全频段石榴石薄膜性能及应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当射频、微波、太赫兹(THz)波和光波段集成系统各自逐渐形成后,一个新的科学构想随之诞生,那就是能不能研究一种薄膜可同时应用于微波、THz和光波段,实现全频段大集成系统!本博士论文的整个研究工作正是对这一构想的探索和验证。首先,基于石榴石薄膜在小型微波器件和磁光集成器件应用中的低损耗特性,以及在THz波导中潜在的实用价值,我们设计优化出三个频段具有优异特性的掺杂石榴石薄膜系列;其次,我们提出新型无铅液相外延工艺,结合磁控溅射工艺,研制出几种不同成分的石榴石薄膜材料,分析了其在微波段、THz波段和光波段的性能,从理论和实验上探讨了其在全波段器件中的应用;最后,分别研究了薄膜在微波段、THz波段和光波段器件中的应用,结果表明这些石榴石薄膜在这三个波段内都有可选择的优异性能,这对未来的大集成系统具有重要的研究意义。
     论文秉承了上述基本思想,在基础理论、材料工艺和器件设计方面上都作了探索性和创新性研究,主要亮点工作与涉及的内容为:
     (1)“缓冲法”Bi:LuIG单晶体无铅液相外延薄膜研究:研究了大面积液相外延薄膜的微结构、表面形貌及缺陷的控制技术;提出了适用于无铅工艺的“缓冲法”技术,着重研究了GGG基片晶轴取向偏差以及薄膜外延速率对材料缺陷和均匀性的影响,通过工艺优化,获得了晶格失配小于0.08%、具有镜面平整性、兼具大磁光效应和小铁磁共振线宽的优质单晶LuBiIG薄膜。薄膜的饱和磁化强度4πMs=1562 Gs,磁光法拉第效应1.6~2.0度/μm(10倍于目前其他工艺得到的薄膜),最小铁磁共振线宽2ΔH=2.8 Oe。
     (2)微波烧结旋磁铁氧体工艺研究:探索了微波烧结法在石榴石材料合成工艺中的应用,通过优化烧结曲线和烧结温度得到了性能优良的石榴石铁氧体材料。除了高效和节时外,微波法烧结石榴石铁氧体材料在烧结密度、介电损耗、介电常数和磁电损耗方面都较常规烧结方法具有优势;进一步拓宽微波炉的烧结均匀区可实现大尺寸铁氧体材料的制备,该方法不仅有助于提高小型化微波器件中应用的石榴石铁氧体基片性能,而且在溅射靶材的制备中也具有重要的潜在应用价值。
     (3)射频溅射多晶石榴石薄膜研究:研究了衬底、溅射工艺及原位晶化工艺对薄膜磁性能的影响;针对不同的衬底,摸索出了最佳制备工艺条件,得到了结构致密、表面平整、可调饱和磁化强度的薄膜,发现在GGG(111)衬底上,控制适当的工艺,可原位外延出单晶石榴石薄膜。
     (4)快速循环晶化(RRTA)理论及工艺研究:建立快速循环纳米晶化量子动力学模型,分析了石榴石多晶薄膜在晶化过程中的成核、生长的基本规律,理论和实验结果证实该方法可以有效细化薄膜晶粒,大大提高薄膜的磁光效应,使法拉第效应成倍增大。
     (5)静磁表面波滤波器的理论和实验研究:首先建立了静磁表面波滤波器损耗理论模型,分析了石榴石薄膜的厚度、饱和磁化强度及铁磁共振线宽等参数对滤波器损耗的影响;其次,建立了双磁性层结构对静磁表面波的色散抑制理论;最后,利用液相外延的单层和双层LuBiIG石榴石薄膜,分别实现了性能优良的静磁表面波带通滤波器。器件频域4.0—5.5GHz,带宽180±10MHz,插入损耗(?)8.0dB(应用双层色散抑制结构后,插损可达6.0dB以下),带外抑制(?)35dB。
     (6)微波铁氧体环行器薄膜化的可行性研究:从环行器的设计理论出发,研究了基片和薄膜厚度对环行器性能的影响。结果表明在较低频段(1.0-3.0GHz),经过进一步完善薄膜的制备工艺,薄膜环行器的实现是可能的;而在高频段存尚存在一定的制约因素。
     (7)石榴石薄膜的THz波导特性研究:研究了液相外延LuBiIG单晶石榴石薄膜和射频磁控溅射多晶石榴石薄膜在THz波段的透射特性。结果发现:该种石榴石薄膜在THz波段(0.1—3THz)有着很小的吸收损耗系数,最小值为0.01---0.2/cm之间,是一种非常有潜力的THz波导传输材料。
     (8)石榴石薄膜型平面波导开关基础研究:基于Bi:YIG薄膜材料的巨磁光法拉第效应和无铅液相外延石榴石薄膜的大法拉第效应,建立了波导型磁光开关的理论模型,并利用磁光传输理论,分析了影响磁光开关性能的一系列因素,最终成功实现了波导型磁光开关。其基本性能参数为:插入损耗:0.6-3.0 dB,开关速度:40μs-2ms之间。
With the development of integrated devices in radio frequency(RF), microwave, terahertz wave and optical band, an idea has been brought forward, that is how can we investigate a kind of film using in microwave, terahertz (THz) and optical devices and realize the integrated devices in range from microwave to optical band. The main work of this thesis is the verification of the imagination. Firstly, three kinds of garnet films were designed based on its low propagating loss in microwave devices and magneto-optical devices and potential application in terahertz band; Secondly, several kinds of garnet films were realized by liquid phase epitaxy (LPE) method with lead-free flux and RF magnetron sputtering, and their properties and application in microwave, terahertz and optical band were analyzed in detail; Finally, the application of garnet films using in these devices were investigated, the test results show that these garnet films have good performance in three wave band and it is very important to future integrated devices.
     Based on the abovementioned ideas, many investigations have been done on basic theories, material preparing technologies and devices designing. In this thesis, the main work is just as follows,
     (1) The investigation of LuBiIG mono-crystal garnet film by buffer LPE method with lead free flux has been done. The microstructure, surface condition and deficiency controlling technologies of large area film were studied in detail. The buffer LPE method which is suitable for lead free flux technology has been brought forward, and the point is the effect of axis of GGG substrate and film growth rate to the films qualities. At last, the film combined with both superior magnetic and magnetic-optical properties together is obtained by optimizing LPE technology, and the lattice of the thin film has a good match with the GGG (111) substrate and good surface. The saturation magnetization (Ms) of the film is about 1562Gs, the Faraday rotation is 1.6~2.0deg/μm and the minimum FMR linewidth value is 2△H=5.1Oe.
     (2) The application of microwave sintering (MS) technology in ferrite garnet materials has been carried out. The MS method has been applied in garnet target sintering and the garnet target with good performance is obtained by optimizing sintering curve and temperature. Experiments show that microwave sintering (MS) treated YIG materials possess excellent properties in target density, dielectric loss, dielectric constant and magnetic loss besides high efficiency and saving time. If the room with even temperature in MS oven is enlarged, the MS method is not only making for improving performance of garnet substrate using in microwave devices, but also voluble for preparing sputtering targets.
     (3) The investigation of garnet films by RF magnetron sputtering has been done in this thesis. The effects of substrate, sputtering parameters, post-treated technology to the film performance have been studied in detail. The films with dense structure, smooth surface condition and adjustable saturation magnetization have be prepared by optimized technology. Additionally, the monocrystal garnet film can be obtained on GGG substrate by controlling the sputtering and annealing technology.
     (4) The investigation of rapid recurrent thermal annealing (RRTA) theories and technology has been done. The RRTA nanometer crystallizing quantum kinetics model was created and the rules of crystal core forming and growth in the process of crystallizing were analyzed. The results show that the crystal grains scale of garnet films can be decreased efficiently by RRTA method, which leading to the increasing of magneto-optical effect and the Faraday Angle is doubled.
     (5) The investigation of theories and experiments of magnetostatic surface wave (MSSW) filter has been done in chapter 4. Firstly, the insertion loss model of MSSW filter has been created, and the effect of the thickness of garnet film, saturation magnetization and linewidth to the insertion loss of the filter have been analyzed in detail; Secondly, the dispersion restrain theory with the double magnetic layer structure has been created; Finally, the filters with good performance were realized with LuBiIG film. The filter parameters are as follows, the center frequency is between 4.0 and 5.5GHz, the pass bandwidth is 180±10MHz, insertion loss is smaller than 8.0dB (this value can be reduced to 6.0dB with double magnetic layer structure), and out-band rejection is bigger than 35dB.
     (6) The feasibility investigation of microwave ferrite film circulator has been done. Based on circulator design theory, the effect of thickness of substrate or film to the circulator performance has been investigated. The results show that the film circulator can be realized from 1.0GHz to 3.0GHz by perfecting garnet film preparing technology, however, it is still needs a long time to be realized because of its restriction conditions in high frequency band.
     (7) The investigation of THz response of garnet film has also been done. The transmittance performance of LuBiIG garnet film by LPE method and polycrystalline garnet film by RF magnetron sputtering in THz frequency range has been investigated and the results show that garget film is with low absorbance coefficient at THz band, and minimum value is 0.01- 0.2/cm, and garnet films are potential materials in THz wave-guide application.
     (8) At last, the investigation of garnet film plane wave-guide switch has been done. Based on the giant magneto-optical (MO) Faraday Effect of Bi :YIG garnet, the model of wave-guide MO switch has been created and the factors which affecting the performance of the switch have been analyzed by applying MO transmittance theory, and the wave-guide MO switch has been realized at last. Its insertion loss is between 0.6 and 3.0dB, on-off rate is between 40μs and 2ms.
引文
[1]刘公强,乐志强,沈德芳.磁光学.上海:上海科学技术出版社,2001:30-34
    [2]A.D.Fisher,J.N.Lee,E.S.Gaynor and A.B.Tveten.Optical guided-wave interactions with magnetostatic waves at microwave frequencies.Appl.Phys.Lett.,1982,41:779-781
    [3]C.S.Tsai,D.Young,W.Chen,L.Adkins,et.al.Noncollinear coplanar magneto-optic interaction of guided optical wave and magnetostatic surface waves in yttrium iron garnet-gadolinium gallium garnet waveguides.Appl.Phys.Lett.,1985,47:651-654
    [4]S.H.Talisa.The collinear interaction between forward volume magnetostatic waves and guided light in YIG films.IEEET rans.Magn.,1988,24:2811-2813
    [5]H.Tamada,M.Kaneko and T.Okamoto.TM-TE optical-mode conversion induced by a transversely propagating magnetostatic wave in a (BiLu)_3Fe_5O_(12) film.J.Appl.Phys.,1988,64:554-559
    [6]D.D.Stancil.Optical-magnetostatic wave coupled-mode interactions in garnet heterostructures.IEEE J.Quant.Mech.,1991,27:61-70
    [7]E.M.Gyorgy,J.F.Dillon and J.P.Remeika.Photoinduced magnetic effects in YIG (Si).IBM Journal of Research and Development,1958,14 (3):321-329
    [8]J.F.Dillon.Optical properties of several ferromagnetic garnets.J.Appl.Phys.,1958,29:539-541
    [9]S.I.Blank,J.W.Nielsen.The growth of magnetic garnets by liquid phase epitaxy.J.Crys.Grow.,1972,17,2:302-305
    [10]Robertson J M,Wittekoek S,Popma T J A,et al.Magnetic properties of yttrium iron garnet.J Appl Phys.,1973,2:219-211
    [11]Hansen P,Klages C P,Schuldt J,et.al.Magnetic and magneto-optical properties of bismuth-substituted lutetium iron garnet films.Phys Rev B.,1985,31(9):5858-5864
    [12]M.Shamonin,M.Lohmeyer,P.Hertel,et.al.Radiatively coupled magneto-optic waveguides.SPIE.,1996,2695:355-361
    [13]M.Gomi,K.Satoh and M.Abe.Giant.Faraday rotation ofCe-substituted YIG films epitaxially grown by RF sputtering.Jpn.J.Appl.Phys.,1988,27(8):L 1536-1538
    [14]M.Lohmeyer,M.Shamonin,N.Bahlmann,et al.Radiatively coupled waveguide concept for an integrated magneto-optic circulator.Mat.Res.Soc.Symp.Proc.,1998,517:519-524
    [15]N.Sugimoto,T.Shintaku,A.Tate,et al.Waveguide polarization independent optical circulator.IEEE Photonics Technol.Lett.,1999,11(3):355-357
    [16]Pavel Kabos,V.S.Stalmachov.Magnetostatic waves and Their Applications.London:Chapman & Ha11.1994:77-82
    [17]刘颖力.静磁表面波特性及器件研究:[博士论文].成都:电子科技大学微固学院.1999:34-38
    [18]Ando.Y.,Guan N.,Yashiro K.,et al.Excitation of magnetostatic surface waves by coplanar waveguide transducers.Proc.1995 Asia Pacific Microwave Conf.1997,1:17-20
    [19]J.Adam.An Epitaxial YIG 10 Channel Filter Bank.IEEE Trans.on MTT.,1982,(S):79-82
    [20]Toshihiro Nomoto.A signal-noise enhancer using two MSSW filters and its application to noise reduction in DBS reception.IEEE Trans.On MTT,1993,41(8):1316-1322
    [21]U.Milano,J.Saunders,L.Davis.A Y-junction stripline circulator.IRE Trans.on Microwave Theory and Techniques,1960,MTT-8:346-351
    [22]H.Bosma.On stripline Y-circulator at UHF.IEEE Trans.Microwave Theory Tech.,1964,12(1):61-72
    [23]C.E.Fay,R.L.Comstock.Operation of the ferrite junction circulator.IEEE Trans.Microwave Theory Tech.,1965,MTT-13:15-27
    [24]Y.S.Wu,F.J.Rosenbaum.Wide-band operation of microstrip circulators.IEEE Trans.Microwave Theory Tech.,1974,MTT-22(10):849-856
    [25]J.Helszajn.Operation of Tracking Circulators.IEEE Trans.Microwave Theory Tech.,1981,MTT-29(7):700-707
    [26]J.Helszajn.Scattering Matrices of Junction Circulator with Chebyshev Characteristics.IEEE Trans.Microwave Theory Tech.,1975,MTT-23(7):548-554
    [27]J.Helszajn.Synthesis of Quarter-Wave Coupled Junction Circulators with Degrees 1 and 2 Complex Gyrator Circuits.IEEE Trans.Microwave Theory Tech.,1985,MTT-33(5):382-390
    [28]J.Helszajn.Non-Reciprocal Junctions and Circulators.New York:John Wiley & Sons,1975,31-70
    [29]E.Schlomann,R.E.Blight.Broad-band stripline circulators based on YIG and Li-ferrite single crystals.IEEE Trans.Microwave Theory Tech.,1986,MTT-34(12):1394-1400
    [31]L.W.Epp.,D.J.Hoppe,G.C.Chinn,et al.Scattering from the quasi-optical ferrite circulator using a coupled integral equation/FEM solution.IEEE Antennas and Propagation Society,1994 AP-S International Symposium (Digest),1994,3:1408-1411.
    [32]Ahmed.N.Mahmoud,A.A.Mitkees,H.A.Elmikati.FDTD Analysis of Open-ended Transmission Line Fabricated on a Nonreciprocal Ferrite Substrate.Eighteenth national radio science conference,March 27-29 2001,Mansoura Univ.,Egypt
    [33]季飞,朱一成.平面Y形结环行器的三维时域有限差分法分析.电子学报,2003,31(5):776-778
    [34]余声明.微波铁氧体小型化表面安装器件.世界产品与技术,2002,(6):41-42
    [35]张怀武.我国太赫兹基础研究.中国基础科学,2008,10(6):15-21
    [36]Sergey Savel'ev,Rakhmanov A L,et al.Using Josephson vortex lattices to control terahertz radiation.Phys.Rev.Lett.,2005,94:157004.
    [37]Y.X.He,P.He,S.D.Yoon,et.al.,Tunable negtive index metamaterial using yttrium iron garnet.J.Magn.Magn.Mater.,2007,313:187-191
    [38]S.L.Blank and J.W.Nielsen.The growth of magnetic garnets by liduid phase epitaxy.J.Crys.Grow.,1972,17:302-311
    [39]T.Hibiya,Y.Morishige,J.Nakashima.Growth and characterization of liquid phase epitaxial Bi-substituted iron garnet films for magneto-optic application.Jpn.J.Appl.Phys.1985,24(10):1316-1319.
    [40]P.Mukhopadhyay,P.Hansen.Magnetic and magneto-optical properties of bismuth substituted europium iron garnet LPE films.Proc.ICF-5,1989,929-933.
    [41]N.Adachi,T.Hibi,T.Okuda.Magnetic and magnetooptic properties of LPE films of Nd-Lu-Y iron garnet.J.Magn.Magn.Mater.,1998,177-181:233-234.
    [42]S.D.Silliman,Bistuth-doped lutetium iron Garnet Thin Films for the MSW-optical Mode Interaction.www.ece.cmu.edu/research/publications/1992/CM U-ECE-1992-022.pdf
    [43]都有为.铁氧体.江苏:江苏科技出版社,1995:82-83
    [44]B.Stadler,K.Vaccaro,P.Yip,et.al.Integration of magneto-optical garnet films by metal-organic chemical vapor deposition.IEEE Trans.Magn.,2002,38(3):1564-1567
    [45]Akiyuki tate,T.Uno,S.Mino et.al.Crystallinity of Ce substituted YIG films prepared by RF sputtering.Jpn.J.Appl.Phys.,1996,35(6A):3419-3425
    [46]Toshihiro Shintaku,Akiyuki Tate and Shinji Mino.Ce-substituted yttrium iron garnet films prepared on Gd_3Sc_2Ga_3O_(12) garnet substrates by sputter epitaxy.Appl.Phys.Lett.,1997,71(12):1640-1642
    [47]Shinji Mino,A.Tate,T.Uno.Structure and lattice deformation of Ce substituted yttrium iron garnet film prepared by RF sputtering.Jpn.J.Appl.Phys.,1993,32(7):3154-3159
    [48]T.Shintaku,T.Uno and M.Kobayashi.Magneto-optic channel waveguides in Ce-substituted yttrium iron garnet.J.Appl.Phys.,1994,74(8):4877-4880
    [49]C.R.Aita.In situ sputter deposition discharge diagnostics for tailoring ceramic film growth.J.Vac.Sci.Technol.A.,1998,16(3):1303-1310
    [50]M.Gomi,K.Satoh and M.Abe.New garnet films with giant faraday rotation.Proc.ICF-5,1989,919-924
    [51]P.C.Dorsey,S.E.Bushnell,R.G.Seed,et.al.Epitaxial yttrium iron garnet films grown by pulsed laser deposition.J.Appl.Phys.,1993,74(2):1242-1246
    [52]Hyoniu Kim,Grishin A M,Rao K V,et al.Ce-substituted films grown by pulsed laser deposition for magneto-optic waveguide devices.IEEE Trans.on Magn.,1999,35(5):3163-3165
    [53]Eugenieva E D,Atanasov P A.Waveguide properties of optical thin films grown by pulsed laser deposition.Materials science in Semiconductor processing,2000,3:575-579
    [54]N.B.Ibrhim,C.Edwards and S.B.Palmer.Pulsed laser ablation deposition of yttrium iron garnet and cerium substituted YIG films.J.Magn.Magn.Mater.,2000,220:183
    [55]P.K.Tien,R.J.Martin,S.L.Blank,et.al.Switching and modulation of light in magneto-optic waveguides of garnet films.Appl.Phys.Lett.,1972,21:207-209
    [56]R.Marcelli,M.Rossi,M.Guglielm.A nondispersive,bandwidth tunaibe magnetostatic wave filter.IEEE Trans.On Magn.,1992,28(5):3303-3305
    [57]C.L.Chen.Oscillator using MSW active tapped delay lines.IEEE Trans.On MTT.,1989,37(1):239-243
    [58]El-Badawy El-Sharawy.Thin film isolators utilizing MSSW transducer.IEEE Trans.On MTT.,1995,(S):107-110
    [59]Y.Kobljanskyj.Active Magneto-static wave delay line for microwave signals.IEEE Trans.on MTT.,2002,38(5):3102-3104
    [60]J.Adam.A slot-line MSW signal-noise enhancer.IEEE Trans.On Magn.,1985,24(5):1794-1796
    [61]W.K.Zhang,G.Q.Liu.Bragg diffraction of guided optical waves by MSBVW in a double-layered magnetic film structure.J.Appl.Phys.,2004,95(1):1-6
    [62]武保剑,刘公强.静磁波与导光波的磁光耦合理论.光学学报,1999,19(5):633-639
    [63]K.Matsuda,H.MinemotoO,Kamadaan S.Bi-substituted rare-earth iron garnet composite film with temperature independent Faraday rotation for optical isolators.IEEE Trans.Magn.,1987, MAG-23:3479-3481
    [64]F.Bertaut and F.Forrat.Structure of ferrimagetic ferrites of rare earths.Compt.Rend.,1956,242:38-40
    [65]N.A.Gilleo and S.Geller.Magnetic and Crystallographic Properties of Substituted Yttrium-Iron Garnet.Phys.Rev.,1958,110:73-75
    [66]R.C.Linares.Epitaxial growth of narrow linewidth yttrium iron garnet films.J.Crys.Grow.,1968,3/4:443-447
    [67]R.Hiskes,T.L.Felmlee,R.A.Burmeister.Growth of rare earth or the ferrites and Garnets using BaO-based solvents.J.Electron.Mater.,1972,3:193-195
    [68]R.Korenstein,C.A.Castro.LPE growth of double layer structures from molybdate and lead borate fluxes.J.Appl.Phys.,1979,50:7830-7833
    [69]H.L.Glass,M.T.Elliott.Accommodation of Pb in Yttrium Garnet Films Grown by Liquid Phase Epitaxy.J.Crys.Grow.,1974,27:253-258
    [70]J.E.Davies.The surface tension of Bi_2O_3-based fluxes used for the growth of magnetic garnet films.J.Mater.Sci.Lett.,1976,11:976-979
    [71]M.Ramesh,D.M.G ualtieri,S.D.Silliman,et.al.Effect of Sodium Doping of Rare-earth Iron Garnet Films on Magnetic and Magneto-optic Properties.J.Appl.Phys.,1991,70:6289-6291
    [72]T.Hirano,H.Hotaka,E.Komuro,et.al.Magnetic and magneto-optical properties of Ca-doped Bi:YIG sputeredfilms.IEEE Trans.On Magn.,1992,28(5):3237-3239
    [73]T.Boundiar,B.Payet-Gervy,M.F.Blanc-Mignon,et.al.magneto-optical properties of YIG elabrated by radio frequency sputtering.J.Magn.Magn.Mater.,2004,284:77-85
    [74]Q.H,Yang,H.W.Zhang,Y.L.Liu,et.al.Effect of post-annealing on the magnetic properties of Bi:YIG film by RF magnetron sputtering on Si substrates.IEEE Trans.On Magn.,2007,43 (9):3652-3655
    [75]Q.H,Yang,H.W.Zhang,Y.L.Liu,et.al.Magneto-optical properties of nanometer scale Bi:YIG films.J.Chin.Cerm.Soc.,2007,35(9):1190-1193
    [76]杨青慧,张怀武,刘颖力,等.退火工艺对射频磁控溅射Bi:YIG薄膜磁性能的影响.材料研究学报,2008,22(2):187-190
    [77]Suzuki T,Sequeda F,Do H,et al.Magnetic and magneto-optic properties of Bi-substituted garnet films crystallized by rapid thermal processing.J.Appl.Phys.,1990,67(9):4435-4437
    [78]Zhang H W,Kim H J,Yang S Q.Structure and magneto-optical properties of fine-grain garnet thin films.J.Magn.Magn.Mater.,1995,150:377-382
    [79]Zhang H W,Kim H J,Yang S Q.Magnetic and magneto-optical properties of rapid thermal annealing glass/A1/BiGADyIG double-layer films.Mater.Sci.Eng.B,1995,34:53-57
    [80]李俊,冷观武,彭虎.旋磁铁氧体材料的微波烧结及在环行器中的应用研究.磁性材料及器件,2005,36(5):47-49
    [81]杨华名,黄承焕.微波合成纳米无机材料的进展.材料导报, 2003,17(11):36-39
    [82]C.Y.Tsay,K.S.Liu,I.N.Lin.Microwave sintering of (Bi_(0.75)Ca_(1.2)Y_(1.05))(V_(0.6)Fe_(4.4))O_(12) microwave magnetic materials.J.Europ.Ceram.Soc.,2004,24:1057-1060
    [83]C.Y.Tsay,C.K.Lin,H.C.Cheng,et.al.Low Temperature Sintering and Magnetic Properties of Garnet Microwave Magnetic Materials.Mater.Chem.Phys.,2007,105:408-413
    [84]C.Y.Tsay,C.Y.Liu,K.S.Liu,et.al.Microwave sintering of NiCuZn ferrites and multilayer chip inductors.J.Magn.Magn.Mater.,2000,209:189-192
    [85]M.Huang,Z.C.Xu.Liquid phase epitaxy growth of bismuth-substituted yttrium iron garnet thin films for magneto-optical applications.Thin Solid Films,2004,450:324-328
    [86]L.C.Luther,R.C.Lecraw,et.al.An improved BiYIG composition for one-micron bubbles.J.Appl.Phys.,1982,53:2478-2482
    [87]A.Thavendrarajah,M.Paravi-Horvath,et.al.Magnetic properties of sputtered Bi_3Fe_5O_(12).IEEE.Trans.on Magn.,1989,25:4015-4021
    [88]R.Metselaar and M.A.H.Huyberts.The stoichiometry and defect structure of yttrium iron garnet and the nature of the centres active in the photo-magnetic effect.J.Phys.Chen.Solids,1973,34:2257-2261
    [89]X.T.Zhou,W.J.Cheng,F.L.Lin,et al.Effect of post-annealing temperature on the microstructure and magnetic properties of Ce:YIG thin films deposited on Si substrates.Appl.Surface Science,2006,253:2108-2112.
    [90]Y.Dumont,N.Keller,E.Popova,et.al.Tuning magnetic properties with off-stoichiometry in oxide thin films:An experiment with yttrium iron garnet as a model system.Phys.Rev.B,2007,76:104413
    [91]W.Huang,J.Zhu,et.al.Strain induced magnetic anisotropy in highly epitaxial CoFeO thin films.Appl.Phys.Lett.,2006,89:262506
    [92]Anup K.Bandyopadhyay,Steven E.Rios,Shannon Fritz et al.Ion Beam Sputter-Fabrication of Bi-YIG Films for Magnetic Photonic Applications.IEEE Trans.on Magn.,2004,40:805-807
    [93]Naresh Kumara,D.S.Misra,et al.Magnetic properties of pulsed laser ablated YIG thin films on different substrates.J.Magn.and Magn.Mate.,2004,272-276:899-902
    [94]M.B.Park,N.H.Cho.Structural and magnetic characteristics of yttrium iron garnet (YIG,Ce:YIG) films prepared by RF magnetron sputter techniques.J.Magn.and Magn.Mate.,2001,231:253-264
    [95]Y.M.Kang,S.H.Wee,S.L.Baik,et al.Magnetic properties of YIG thin films prepared by the post annealing of amorphous films deposited by rf-magnetron sputtering.J.Appl.Phys.,2005,97:10A319
    [96]Y.Dumont,N.Keller,O.Popova,et.al.Modified magnetic properties of oxygen off-stoichiometric yttrium iron garnet thin films.J.Magn.Magn.Mate.,2004,272-276:e869-e871
    [97]Y.Dumont,N.Keller,et.al.Superexchange and iron valence control by off-stoichiometry in yttrium iron garnet thin films grown by pulsed laser deposition.J.Appl.Phys.,2005,97:10G 108
    [98]M.B.Park,B.J.Kim and N.H.Cho.Chemical composition,microstructure and magnetic characteristicsof yttrium iron garnet (YIG,Ce:YIG) thin films grown by rf magnetron sputter techniques.IEEE Trans.On Magn.,1999,35:3049-3051
    [99]Bethanie J.H.Stadler and Anand Gopinath.Magneto-optical garnet films made by reactive sputtering.IEEE Trans.On Magn.,2000,36:3957-3961
    [100]K.M.Krishnan and H.L.Ju.Phys.Rev.B,1999,60:14793-14803
    [101]Taylor A.X-ray metallograph.John Wieley and Sons,New York,1961:679
    [102]A.Furuya,C.Baubet,H.Yoshikawa,et.al.Suppression of crack formation in garnet film by using a compound glass underlayer.IEEE Trans.On Magn.,2001,37:2407-2410
    [103]B.M.Simion,R.Ramesh,V.G.Keramidas,et.al.,Mater.Res.Soc.Symp.Proc.,1994,341:65-68
    [104]G.Herzer.Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets.IEEE Trans.Magn.,1990,26(5):1397-1402.
    [105]Alben R,Becker J J.Random anisotropy in amorphous ferromagnets.J.Appl.Phys.,1978,49:1653-1658.
    [106]宛得福,马兴隆.磁性物理学.北京:电子工业出版社,2000:89-90
    [107]钟晓征,陈伟元,王豪才.多晶材料晶粒生长的Monte Carlo计算机模拟方法.功能材料,1999,30(3):232-235
    [108]Jinhua Gao,R.G.Thompson.Real time-temperature model for monte-carlo simulation of normal grain growth.Acta.mater.,1996,44(11):4565-4570
    [109]N.Grimm,G.E.Scott,J.G.Sibold,Ceram.Bull.1971,50:962
    [110]G.Toda,Ceramic Zairyo Gijutsu Shuusei.Sangyo Gijutsu Center.1984,681-691
    [111]James C.Sethares,I.J.Weinberg.High frequency MSW elements.Circuit system signal Prosecs,1985,4 (1):253-285
    [112]H.How,S.A.Oliver,S.W.McKnight,et al.Theory and experiment of thin-film junction circulator.IEEE Trans.Microwave Theory Tech.,1998,46(11 ):1645-1653
    [113]J.D.Jackson.Classical Electrodynamics(第三版影印版).北京:高等教育出版社,2004, 352-356
    [114]R.E.Neidert,P.M.Philips.Losses in Y-junction stripline and microstrip ferrite circulators.IEEE Trans.Microwave Theory Tech.,1993,41:1081-1086
    [115]H.How,S.W.McKnight,S.A.Oliver,et al.Influence of non-uniform magnetic field on a ferrite junction circulator.IEEE Trans.Microwave Theory Tech.,1999,47(10):1982-1989
    [116]应嘉年,顾茂章,张克潜.微波与光导波技术.北京:国防工业出版社,1994,163-184
    [117]钟尔杰,黄廷祝.数值分析.北京:高等教育出版社,2004,20-39
    [118]刘盛刚.太赫兹科学技术的新发展.中国基础科学,2006,1:7-12
    [119]Zhang Y.,Zhang L.L.and Zhang C.L.Terahertz multiwavelength phase imaging without 2.π ambiguity.Optical Measurement Systems for Industrial Inspection V,Proc.of SPIE,2007,6616:1-6
    [120]Jia Xin-feng,Bin Yu,Zhao Guo-zhong,et al.Application of Terahertz Time-Domain Spectroscopy Technology on Cosmetics Testing.Terahertz Photonics,Proc.of SPIE,2007,6840:1-6.
    [121]T.R.Tsai,M.H.Liang,C.T.Hu,et al.Terahertz spectroscopic technique for characterizing the microwave dielectric properties of Ba(Mg_(1/3)Ta_(2/3))O_3 materials.J.Europ.Ceram.Soc.,2007,21,2787-2790
    [122]S.Kojima,M.Wada Takeda,S.Nishizawa.Terahertz time domain spectroscopy of complex dielectric constants of boson peaks.Journal of Molecular Structure,2007,651-653:285-288.
    [123]C.K.Sun,L.J.Chen,H.W.Chen,et.al.subwavelength plastic fiber for terahertz wave guiding,Proc.Of SPIE,2006,6373:60370F-1
    [124]M.Misra,K.Kotani,T.Kiwa,et al.THz time-domain spectroscopy of pulsed laser deposited BaTiO_3 thin films.Applied Surface Science,2007,237:421-426
    [125]Timothy D.Domey,Richard G.Baraniuk and Daniel M.Mittleman.Simple Material Parameter estimation with terahertz time-domain spectroscopy.Journal of the Optical Society of America A,2007,18(7):1562-1571
    [126] Lionel Duvillaret. Frederric Garet, and Jean-Louis Coutaz. A reliable method for extraction of material Parameters in terahertz time-domain spectroscopy. IEEE. Selected Topics in Quantum Electronics, 2007,2:739-746
    [127] Lionel Duvillaret, Frederric Garet and Jean-Louis Coutaz. Highly Precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy. Appl. Opt., 2007,38:409-415
    [128] K.L.Wang, D.M.Mittleman. Metal wires for terahertz wave guiding. Letters to Nature. 2004, 432(18): 376-379
    [129] He X.Y., Cao J.C., Feng S.L. Simulation of the Propagation Property of Metal Wires Terahertz Waveguides. Chin. Phys. Lett., 2006,23:2066-2068
    [130] GGallot, S.P.Jamision, R.W.McGowan, et.al. Terhertz waveguide. J.Opt.Soc.Am.B, 2000, 17(5): 851-863
    [131] R.W McGowan, GGallot and D.Grischkowsky. Propagation of ultrawdeband shor pulses of terhertz radiation through submillimeter-diameter circular waveguide. Optics Letter, 1999,124 (20):1431-1433
    [132] R.Mendis, D.Grischkowsky. Plastic ribbon THz waveguide. J.Appl.Phys., 2000, 88:4449-4451
    [133] A.Bigham, Y.G Zhao and D.grischkowsky. THz parallel plate photonic waveguide. Appl. Phys. Lett., 2005, 87:051101
    [134] Takehiko Hidaka, Hiroaki Minamide, Hiromasa Ito, et al. Ferroelectric PVDF cladding Thz waveguide. Prop.of SPIE, 2003,5135:70-77
    [135] N.S.Stoyanov, D.Ward, T.Feurer. Terhertz polariton propagation in patterened materials. Nature Materials, 2002, 1:95-98
    [136] Y. Zhang, Z.J, Li and B.J. Li. Multimode inter ference effect and self-imaging principle in two-diamensional silicon photonic crystal waveguides for terhertz wave. Optics Express, 2006, 14(7):2679-2682
    [137] Kenta Takagi, Kazunori seno, Akira kawassaki. Fabrication of a tree-dimensional terhertz photonic crystal using monosized apherical particles. Appl.Phys.Lett, 2004, 85(17):3681-3683
    [138] A.Bingham, Y.GZhao, D.Grischkowsky. THz parallel plate photonic waveguide. Appl.Phys.Lett., 2005, 87:051101
    [139] H.Nemec, L.Duvillaret and F.Garet. Thermally tunable filter for terhertz range based on one-dimensional photonic crystal with a defect. J.Appl. Phys., 2004,96:4072-4079
    [140] R.mendis and D.Grischkowsky. THz interconnect with low-loss and low-group velocity dispersion. IEEE microwave and wirless components letters, 2001, 11(11):444-446
    [141] J.D.Ash and S.P.Ferguson. The evolution of the telecommunications transport architecture: from megabit/s toterabit/s". J.Electronics and Communication Engineering, 2001, (2): 33-42
    [142] Goh T, Yasu M, HattoriK, et. al. Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermooptic matrix switch. IEEE Photon. Technol. Lett., 1998, (10):810-812
    [143] Rachid Sbiaa, Mitsunori Mochida, Yusuke Itoh, et al.Thermal stability in magneto-optical recording media: Analysis of magnetization decay. SPIE, 2001,4085: 72-75
    [144] A.V.Taichenachev, A.M.Tumaikin, V.I.Yudin. Thermodynamics of Bose-Atoms in One and Two Dimensional Dark Magneto-Optical Lattices. SPIE, 1999, 3736:76-84
    [145] Gavin D.jones, A.Y.Elezzabi. Ultrafast broadband tunable-bandwith magneto-optic modulator. SPIE, 1999,3795:145-152
    [146] Jay E.Sharping, Marco Fiorention, Prem Kumar. All-Optical Switching Based on Cross-Phase Modulation in Microstructure Fiber. IEEE Photonics Tech nology Letters, 2002,14:L77-L79
    [147] H.W. Zhang, Y.L. Liu, l.J.Jia, et.al. Magneto-optical properties of nanometer crystal grain MO BiALDylG thin film materials. Chinese Journal of Lasers, 1998, A25 (11):976-980
    [148] S.J.Zhang, H.W.Zhang. Effect of raoid recurrent annealing on structure and magneto-optical properties of grant films. J.Appl.Phys., 1993, 73(10): 6832-6834
    [149] John Warner. Nonreciprocal magnetooptic waveguides. IEEE Trans on MTT, 1975,23(1):70-78
    [150] John Warner. Faraday optical isolator/gyrator design in planar dielectric waveguide form. IEEE Trans.on MTT., 1973, 21(12):769-775

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700