含损伤热粘塑性本构数值算法和铝锂合金动态响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文紧密结合国家自然科学基金项目“复合冲击载荷下铝锂合金应力波传播特性及层裂准则研究”(基金号:10272097),在实验研究的基础上通过理论分析和数值模拟等多种手段相结合的方法,系统地研究了国产新型铝锂合金的动态力学性能、应力波传播和层裂问题。全文包括热力率耦合的含损伤热粘塑性动态本构关系及本构算法研究,高压状态方程研究,损伤演化及层裂准则研究,数值计算程序开发及数值模拟方法研究,复合应力波传播及层裂特性研究。其主要内容包括以下几个方面:
     1、含损伤的热粘塑性本构关系及本构的数值算法研究。以冲击动力学中的粘塑性本构计算的需要为背景,分析了多耦合因素含损伤热粘塑性本构关系的一般形式和几种典型常用形式,给出了本构关系严格的增量型计算公式及相应的计算流程;提出了适用于一般的多耦合因素非线性本构关系的计及弹性应变影响的半径回归本构算法,并比较和分析了半径回归算法与严格增量算法之间的计算流程和特点;以理论和实验相结合的方法建立了新型铝锂合金材料的热、力、率、损伤耦合型的动态本构关系,并以不同温度不同应变率下MTS和SHPB实验结果为基础,采用新的拟合方法确定了铝锂合金材料的本构参数;研究了铝锂合金绝热熵增型Hugoniot状态方程,并根据铝锂合金靶板撞击实验结果得到了状态方程的材料参数。
     2、材料的损伤演化方程和层裂准则研究。以损伤力学和波动力学为指导,通过细观统计和唯象分析相结合的手段并采用新的推导方法建立了基于材料微观损伤的材料损伤演化方程和微观层裂准则,并以此为依据推导了工程上几种常用的宏观层裂准则,并分析了各参数的物理意义;给出了一种以实验、理论和计算相结合,通过系统地数值模拟由实验测量得到的自由面速度时程曲线确定材料损伤演化方程和层裂准则参数的方法;提出了一种新的评价层裂计算结果与实验结果吻合度的指标,并通过损伤演化方程各参数对层裂信号影响的详细分析,建立了一种确定损伤演化方程参数的优选原则;利用所提出的方法和优选原则确定了铝锂合金材料损伤演化方程和层裂准则的有关材料参数,从而也得到了几种工程层裂准则中的有关参数,并根据不同撞击速度的计算结果得出了一些关于层裂效应的有工程指导意义的结论。
     3、一维复合应力波及层裂的数值模拟研究。从研究铝锂合金平板在压剪联合作用下的复合应力波层裂效应入手,建立了包括三种不同本构算法的一维复合应力波有限差分计算程序;首次尝试性地将切应力项嵌入到损伤演化方程内研究了切应力对损伤演化和层裂的影响,并运用数值模拟的方法,通过采用不同的切
This paper is correlative with "Research on stress wave propagation characteristics and spallation criterion of Al-Li Alloys under combined impact loadings" which is supported by the National Nature Science Foundation of China (10272097). Because of their special impact ductility and good high-temperture bearing propeterities, the Al-Li alloys have been getting into wider and wider uses as a primary material in the field of spaceflight and avigation. This paper has carried out the research on the dynamic mechanical behavior and properties of AL-LI alloys by the experimental, theoretical and numerical ways. The paper mainly include: thermal-mechanical-rate-damage coupling dynamic constitutive relation, high pressure state equation, the damage evolution equation and the spallation criterion, numerical simulations and combined stress wave propagation rules.
    About constitutive relation and numerical method. Firstly, on the modified Drucker's postulate and theory of internal variables in the constitutive relations, the universal form of the damaged thermo-visco-plastic incremental constitutive relations and the computational routine are established. This constitutive relation can cover various kinds of plastic hardening (softening) behaviors, thermo-softening behaviors, damage-softening behaviors and their coupling effects between each other. Secondly, a strictly theoretical testification of the better method of radius regression is given. Thirdly, this paper has researched into the thermal-mechanical-rate-damage coupling propeties of Al-li alloys under combined impact loadings. Especailly the limit strain rate softening effect(negative sensitivity of the materials to strain rate) is found, and the scientific concept of the limit strain rate softening is presented. Lastly, We have established the high pressure state eqution and dynamic constitutive relation with limit strain rate softening and temperature softening effects.
    About the damage evolution equation and the spallation criterion. We present a new kind form of damage evolution equation by the method of phenomenological analysis and microscopic statistics, and on the basis of this we have established several spallation criterion that is used easily in engineering. We present a method by which the damage evolution equation and the spallation criterion can be established by the combination of experiment, theory and numerical simulations. With our method the damage evolution equation and spallation criterion of Al-Li alloys has been estabished. By the numerical simulations of the free surface velocity histories
引文
1. Balmuth E S,Chellman D J.The 4th International Conference on Aluminum Alloys,1994
    2. E J Lavernia, N J Grand. Journal of Materials Science, 1987, 22:521
    3. R Grimes, A J Cornish, W S Miller. Metals and Materials, 1985, 1 : 357
    4. W S Miller, J White, D J Lord. In: Proc of 4th Al-Li Conf., 1987:139
    5.黄兰萍,郑子樵,李世晨等。铝锂合金的研究与应用,材料导报,2002,16(5):20-23
    6.尹登峰,郑子樵。铝锂合金研究开发的历史与现状,材料导报,2003,17(2):18-20
    7.扬守杰,陆政,苏杉等。铝锂合金研究进展,材料工程,2001,5:44—47
    8.魏建锋,何明。铝锂合金研制进展,稀有金属材料与工程,1994,22(1):1—6
    9.熊焕。低温储箱及铝锂合金的应用,导弹与航天运载技术,2001,6:32—41
    10.吕宏军。铝锂合金超塑性成型及其力学分析,硕士学位论文,中国科学技术大学,1996
    11.郭杨。铝锂合金材料动态力学特性的实验和理论研究,博士学位论文,中国科学技术大学,2003
    12. Drucker, D,C,Proc.1st U.S.Nat.Congr.of.Appl.Mech.,(1952),481
    13. Drucker, D,C,Quart.Appl.Math., 14(1956),35
    14.(中译本:伊留辛,《塑性》,王振常译,建筑工业出版社,1958)
    15.李永池。材料的塑性行为及其波动和层裂效应,塑性力学和地球动力学文集(余同希,王大钧编),北京大学出版社,1990
    16. Clark D S, Duwez P E. The influence of strain-rate on some tensile properties of steel. ASTM, 1950:560~575
    17. Johnson J E, Wood D S, Clark D S. Delayed yielding in annealed lowcarbon steel under compression impact. Proc Amer Soc Testing Material, 1953, 53:755
    18. Lindholm U S. Some experiments with the split hopkinson pressure bar. J Mech Phys Solids, 1964, 12:317~335
    19. Lindholm U S. Dynamic deformation of metals. In: Behavior of Materials under Dynamic Loading. New York: ASME, 1965
    20. Klepaczko J J. Mech. Phys. Solid, 1968, 16:255~265
    21. Edingtom J w. Phil. Mag. 1969, 19:1189
    22. DowlingA R, Harding J, Campbell J D. J. Inst. Met. 1970, 98:215
    23. Nemat-Nasser S, Li Y L., 1997. Flow stress of polycrystals with application to OFHC Cu. Acta Meter. 46, 565-577
    24. Nemat-Nasser S, Issacs J B. Direct measurement of isothermal flow stress of metals at elevated temperatures and high strain rates with application to Ta and Ta-W alloys. Acta Materialia Volume: 45, Issue: 3, March, 1997, pp. 907-919
    25. Kapoor, R. Nemat-Nasser S. 1998. High-rate deformation of single crystal tantalum: temperature dependence and latent hardening. Acta Meter. Vol40, 2:159-164
    26. Sarma V, Nemat-Nasser S. Modeling the strain-rate dependence of fatigue life of hot-pressed silicon nitride Mechanics of Materials Volume: 29, Issue: 3-4, August, 1998, pp. 253-273
    27. Nemat-Nasser S, Guo W G. Cheng J.Y. 1999. Mechanical properties and deformation mechanisms of a commercially pure titanium. ACTA Meter. 47, 3705-3720
    28. Nemat-Nasser S, Guo W G. High strain-rate response of commercially pure vanadium. Mechanics of Materials Volume: 32, Issue: 4, April, 2000, pp. 243-260
    29. Nemat-Nasser S, Guo W G. Flow stress of commercially pure niobium over a broad range of temperatures and strain rates. Materials Science and Engineering: A Volume: 284, Issue: 1-2, May 31, 2000, pp. 202-210
    30. Nemat-Nasser S. Kapoor, R. Deformation behavior of tantalum and a tantalum tungsten alloy. International Journal of Plasticity Volume: 17, Issue: 10, October, 2001, pp. 1351-1366
    31. Cheng J Y, Nemat-Nasser S, Guo WG., 2001. A unified constitutive model for strain-rate and temperature dependent behavior of molybdenum. Mechanics of materials. 33,603-616
    32. Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strain rate and high temperatures. Proceedings of the Seventh international Symposium on Ballistics, The Hague, The Netherlands, 1983, pp: 541~548
    33.杨桂通。塑性动力学(新版)。高等教育出版社,北京,2000。
    34. Bingham E C. Fluidity and Plasticity. McGraw Hill. New York. t922
    35. 1948, T12
    36. Malvern L E. Plastic Wave Propagation in a Bar as Material Exhibiting a Strain-rate Effect. Q. Appl. Math. 1951. Vol18:405
    37. Perzyna P. The constitutive equations for rate sensitive plastic materials. Quart. Appl. Math. 1963, 20:321
    38.范良藻。材料高速变形时的动力松弛性质及一维杆中的塑性波。力学学报,1984,Vol7
    39. Cristescu N. Probleme dynamic in teoria plasticitatu. Ed. Tehnica. Bucuresti. 1958
    40. Cristescu N. Dynamic Plasticity. North-Halland Pub. Co. Amsterdam. 1967
    41. Cristescu N. A procedure for determining the constitutive equations of material exhibiting both time-dependent and time-independent plasticity. Int. J. Solids Structure. 1978 Vol8:511~531
    42. Cristescu N. Suliciu I. Viscoplasticity. Martinus Nijhoff Publisher. 1982
    43. K.Kobayashi,A.Nakao,S.Hashimoto,G.O.zhou,"High Strain Rate Tensile Characteristics of A1-Li Alloys with Various Microstructures",Journal de physigue colloque c3. Pp.315-319(1988)
    44.周光泉,程经毅,“铝锂合金应变率负敏感效应及动态韧性现象”,爆炸与冲击,vol.9(3),PP.193-198,(1989)
    45.田兰桥,C.Sturt,B.Dodd,“铝锂合金动态扭转实验研究”,爆炸与冲击,vol.12(1),pp.68-76,(1992)
    46. T.Kobayashi. Strength and Fracture of Aluminum Alloys. Materials Science and Engineering, A280(2000): 8-16
    47. B.H. Tian, Y.G. Zhang, C.Q. Chen , Deformation behavior of Al-Li single crystals, Materials Letters 34 (1998) 383-386
    48. S.S. Menon, H.J. Rack, Flow stability of binary Al-Li alloys, Materials Science and Engineering ,A297 (2001) 244-255
    49. Arild H. Clausen, Tore B.rvik, Odd S. Hopperstad, Ahmed Benallal, Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality, Materials Science and Engineering A364 (2004) 260-C272
    50.郭杨,李永池,姚磊等。铝锂合金材料的极限应变率软化特性研究,爆炸与冲击,Vol.24(1):54-58,2004.1
    51.胡时胜。材料动力学,中国科学技术大学5系,2002。
    52. Bridgman P.W, The Physics of High Pressure, G Bell and Sons, London(1949)
    53.李永池,郭扬,谭福利等。铝锂合金材料状态方程的研究,高压物理学报,Vol.17(2):81-87.2003.6
    54.余天庆,钱济成,损伤理论及其应用,国防工业出版社,1993。
    55.黄筑平等,“材料的动态损伤”,《塑性力学近代进展与展望》,北京大学,1992。
    56. D.R.Curran, L.Seaman. and D.A.Shocky, Phys.Rep. 147,253(1987).
    57. Lynn Seaman et al., Computational models for ductile and brittle fracture, J. Appl. Phys., 47(11)(1976).
    58. Perzyna, P. , 1984, ZAMP, 35, pp. 848-867.
    59. Perzyna, P. , 1986, Int. J. Solids Struct. , 22, pp. 797-818.
    60. Perzyna, P., 1989, in 《Advances in plasticity, 1989》, eds: Khan. A. S. , & Tokuda, M., Pergamon.
    61.封加波,金属动态延性破坏的损伤度函数模型,博士学位论文,北京理工大学,1992。
    62.李永池等,内爆炸载荷下圆管变形、损伤和破坏规律的研究,力学学报,31(4)(1999)。
    63.张伟,含损伤塑性本构关系的研究及在柱壳破裂问题中的应用,硕士学位论文,中国科技大学,1998。
    64.袁福平,复合应力波的传播特性和工程效应研究,硕士学位论文,中国科学技术大学,2002
    65.郭杨,李永池,曹结东等。铝锂合金材料损伤演化方程和层裂准则的研究,高压物理学报,Vol.19(4),2005.12
    66. Tuler FR, Butcher BM.A criterion for the time dependence of dynamic fracture. Int J Fract Mech 1968;4:431.
    67. Klepaczko JR. Dynamic crack initiation, some experimental methods and modelling, In: Klepaczko JR, editor. Crack dynamics in metallic materials. Vienna: Springer, 1990.p.255-453
    68. Hanim S, Klepaczko JR. Numerical study of spalling in an aluminum alloy 7020- T6. Int J Impact Eng 1999;22:649-73.
    69. A.M. Rajendran, M. A. Dietenberger, and D. J. Grove, A void growth-based failure model to describe spallation, J. Appl. Phys. 65(4), 1989.
    70.马晓青。冲击动力学,北京理工大学出版社,1992。
    71.王礼立。应力波基础,中国科学技术大学五系,2000。
    72.Kolsky, H., Stress Wave in Solids, Clarendon Press, Oxford(1953);中译本:固体中的应力波,王仁等译,科学出版社(1958)。
    73. Donnell, L.H., Longitudinal Wave Transmission and Impact, Trans. ASME, 52(1930) 153.
    74. Karman, T. Von, On the Propagation of Plastic Deformation in Solids, NDRC Report A-29(1942), PB.20276.
    75. Taylor, G.I., Propagation of Earth Waves from an Explosion, British Official Report RC. 70(1940); 《The Scientific Papers of G.I. Taylor, v. 1, Mechanics of Solids》, ed. By Batchelor, G.K., Univ. Press, Cambridge(1958)456.
    76. 9(1945) 91.
    77. Rice, M.H., McQueen, R.G. and Walsh, J.M., Compression of Solids by Strony Shock Waves, 《Solid State Physics, v.6》, ed. By Seitz, F. And Turnbull, D., Academic Press, New York(1958) 1.
    78. Chou, P. C. And Hopkins, A.K., ed., Dynamic Response of Materials to Intense Impulsive Leading, U. S. Air Materials Lab., Wright Patterson AFB, Ohio(1972).
    79. Lee, E. H., Plastic-Wave Propagation Analysis and Elastic-Plastic Theory at Finite Deformation, Shock Wave and the Mechanicial Properties of Solids, ed. By Burke, J. J. And Weiss, V., Syracuse Univ. Press(1971) 3.
    80. Malvern, L. E., The Propagation of Longitudinal Maves of Plastic Deformation in a Bar of Material Exhibiting a Strain-Rate Effect, J. Appl. Mech., 18(1951) 203.
    81. Perzyna, R, The Constitutive Equations for Rate Seusitive Plastic Materials, Quart. Appl. Math., 20(1963) 321.
    82.李永池,谭福利,姚磊等。含损伤材料的热粘塑性本构关系及其应用,爆炸与冲击,Vol.24(4):289-298,2004.6
    83.经福谦。实验物态方程导引,科学出版社,北京,1986:(1999第二版)
    84. J.J.Mason, A.J.Rosakis, G.Ravichandran, On the strain and strain rate dependence of the friction of plastic work converted to heat: an experimental study using high speed infrared detectors and the Kolosky bar. Mechanics of Materials, 1994 Vol. 17, pp: 135-145.
    85. P.Rosakis, A.J.Rosakis, G.Ravichandran, J. Hodowany, A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals, J. Mech. Phys. Solids, 2000, vol.48, pp:581-607.
    86. G.I.Taylor, H.Quinney, The latent heat remaining in the metal after cold working, Proc.Roy.Sco.London, 1937, A 163,pp: 157-181.
    87. Rinehart J S. Some quantitative data bearing on the scabbing of metals by an explosive attack [J]. J Appl Phys, 1951, 22 (3) : 555~562
    88. Whiteman P. Preliminary report on the effect of stress rate on the dynamic fracture in steel, brass and aluminium [R]. 1962, AWRE SWAN-10/61
    89. Thurstan R S, Mudd W L. Spallation criterion for numerical computational data [R].1968, LA-4013, TID-4500
    90. Davison L, Stevens A L. Continuum measures of spall damage [J]. J. Appl Phys, 1972, 43 (2): 988
    91. Tuler F R, Butcher B M. A criterion for the time-dependent of dynamic fracture [J]. J Fra Mech, 1968, 4 (3) : 431~440
    92. Seaman L, Curran D R, Shochey D A. Computational models for ductile and Brittle fracture [J]. J Appl Phys, 1976, 47(11): 4814~4826
    93. Johnson J N. Tensile plasticity and ductile fracture [J]. J Appl Phys, 1988, 64(12): 6699~6711
    94. Curran D R, Seaman L, Shochey D A. Dynamic fracture of solids [J]. Physics Reports, 1987, 147(5,6): 253~388
    95. Rajendran A M, Dietenberger M A, Grove D J. A void growth-based failure model to describe spallation [J]. J Appl Phys, 1989, 65(4): 1521~1527
    96. Ls-dyna. Theoretical Manual [M]. Lstc, May 1998
    97.王勖成,邵敏。有限单元法基本原理和数值方法,清华火学出版社,北京,1997
    98.美国ansys股份有限公司,ANSYS/LS-DYNA算法基础和使用方法,北京,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700