刘店煤矿10煤赋存特征与综采块段选择研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层沉积环境是煤层赋存状态的先决条件,它不仅直接控制着煤的形成与分布,而且对煤层厚度、结构、顶底板岩性等有重要影响。煤形成后,由于地壳运动与河流的冲刷作用,煤层的原生结构遭到破坏,即煤层的厚度、结构发生变化,由于岩浆的侵蚀作用,局部煤层变质为天然焦。
     本文从沉积环境和后期构造两个方面来研究刘店煤矿10煤层的赋存特征;用综合模糊评价法对煤层构造复杂程度进行定量评价;用等性块段指数法评价综采地质条件,具体原理方法及取得的成果如下:
     1.运用沉积学和岩相古地理学方法对刘店煤矿10煤层沉积环境进行分析,得出本区为三角洲平原环境;采用煤厚变异系数和可采指数对煤层稳定性进行评价,得到10煤层为较稳定煤层。
     2.见煤钻孔显示的煤层厚度比较均一,煤层较稳定;通过采探对比,勘探和生产两个时期发现的断层产状、分布有一定的出入;尽管单一见煤点煤层厚度比较稳定,但是由于煤层受到断层的切割作用,煤层不连续。
     3.井田内断层较发育,断层走向以北东、北北东为主,倾向以北西、北北西为主,勘探和生产揭露出的正断层较多,逆断层较少,大小断层错综复杂,大中型断层控制着次级中小型断层;褶皱发育次之,井田整体上为倾向北北西、向南东仰起的单斜构造,区内发育有多个次级背斜和次级向斜;岩浆岩对10煤层有局部影响,造成煤层厚度变薄,甚至变质为天然焦;通过钻孔测井曲线对煤体结构进行解译,得出10煤层构造煤较发育的结论。
     4.运用灰色模糊综合评价法,采用断层密度、断层强度、断裂分维值、平面变形系数和岩浆岩影响强度指数为指标对10煤层构造发育复杂程度进行定量评价,得出10煤层属于构造复杂—极复杂类型。
     5.运用等性块段指数法,采用构造指数和煤层指数对井田西部块段10煤层进行综采地质条件评价,得出了综采适宜性较差的结论。图[67]表[34]参考文献[77]
Sedimentary environment is prerequisite of coal seam's occurrence state.It not only directly control the formation and distribution of the coal,but aslo significant effect the coal's thickness,structure and top-floor rock.after the coal is formed. Because of crustal movement and the river flushing action, the primary structure of the coal seam destroyed,that is thickness and structure of the coal seam changed. Because lava erosion action, so that the coal metamorphism for natural focus inlocality.
     In this paper,we study the occurrence characteristics of10coal seam in Liu Dian coal mine from sedimentary environment and later structure aspects;Use grey fuzzy comprehensive evaluation method to quantitative evaluate10coal seam's structure development level;Use Equi-block indexation method to evaluate10coal seam's geological conditions of Fully Mechanized Mining, the specific methods and the results obtained as follows:
     1. Use sedimentation and lithofacies ancient geography method to analysis10coal seam's sedimentary environment in Liu Dian coal mine,and come to a conclusion that this area used to be delta plain environment; Using the coal thickness variation coefficient and recoverable index to evaluate the stability of coal seam,and draw a conclusion that10coal seam is stable.
     2. Thickness of see coal drilling are more uniform. coal seam is stable. through exploration and exploitation comparison.there's a discrepancy in faults's status and distribution at exploration and production two times; Despite the coal seam's thickness of the single see coal point is relatively stable. But as a result of the coal seam under the function of fault cutting, seam is not continuous.
     3. The faults in mine field are very development. the faults's strike is to the north-east and north-north-east mainly,it's tend to the north-west and north-north-west mainly. More normal faults are exposed through exploration and production, reverse faults rarely. Big faults and small faults intricate, The large-medium-sized faults control subprime small-medium faults; next is the flods development. mine field is a inclined structure whose strike is north-north-west and up to south east, The zone development with some subsidiary anticline and syncline; The influence of magmatic rocks to10coal seam inlocality, caused coal thickness thin and even metamorphic for nature focus mainly; Through the drilling logging curve to interpret coal body structure, come to the conclusion that tectonic coal of10coal seam is very development.
     4. Use grey fuzzy comprehensive evaluation method and select fault density, fault strength, fractal dimension, planar deformation coefficients and magmatic rock impact intensity index for evaluation index to quantitative evaluate10coal seam's structure development level, and come to the conclusion that10coal seam's structure belongs to complex-extremely complex type.
     5. Use Equi-block indexation method and select structural index and coal seam index for evaluation index to evaluate10coal seam's geological conditions of Fully Mechanized Mining at western Liu Dian coal mine,come to the conclusion that the condition of Fully Mechanized Mining is bad. Figure [67] table [34] reference [77]
引文
[1]陈秉麟.陆相地层的沉积旋回[J].大庆石油学院学报,1980(02):76-80
    [2]邵龙义,窦建伟,张鹏飞.含煤岩系沉积学和层序地层学研究现状和展望[J].煤田地质与勘探,1998(1):4-9.
    [3]彭苏萍.角洲的沉积特征与沉积模式[J].煤炭学报,1994,19(1):89-97.
    [4]陈钟惠,马晋贤,张守良,武法东.鄂尔多斯盆地东缘晚古生代含煤岩系的沉积环境和聚煤规律.武汉:中国地质大学出版社,1989:13-14,66-67.
    [5]宋立军,李增学,吴冲龙等.安徽淮北煤田二叠系沉积环境与聚煤规律分析[J].煤田地质与勘探,2004,32(5):1-5.
    [6]李增学.实用矿井地质研究—方法与进展[M].北京:地质出版社,1993.
    [7]张韬.中国主要聚煤期沉积环境与聚煤规律[M].北京:地质出版社,1995:69-92.
    [8]E.Stach, et al.Stach's Textbook of coal Petrology,3rd ed, Gebruder Borntraeger, Berlin, Stuttgart, 1982:535.
    [9]M oorL R.The eclogy of peat-forming processes:a review. internat J Coal Geol,1989,12:89-103.
    [10]GallowayK E, HobdayD K. Terrigenous Clastic Depositional Systems,Application to Fossil Fuel and Groundwater Resources. New York:Springer-Verlag,1996:489
    [11]MccbeP J. Depositional environments of coal and coal-bearing startaIn:Rahmani R A.Flores FR.eds.Sedimentology of Coal and Coal-Bearing Sequences.Interant Associ Sedimentologists Special Paper,1984,7:13-32
    [12]Rohmani, R.A,F1ores,R.M北美洲含煤地层沉积学历史回顾,李濂清等译:《煤和含煤地层沉积学》,地质出版社,1988.
    [13]Desa, C.S. and Zaman, M.M. Lightner, J.G and Siriwardane H.J.(1984) Thin-Layer element for interfaces and joints, int. J. Numer. Anal. Methods Geomech. Vol.8, pp.15-26.
    [14]Elliott R E. The mine geologist and risk reduction.The Mining Engingeer[J].1974,(133):173-184.
    [15]Hylber D V. Developing geological structural criteria fof predicting unstable mine roof. Bumines Open File Rept 9-78[J],United States Department of the Interior,1977.
    [16]王俊庸.综采地质条件的设计评价[J].矿井地质(试刊),1987.
    [17]曹代勇,王佟,琚宜文等.中国煤田构造研究现状与展望[J].中国煤炭地质,2008,20(10):2-6.
    [18]黄立华.渭北煤田东缘韩城构造带内各构造类型的确定及其意义[J].山西煤炭技术,1989(2):49-51.
    [19]杨新庆.宁阳县石屯煤矿小构造展布规律分析[N].山东矿业学院学报.1989(2).
    [20]王汝盛.焦作矿区矿井地质分析[J].煤田地质与勘探,1990(6):19-23.
    [21]赵普明.井陉贾庄井田小构造展布规律研究[J].煤田地质与勘探,1991(3):164-171
    [22]胡树春.中小构造的预测预报在七矿建井地质工作中的意义[J].浙江煤田地质,1986(2).
    [23]高永成.铁法煤田晓南井田构造分析[N].阜新矿业学院学报,1987,4(6):111-120.
    [24]李春虎.杨庄矿中小型断层特征及应用[J].煤炭科学技术,1988(6).
    [25]李增学.新坟煤田协庄井田断裂构造特征及有关因素分析[N].山东矿业学院报,1989(2).
    [26]唐洪友.天府矿区小型地质构造预测方法[J].矿井地质,1990(1):45-53.
    [27]唐修义.煤层形成机制及其对开采的影响(上)[J].江苏煤炭,1991(2).
    [28]张祖银.永城煤田城郊矿区褶皱构造的特征及形成机制[J].煤田地质与勘探,1986(3):17-21.
    [29]李福文,司君杰.泉沟井田大中型断裂构造统计分析[J].山东煤炭科技,2003(4):39-40.
    [30]王桂梁.论煤层流变[J].中国矿业大学学报,1988(3):16-25.
    [31]徐凤银,郑守权,黄占兴.矿井构造的灰色预测与综合评价[J].煤田地质与勘探,1994,22(5):23-27.
    [32]郭聚鼎.关于渑池陈村矿井探采对比[J].煤田地质经济技术,1988(1).
    [33]李海扬.钟家山煤矿河东立井探采对比浅析[J].江西煤炭科技,1988(3).
    [34]宋瑞林.河南芦沟煤矿探采对比[J].煤田地质与勘探,1988(6):32-36.
    [35]B.E.格利果列夫等.刘连玎译,对构造破坏的煤田进行工业评价[J].煤田地质与勘探,1986(1).
    [36]R.J.Lisle确定剪应力方向的一种简易作图法[J].地质地球化学,1991(2):36-38.
    [37]H.Omer,丁桂珍译.断层带的随机模型化与模拟[J].国外煤田地质,1991(4):27-32.
    [38]赵理中,付学军,翟建山.高产高效矿井地质条件的定量预测与检验模型[J].煤田地质与勘探,1998,26(04):21-25.
    [39]余保源.判别分析在广东北部煤田普查工作中的应用[J].煤炭科学技术,1981(05):44-48.
    [40]穆宣社.蔚县矿区构造特征研究[D].北京:中国矿业(北京校区),1999.
    [41]徐杨,周延,孙鑫等.基于模糊层次分析法的矿井安全综合评价[N].中国安全科学学报,2009,19(05):147-152.
    [42]孙宝铮,姜林奇.矿井设计的灰色关联度综合评价法[N].阜新矿业学院报,1994,13(2):1-3.
    [43]杨有龙,张辉等.煤层数理统计在勘查中的应用[J].西部探矿工程,2007,4:67-68.
    [44]詹才高,范念寒等.应用等性块段指数法定量划分华北煤矿勘探类型[J].煤炭地质与勘探,1985,5:16-24.
    [45]王杜粱,龙荣生,徐凤银等.矿井构造预测[M].北京:煤炭工业出版社,1993.
    [46]张跃,邹寿平,宿芬.模糊数学方法及其应用[M].北京:煤炭工业出版社,2005:1-5.
    [47]金升灿.灰色关联分析在决策中的应用[J].煤矿机械,2005(02):136-137.
    [48]刘光萍,王琨.多重关联分析与铀资源预测[J].成都理工大学学报(自然科学版),2005,32(6):565-568.
    [49]高文华,杨林德.模糊综合评判法在综采地质条件评价中的应用[J].系统上程理论与实践,2001,(12):117-123.
    [50]彭华.等性块段指数法在综采地质条件评价中的应用[J].同煤科技,2002,(01):5-7.
    [51]朱宝龙,夏玉成.基于人工神经网络的矿井构造定量评价[J].中国煤田地质,2001,13(03):73-74.
    [52]朱宝龙,夏玉成.东坡井田矿井构造的人工神经网络定量评价[N].辽宁工程技术大学学报(自然科学版),2001,20(03):281-284.
    [53]辛厚文.分形理论及其应用[M].合肥:中国科学技术大学出版社,1993.
    [54]徐志斌,谢和平,王继尧.分维—评价矿井断裂复杂程度的综合性指标[J].中国矿业大学学报,1996,25(3):11-15.
    [55]刘玉林.分形理论在霍林河煤田构造复杂程度评价中的应用[J].煤炭技术,2004,23(11):92-93.
    [56]王国华,王猛等.分形研究在唐山煤矿铁三、铁四区构造预测中的应用[J].中国煤田地质,2006,18(3):12-13.
    [57]姚多喜,任印法等.基于分形理论的孙疃矿10煤底板岩体结构类型划分[J].矿业安全与环保,2007,34(6):26-28.
    [58]鞠玮,侯贵廷等.塔中Ⅰ号断裂带北段构造裂缝而密度与分形统计[J].地学前缘,2011,18(3):318-323.
    [59]王卫,梁红侠.刘店煤田煤岩层对比[J].煤炭技术,2010,29(11):122-123.
    [60]刘丙祥,刘桂建等.淮北煤田刘店井田含煤岩系沉积特征及主煤层对比研究[J].中国煤炭地质,2009,21(9):7-10.
    [61]袁兴全.刘店煤矿首采工作而1044采场围岩控制技术研究[J].能源技术与管理,2010(6):29-30.
    [62]安徽省地质矿产勘查局325地质队.安徽省涡阳县刘店煤矿勘探地质报告[R].淮北:安徽省地质矿产勘查局325地质队,2004.
    [63]安徽省地质矿产勘查局325地质队.安徽省涡阳县刘店煤矿勘探地质报告电子版[R].淮北:安徽省地质矿产勘查局325地质队,2005.
    [64]李永雷,王显明,别立珍.煤层稳定性判定主要参数选用的探讨[J].山东煤炭科技,2008(2):35-36.
    [65]煤炭工业部.矿井地质规程[M].北京:煤炭工业出版社,1984.
    [66]王强.煤层稳定性评价[J].煤矿现代化,2004,60(3):26-27.
    [67]阎严.关于煤层稳定性评价方法的探讨[J].企业科技与发展,2008(10):209-210.
    [68]乔和平.变概比在研究神木矿区煤层稳定性中的应用[J].陕西煤炭技术,1995(1):38-40.
    [69]王强.煤层稳定性评价程序[J].煤矿现代化,2004(3):26-27.
    [70]王定武.利用模拟测井曲线判识构造煤的研究[J].中国煤田地质,1997,9(4):70-73.
    [71]杜伯仁.分形(FRACTAL)理论在地学中的应用简介[R].地质科技情报,1991,10(1):69-73.
    [72]毕先梅.分形理论在构造地质中的应用/全国第一届分形理论及应用学术讨论文集[C].成都:四川大学出版社,1989.
    [73]刘莹,胡敏等.分形理论及其应用[J].江西科学,2006,24(2):205-209.
    [74]K.Falconer,曾文曲.分形几何—数学基础及其应用[M].沈阳:东北大学出版社,1993.
    [75]张飞燕,陈晓山.分形概念及其在构造地质研究中的应用[J].中国煤炭地质,2008,20(03):16-19.
    [76]刘坚,许祥左等.试用等性块段指数法确定夹河煤矿矿井地质条件类别[J].煤田地质与勘探,1990(3):28-34.
    [77]陶长辉等.模糊数学—等性块段法评价矿井地质条件的数学模型及其应用[J].江苏煤炭,1990(2):30-33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700