿断层网络复杂程度的分维描述[J].煤炭学报,1996,21(4):358-363
    [33]Okubo P G. Keiiti Aki. Fractal geometry in the San Andreas fault system [J]. Journal of Geophysics Research,1987.92(B1):345-355
    [34]陈江峰,胡诚.煤中断裂分布的分形特征[J].煤田地质与勘探,1999.27(1):7-9
    [35]Cello G. Fractal analysis of a Quaternary fault array in the central Apennines, Italy [J]. Journal of Structural Geology.1997,19(7):945-953
    [36]王国华,王猛,崔新瑞.分形研究在唐山煤矿铁三、铁四区构造预测中的应用[J].中国煤田地质,2006,18(3):11-13
    [37]谢焱石,谭凯旋.断裂构造的分形研究及其地质应用[J].地质地球化学,2002,30(1):71-76
    [38]徐志斌,谢和平,王继尧.分维—评价矿井断裂复杂程度的综合性指标[J].中国矿业大学学报,1996,25(3):11-15
    [39]郭恒隆.电性放射性测井曲线在陕北侏罗纪煤田中的物性反映特征及其解释规律[J].中国煤炭地质,2010,(22):86-89
    [40]王遂正,张兴岩.分地层法构建声波及测井曲线[J].中国煤炭地质,2009,(S2).
    [41]程东,沈芳,杨宽.岩性探测在煤田测井分析中的应用—以沁水煤田韩庄井田为例[J].华北地质矿产杂志,1996,11(1):122-124
    [42]黄兰英,李壮福,杨景芬,等.煤层厚度预测技术评述与展望[J].能源技术与管理,2011,(4):9-11
    [43]李富,刘树才,曹军,等.高密度电阻率法在下程勘察中的应用[J].工程地球物理学报,2006,3(2):119-120
    [44]赵恒勇,李胜良.煤田测井中煤岩层的定性及定厚解释技术[J].中国西部科技,2010,9(2):15-17
    [45]张应文,王亮,王班友,朱洪毅,等.煤田测井中煤层的定性及定厚解释技术应用[J].物探与化探,2008,32(1):49-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700