多自由度精密磁悬浮定位平台的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对国内微电子制造行业对于精密定位装备的迫切需求,本文研制出一种多自由度磁悬浮精密定位平台。在结构设计的基础上,重点开展了系统建模与控制策略的研究。
     本文提出了一种TU形结构的精密磁悬浮定位平台,并对其进行了机械结构和磁路的设计与分析,运用Maxwell3D进行了磁场和悬浮力的有限元分析,运用Patran/Nastran进行了模态分析。该平台包括悬浮系统和水平位移系统。
     建立了悬浮系统的动力学模型,针对悬浮系统具有多变量、非线性、强耦合的特点,提出一种改进自抗扰控制策略,实现解耦和抑制扰动,该策略不仅可以对系统内部和外部扰动进行观测和补偿,以实现解耦控制,而且克服了常规自抗扰控制器的非线性误差反馈控制律中非线性函数不平滑性,提高系统控制品质。仿真对比分析和试验测试表明,本文提出的这种改进自抗扰控制策略应用到悬浮系统控制中,系统响应平滑,扰动作用时波动幅度小、恢复时间短,且动子水平位置变化对悬浮系统的影响得到了有效抑制。
     建立了水平位移系统的动力学模型,然后对其采用状态反馈解耦控制进行研究,研究表明状态反馈解耦控制性能受动子水平位置变化影响较大。因此,本文还提出一种改进自抗扰控制策略进行水平位移系统解耦控制,并探索出相关参数整定规则。理论和仿真对比分析表明,采用改进自抗扰控制,可使水平位移系统具有定位精度高、响应速度快、鲁棒性好等优点。
     在进行相关理论研究的基础上,研制出试验样机,并进行了性能测试,其定位精度达到1μm,能够满足微电子制造行业亚微米级定位指标的要求。
According to the urgent demand of the precision positioning equipment in the field of domestic micro-electronic manufacturing, a multi-DOF magnetic levitation precision positioning platform is developed in this paper. On the basis of the structure design, the study of the system modeling and control strategies is developed emphatically.
     In this paper, a new precision magnetic levitation positioning platform based on TU structure is put forward. Aim at the platform, the analysis and design on the mechanical structure and magnetic circuit are also given. Furthermore, Maxwell3D is used in finite element analysis of magnetic field and levitation force. In the modal analysis, Patran/Nastran is intruduced. This proposed platform can be divided into levitation system and horizontal displacement system.
     The dynamic model of levitation system is established in this paper. In view of the levitation system with multi-variable, nonlinear, strong coupling characteristics, the article puts forward an improved auto-disturbances-rejection control(ADRC) strategy to realize decoupling and disturbance rejection.Through this control strategy, the internal and external disturbance of the system can be observed and compensated. Then, the decoupling control can be realized. In addition, this improved ADRC overcome the non-smooth character of nonlinear function in nonlinear state error feedback(NLSEF) of conventional ADRC and improve the system control quality. Comparative analysis of the simulation and test results show that when the proposed improved auto-disturbances-rejection control strategy is applied to levitation system control, the system has smooth system response, small disturbance fluctuation range, short recovery time while disturbance is in use, and the influence caused by the mover's horizontal position changes on the levitation system has been effectively restrained.
     The dynamic model of horizontal displacement system is established. Then, the study based on state feedback decoupling control is carried on. The study indicates that state feedback decoupling control performance is greatly influenced by the position change of the mover. Therefore, another kind of improved ADRC used in horizontal displacement decoupling control is proposed and the parameter setting rules is discussed in this paper. Theoretical and simulation comparison analysis show that the improved auto-disturbances-rejection control can make the horizontal displacement system have the characteristics of higher positioning precision, fast response and good robustness etc.
     Based on the related theoretical research, the experimental prototype is produced, and its performance is testified. The positioning accuracy is1μm, this can meet the submicron degree positioning requirements in microelectronics manufacturing industry.
引文
[1]王延风.磁悬浮精密定位工作台机电一体化CAD/CAE集成研究[D].长春:中国科学院研究生院(长春光学精密机械与物理研究所),2004
    [2]宋文荣等.微电子制芯领域中磁悬浮精密定位平台的研究[J].长春:长春光学精密机械与物理研究所,2004
    [3]Cheng-Yen Chen, Yung-Chen Wu, Chun-Wei, et al. The Introduction of precision positioning and compensation technology in Gantry-Type platform[C]. In:2011 First International Conference on Robot, Vision and Signal Processing.2011. American:Kaohsiung,2011:94-97
    [4]Ho Yu, Won-jong Kim. A Compact Hall-Effect-Sensing 6-DOF Precision Positioner[J].IEEE/ASME TRANSACTIONS ON MECHATRONICS.2010,15 (6):982-985
    [5]YuanYun, Yangmin Li. Design. Analysis of a novel 6-DOF redundant actuated parallel robot with compliant hinges for high precision positioning[J]. Nonlinear Dyn,2010,61(1):829-845
    [6]Micky Rakotondrabe, Yassine Haddab, Philippe Lutz. Voltage/Frequency Proportional Control of Stick-Slip Micropositioning Systems [J].IEEE transactions on control systems technology,2008,16(6):1316-1322
    [7]Shuhong Xiao. Guangyuan Zheng, Shuquan Chen. Intelligent Control of the Linear Motor Direct Drive Feed System for CNC Machine Tools[C]. In:2008 International Conference on Computational Intelligence and Security,2008, china:Guangzhou,2008:111-116
    [8]Craig Arthur, Neil Ellerington, Ted Hubbard. MEMS earthworm a thermally actuated peristaltic linear micromotor[J]. journal of micromechanics and micoenhineering,2011,21(11):1-15
    [9]Tanaka Toshiharu, Otsuka Jiro, Masuda Ikuro, et al. Ultra precision positioning by new type of linear motor drive-Challenge to sub-nanometer positioning resolution by paying attention to electric current control system [J]. Seimitsu Kogaluc Keisha/Journal of the Japan Society for Precision Engineering,2010,72(12):1364-1370
    [10]Chen Hsieh, Kang-Chin Yang. On the Role the Friction Plays in an Ultra Precision Positioning System[C]. In:2009 IEEE International Conference on Control and Automation.2009. New Zealand:Christchurch,2009:1080-1085
    [11]P.Sriyotha, K. Nakamoto, M. Sugai.et al. Development of 5-Axis Linear Motor Driven Super-Precision Machine[C] Annals of the CIRP,2009,55(1):1-10.
    [12]Xiaodan Zhang. Xizheng Ke, Zhiyu Zhang. Research on Micro-Electro-Mechanical-Systems digital geophone[C]. In: 2010 International Conference on Artificial Intelligence and Computational Intelligence,2010, China:Xian, 2010:414-417
    [13]Liwei Lil, Rong Zhu. Zhaoying Zhou, et al. Modeling of a micropump membrane with electrostatic actuator[C] In:Proceedings of the 2010 International Conference on Electrical Machines,2010, China:Shanghai,2010:630-632
    [14]Nitin. Closed-loop Voltage Control of a Parallel-plate MEMS Electrostatic Actuator [C]. In:2010 American Control Conference,2010, American:Marriott Waterfront,2010:3409-3414
    [15]Fumitaka Kim, Akio Yamamoto. Toshiro Higuchi. FPGA Implementation of a Signal Synthesizer for Driving a High-power Electrostatic Motor[C]. In:Proceedings of the 2011 International Conference on Electrical Machines,2011, Japanese:Tokyo,2011:1295-1300
    [16]Ganapathy Chu, James Matthews, Mahmood Subhani, et al. A Bidirectional Two-Axis Electrostatic MEMS Positioning System [J]. Journal of Micro electro mechanical Systems.2010.19(3):451-457
    [17]Niedermann, Pen-Yen Liao. Meng-Yen Tsai, et al. Robust control design for precision positioning of a generic piezoelectric system with consideration of microscopic hysteresis effects [J]. Microsyst Technol,2009,17(1): 1009-1023
    [18]Tipissev W.M., Tarng Y.S.. Golubok C.Y., et al. Two-stage rule-based precision positioning control of a piezo electrically actuated table [J]. International Journal of Systems Science,2010,41(5):521-536
    [19]Hwang Donghyun, Lee Moon G. Kanai Hyun-Uk. et al. Precision XY positioning stage with coupled flexures and piezo actuators for avoiding parasitic tilt error[C]. In:Proceedings of the ASME International Manufacturing Science and Engineering Conference,2009,United states:West Lafayette,2009:541-545
    [20]Breguet Xu, Yangmin Li. Sliding Mode Control of a Piezo-Driven Micropositioning System Using Extended Kalman Filter[C],In:International Conference on Electrical Machines,2010,China:HongKong,2010:427-432
    [21]Dudnikov Y.S, Jrgen Maas. Online Controller Optimization for Piezoelectric Hybrid Micropositioning Systems[C].In: 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM2011),2011, Russian:Budapest,2011:820-825
    [22]Hass C.Y, Beiyue Zhou, Shi Li. Driving Performance Analysis of a Novel Piezoelectric Actuator[C]. In:2010 International Conference on Measuring Technology and Mechatronics Automation,2010, China:Hunan,2010:34-37
    [23]Cusin Ikeda, Takeshi Morita. High-precision positioning using a self-sensing piezoelectric actuator control with a differential detection method[J]. Sensors and Actuators A:Physical,2011,170(11):147-155
    [24]MATEY SEKI, KEISUKE MOCHIZUKI. High-Precision Positioning with Strain Feedback Using Piezoelectric Element [J]. Electrical Engineering in Japan,2012,179(4):560-567
    [25]Heil Ozaki, Daisuke Akai, Kazuaki Sawada. Fabrication and Evaluations of Piezoelectric Drive Type 2-axis Tilt Control Device Using Epitaxial Pzt Thin Film[C]. In:2010 International Conference on Optical MEMS & Nan photonics,2010, Japanese:Tokyo,2010:125-126
    [26]Gonda M.Y, Kurosawa Lee. Precision Position Controller Design for a 6-DOF Stage with Piezoelectric Actuators and Lever Linkages Based on Nonlinearity Estimation [J]. KSME-A,2009,33(10):1045-1053
    [27]Zhang Congpeng, Liu Qiang. Design and control of air bearing precision positioning stage driven by linear motors [J]. Beijing Hangkong Hangtian Daxue Xuebao,2008,34(2):224-228
    [28]Qunming Li, Dan Gao, Hua Deng, et al. Modal Analysis of a High-precision Magnetic Suspension Stage [C]. In:Proceedings of the 7th World Congress on Intelligent Control and Automation,2008, China:Chongqing, 2008:6044-6048
    [29]Jeong-Woo Jeon, Mitica Caraiani, Don-Ha Hwang et al. High-Precision and Decomposition Control of Several Magnet Linear Motors for Magnetic Levitation [J]. IEEE/ASME transactions on mechatronics,2010,11 (5):65-76
    [30]Tomotake Matsumura, Shaul Hanany, John R. Hull, et al. Development of a cryogenic induction motor for use with a superconducting magnetic bearing[J]. Physica C,2007,25(1):746-751
    [31]Ha-Yong Kim,Chong-Won Lee. Design and control of active magnetic bearing system with Lorentz force-type axial actuator[J]. Mechatronics,2008,16(1):13-20
    [32]Won-jongKim, ShobhitVerma, HuzefaShakir. Design and precision construction of novel magnetic levitation based multi-axis nano scale positioning systems[J]. Precision Engineering.2008,31(1):337-350
    [33]Se Young Yoon, Zongli Lin, Tim Dimond. Control of Active Magnetic Bearing Systems on Non-Static Found-ations[C]. In:20119th IEEE International Conference on Control and Automation,2011, American:Santiago, 2011:556-561
    [34]Anand Shivanappa Reddy, Praveen Kumar Agarwal, Satish Chand. Design of Compact Active Magnetic Bearing with Higher Load Carrying Capacity [C]. In:201210th IEEE International Conference on Control and Automation (ICCA), 2012, Americam:Santiago,2012:17-22
    [35]Simon E. Mushi, Zongli Lin, Paul E. Allaire. Design Construction and Modeling of a Flexible Rotor Active Magnetic Bearing Test Rig [J].transactions on mechatronics,2012,17(6):1170-1182
    [36]Jasper Witte, H. M. N. K. Balini, Carsten W. Scherer. Experimental Results with Stable and Unstable LPV Controllers for Active Magnetic Bearing Systems[C], In:2010 IEEE International Conference on Control Applications,2010, Amerian:Yokohama,2010:950-955
    [37]Bei Lua, Heeju Choib, Gregory D. Buckner. Linear parameter-varying techniques for control of a magnetic bearing system [J]. Control Engineering Practice,2008,16 (2008):1161-1172
    [38]朱烷秋,陈艳,谢志意.磁悬浮轴承结构与磁路分析[J].机械设计与制造.2007,3(6):57-62
    [39]常肖,徐龙祥,董继勇.磁悬浮轴承数字功率放大器[J].机械工程学报.2010,46(20):9-14
    [40]谢振宇,王彤,张景亭.磁悬浮轴承金属橡胶环组合支承转子系统的动态性能[J].航空动力学报.2009,24(2):378-382
    [41]柏华堂,齐蓉.主动磁悬浮轴承的积分滑模变结构控制[J].电工技术学报.2008,23(8):36-40
    [42]崔东辉,徐龙祥.机械加工误差对主动磁悬浮轴承性能的影响[J].机械工程学报.2009,45(6):24-29
    [43]杜天旭.磁轴承系统的分析与控制[D].重庆:重庆大学,2007
    [44]Fang Jiancheng, Sun Jinji, Liu Hu, et al. A Novel 3-DOF Axial Hybrid Magnetic Bearing [J]. IEEE Transactions on Magnetics,2010,10(4):4034-4045
    [45]Kouhei Tsuchida, Masatsugu Takemoto, Satoshi Ogasawara. A Novel Structure of a 3-axis Active Control Type Magnetic Bearing With a Cylindrical Rotor[C].In:2010 International Conference on Electrical and Control Engineering,2010. China:Wuhan,2010:2321-2330
    [46]Chuan Yang, Guang L. Wang. Bi S. Yang. Research on the Structure of High-speed Large-scale Ultra-precision Positioning System[C].In:Proceedings of the 3rd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems, 2008. China:Sanya,2008:9-12
    [47]Zhentao S. Du. Peter A. Watterson. Design and Implementation of a Radial Magnetic Bearing with Permanent Magnet Bias[J]. In:Fifth International Symposium on Magnetic Suspension Technology,2011,American:Santa Barbara,2011: 2014-2019
    [48]Dengfeng Li, Hector Gutierrez. Observer-based Sliding Mode Control of a 6-DOF Precision Maglev Positioning Stage [C]. In:Institute of Applied Mechanics International Conference on Adaptive Structures and Technologies,2008, American:KINTEX,2008:2562-2567
    [49]Cheng-Yen Chen, Yung-Chen Wu, Chun-Wei, et al. The Introduction of precision positioning and compensation technology in Gantry-Type platform [C]. In:2011 First International Conference on Robot Vision and Signal Processing,2011, Tawan:Tainan,2011:94-97
    [50]Xiao dong Lu, Irfan-ur-rab Us man.6D direct-drive technology for planar motion stages[J].CIRP Annals-Manufacturing Technology,2012,61(1):359-362
    [51]Nan-Chyuan Tsai, Jiun-Sheng Liou. Chih-Che Lin, Tuan Li. Design of micro-electromagnetic drive on reciprocally rotating disc used for micro-gyroscopes [J].Sensors and Actuators A,2010,157(1):68-76
    [52]Auer Chen,Guizhen Zhang.Liqiong Zhang, et al.Nanometer measurement of the planar motion of a magnetic levitation stage based on optical heterodyne interferometry [C]. In:Proc. of SPIE,2007, China:wuhan,2007:779-786
    [53]Won-jong Kim. Precision Dynamics, Stochastic Modeling, and Multivariable Control of Planar Magnetic Levitator[C]. In Proceedings of the American Control Conference,2008, American:Anchorage,2008:4940-4945
    [54]eong-Woo Jeon, Mitica Caraiani, Don-Ha Hwang, Joo-Hoon Lee. High-Precision Positioning Control of Magnetic Levitation System [C]. In:Proceedings of SPIE,2006, Singapore,2006:5221-5226
    [55]Jan Zimmermann, Oliver Sawodny. Modeling for Simulation and Control of a X-Y High Precision Positioning Table[C]. In:Proceedings of the 3rd Annual IEEE Conference on Automation Science and Engineering,2007, American:Scottsdale,2007:1093-1098
    [56]郭磊.磁悬浮平台承载特性研究[D].湖南:中南大学机械电子工程,2005
    [57]石海燕.基于滑模变结构控制的磁悬浮球实时控制系统[D].南京:南京航空航天大学,2009
    [58]郭亮,陈本永等.精密磁悬浮工作平台的力特性分析[J].中国电机工程学报.2008,21(1):188-196
    [59]张东升,梅雪松,郝晓红等.磁悬浮系统的电流控制方法[J].西安交通大学学报.2007,41(9):1096-1104
    [60]段吉安,郭宁平.一种新型磁悬浮直线运动平台的热分析[J].中国电机工程学报.2011,31(15):114-120
    [61]景敏卿,刘恒,梁金星等.二维高精度磁悬浮定位平台的研究[J].西安交通大学学报.2008,42(11):1377-1384
    [62]宋文荣,于国飞等.微电子制造领域的磁悬浮定位平台结构设计研究[J].光学精密工程.2006,10(4):271-275
    [63]刘恒坤,郝阿明等.磁通密度反馈在磁悬浮系统中的应用[J].国防科技大学学报.2008,30(6):129-138
    [64]周振雄,杨建东,曲永印等.一种精密六自由度磁浮平台悬浮高度控制[J].中国机械工程.2009,20(5):596-600
    [65]周振雄,曲永印,杨建东等.平面精密磁悬浮轴承的悬浮位置控制[J].控制与决策.2010,25(3):437-440
    [66]周赣,黄学良,蒋浩Halbach型磁悬浮平面电动机电流控制方法[J].电工技术学报.2010,25(5):69-74
    [67]吴爱华,茅靖峰.磁悬浮直线导轨悬浮高度自适应积分滑模控制[J].机床与液压.2010,35(15):10-15
    [68]陈西府,王寅.一种非共振式压电叠堆直线电机的机理与设计[J].中国电机工程学报.2011,31(15):82-87
    [69]刘德君,郭庆鼎.直线电动机驱动3DOF磁浮平台推力解耦控制[J].机械工程学报.2005,41(1):234-238
    [70]杜志强.高响应短行程直线直流电机的建模、控制与实验研究[D].湖北:华中科技大学,2005
    [71]王成元,夏加宽,孙宜标.现代电机控制技术[M].北京:机械工业出版社,2009:118-199
    [72]Jun Shin-Hee,Leea Sung-Mi.Lee Seung-Ho,et al.Piezoelectric linear motor with unimorph structure by coextrusion process[J].Sensors and Actuators A:Physical,2008.147(1):300-303
    [73]SalisburyS P.Waechter D F.Closed-loop control of a complementary clamp piezoworm actuator[J].IEEE/ASME Transactions on Mechatronics,2007,12(6):590-598
    [74]KangDS, SeoTW, YoonYH, et al. Amicro-positioning parallel mechanism platform with 100-degree tilting capability[C]. Annals CIRP,2006,55(1):377-380
    [75]KangDS, SeoTW, YoonYH, KimJAmicro-positioning platform with high tilting capability and its kinematic calibration [C]. In:Proceeding of international conference on positioning technology,2006, American:NewYork,2006: 179-186
    [76]CHIANG H.K, CHEN C, LIM.Y. Integral Variable structure Grey Control for Magnetic Levitation System [J]. IEE Electr Power,2006,153(6):809-814
    [77]KUO CHAO-Lin, LI Tzuu-Hseng S, GUO Nai Ren. Design of a Novel Fuzzy Sliding-Mode Control for Magnetic Ball Levitation System [J]. Journal of Intelligent and Robotic Systems,2007,42(3):295-316
    [78]宋春生,胡业发,周祖德.差动式磁悬浮主动隔振系统的控制机理研究[J].振动与冲击.2010,29(7):24-29
    [79]曾励,张帆,徐媛媛.磁悬浮球形关节三维动力学模型与控制特性[J].机械工程学报.2011,47(21):69-74
    [80]张俊,陈国辉,廖长鑫.基于TMS320F2812的混合悬浮系统研究[J].电力电子技术.2006,40(4):14-17
    [81]陆华才.永磁直线同步电机进给系统模糊PID控制[J].电工技术学报.2007,22(4):60-62
    [82]潘超.数控机床直线电驱进给系统控制技术及动态特性研究[D].江苏:江苏大学,2011
    [83]周赣,黄学良,柏瑞.磁悬浮平面电机的解耦控制策略[J].中国电机工程学报.2009,29(12):81-86
    [84]曹家勇,朱煜.永磁同步平面电动机三自由度运动控制器[J].中国电机工程学报.2006,17(26):143-149
    [85]刘强,张从鹏.直线电机驱动的H型气浮导轨运动平台[J].光学精密工程.2007,3(10):103-109
    [86]赵博士,张洪亮Ansoft 12在工程电磁场中的应用[M].北京:中国水利水电出版社,2010:45-85
    [87]刘静,曾励,杨军.磁悬浮球体磁阻电机的三维磁场分析[J].扬州大学学报.2011,14(1):51-57
    [88]曾励,王军,张丹.磁悬浮球形磁阻电动机产生悬浮力和磁力矩的机理分析[J].中国机械工程.2011,22(2):208-214
    [89]韩京清.自抗扰控制技术[M].北京:国防工业出版社,2008:110-119
    [90]韩京清.自抗扰控制技术—估计和补偿不确定因素的控制技术[M].北京:国防工业出版社,2008:126-136
    [91]韩京清.从PID技术到“自抗扰控制”技术[J].控制工程.2002,9(3):13-18
    [92]刘星桥,唐琳.二阶自抗扰控制器在三电机同步系统中的应用[J].电工技术学报.2012,27(2):179-184
    [93]陈文英,褚福磊,阎绍泽等.基于扩张状态观测器和非线性状态误差反馈设计自抗扰振动控制器[J].机械工程学报.2010,46(3):59-64
    [94]谢惠藩,张尧,林凌雪等.基于时间最优和自抗扰跟踪的广域紧急直流功率支援控制[J].电工技术学报.2010,25(8):145-152
    [95]王宇航,姚郁.基于自抗扰的直接力与气动力复合控制系统设计[J].宇航学报.2009,30(4):1544-1550
    [96]李匡成.基于RBF神经网络的伺服系统自适应自抗扰控制[J].智能控制技术.2010,32(2):122-125
    [97]张谦.自抗扰控制器优化设计及其应用[D].西安:西安理工大学,2007
    [98]段慧达,田彦涛,李津淞等.一类高阶非线性系统的级联自抗扰控制[J].控制与决策.2012,27(2):216-222
    [99]管志敏.自抗扰控制技术在大型火电机组控制系统中的应用研究[D].北京:华北电力大学热能工程,2010
    [100]彭露群,解仑,李崇坚等.自抗扰控制器在同步电机调速系统中的应用[J].北京科技大学学报.2012,34(1):107-113
    [101]郭庆鼎,刘德君.基于输入解耦定位平台悬浮高度H_∞控制[J].电工技术学报.2005,20(11):18-21
    [102]刘丽英.线性自抗扰控制策略在异步电机调速系统中的应用研究[D].天津:天津大学,2010
    [103]齐乃明,秦昌茂,宋志国.高超声速飞行器改进自抗扰串级解耦控制器设计[J].哈尔滨工业大学学报.2011,43(11):34-41
    [104]周振雄,曲永印,杨建东等.采用改进型自抗扰控制器的平面磁轴承悬浮控制[J].电工技术学报.2010,25(6):31-38
    [105]管志敏,王兵树,林永君等.自抗扰控制在火电厂主汽温控制应用研究[J].系统仿真学报.2009,21(1):307-311
    [106]杨瑞光,孙明玮,陈增强.飞行器自抗扰姿态控制优化与仿真研究[J].系统仿真学报.2010,22(11):2689-2675
    [107]朱丽玲,于希宁,赵凯君.基于自抗扰技术的主汽温控制系统[J].计算机仿真.2006,23(8):21 1-214
    [108]史永丽,侯朝桢.基于粒子群优化算法的自抗扰控制器设计[J].系统仿真学报.2008,20(2):433-436.
    [109]杨婷婷,李爱军.基于粒子群算法的自抗扰飞行控制器优化设计[J].计算机仿真.2009,26(9):59-61
    [110]李翔,曲小宇,袁麟博.基于粒子群算法的自动着陆非线性PID控制器[J].计算机仿真.2009,26(10):73-76
    [111]王炳国,王东,郑春生等.基于改进遗传算法的高压直流输电系统逆变器定电压自抗扰控制器的设计[J].制造业自动化.2010,32(4):151-159
    [112]程启明,程尹曼,王映斐等.基于灰色模型的自抗扰控制在负荷控制中的应用研究[J].计算机测量与控制.2011,19(9):2147-2153
    [113]施燕美.基于自抗扰技术的协调控制系统研究[D].河北:华北电力大学,2006
    [114]潘文婷,孙运全,盛吉.基于粒了群的自抗扰静止同步补偿器仿真研究[J].计算机仿真.2011,28(8):298-302
    [115]史永丽,侯朝桢,苏海滨.基于粒子群优化算法的自抗扰控制器设计[J].系统仿真学报.2008,20(2):433-436.
    [116]杨婷婷,李爱军,侯震.基十粒了群算法的自抗扰飞行控制器优化设计[J].计算机仿真.2009,26(9):59-61
    [117]李翔,曲小宇,袁麟博.基十粒子群算法的自动着陆非线性P1D控制器[J].计算机仿真.2009,26(10):73-76
    [118]潘为刚,李贻斌,肖海荣.基于ADRC的船舶控制器设计与仿真研究[J].中国造船.2012,53(2):170-177
    [119]李生权,季宏丽,裘进浩.基于压电智能结构状态的自抗扰振动控制[J].机械工程学报.2012,48(5):34-41
    [120]刘志刚,李世华.基于永磁同步电机模型辨识与补偿的自抗扰控制器[J].中国电机工程学报.2008,24(2):120-125
    [121]李壮举,刘贺平,王允建.一种改进的自抗扰解耦方法及其应用仿真[J].计算机仿真.2010,27(4):344-349
    [122]王兵树SIMULINK中自抗扰控制技术自定义模块库的创建[J].系统仿真学报.2010,3(3):610-615
    [123]姜萍,郝靖宇,宗晓萍等.自抗扰控制器的simulink建模与仿真[J].控制理论与应用.2010,29(2):55-61
    [124]万晖.自抗扰控制器的绝对稳定性分析[J].上海电力学院学报.2011,27(5):507-512
    [125]刘豹.现代控制理论(第2版)[D].北京:机械工业出版社,2005:182-189
    [126]周振雄,杨建东,曲永印等.基于自抗扰控制器的磁浮平台水平推力控制[J].机械工程学报.2008,44(9):193-199
    [127]周振雄,曲永印,杨建东等.一种改进型ADRC实现的机床进给用永磁直线同步电动机调速系统[J].中国机械工程.2008,19(21):2561-2565
    [128]胡婶娟,刘志星.一种基于模型自抗扰控制的新型定了嵫链观测器[J].大功率变流技术.2011,2(1):6-10
    [129]金大荣.空间微重力隔振系统结构的仿真及实验研究[D].北京:中国科学院研究生院,2009
    [130]董红红.基于ADRC的某型跟踪装置伺服控制系统设计与实现[D].哈尔滨:哈尔滨工业大学,2007
    [131]刘志刚,李世华.基于永磁同步电机模型辨识偿自抗扰控制器[J].中国电机工程学报.2008,24(2):120-125
    [132]李红波,张凯,赵晖,熊健,康勇.基于自抗扰技术的感应电机转了磁链闭环观测和速度估算[J].电工技术学报.2012,4(1):187-192
    [133]廖方方,肖建.基于BP神经网络PID参数自整整定的研究[J].系统仿真学报.2005(7):1711-1713.
    [134]姜萍,王培光,郝站宇.自抗扰控制器参数的免疫遗传优化及应用[J].控制工程.2012,19(2):286-291
    [135]陈星.自抗扰控制器参数整定方法及其在热工过程中的应用[D].北京:清华大学,2008
    [136]阮德玉.车辆主动悬架用永磁直线直流作动器的设计与实验研究[D].重庆:重庆大学,2011
    [137]Ying-Wen Bai, yi-Te Ku.Automatic Room Light Intensity Detection and Control Using a Microprocessor and Light Sensors.IEEE Trans[J]. On Consumer Electronics,2008,54(3):1173-1176
    [138]Dannehl.J, Fuchs.F.W,Hansen.S. Investigation of Active Damping Approaches for PI-Based Current Control of Grid-Connected Pulse Width Modulation Converters With LCL Filters.IEEE Trans on Industry Applications,2010,46(4):1509-1517
    [139]SateanTunyasrirut,JongkolNgamwiwit,VijitKinnares.A DSP-based modifed slip energy recovery drive using a 12-pulse converter and shunt chopper for a speed control system of a wound rotor induction motor.Electric Power Systems Research,2008,78(1):861-872
    [140]董建磊,王军闯.磁悬浮推力轴承三电平PWM开关功率放大器设计.电工电气.2009,2(1):13-17
    [141]Bose,K.Bimal,Modern Power Electronics and ac Drives. IEEE Trans on Industry Applications,2006,30(2):307-331
    [142]刘英培PMSM直接转矩控制方法及实验研究[M].天津:天津大学,2010
    [143]W.M.Yang, X. X. Chao. etal. The effect of magnet size on the levitation force and attractive force of single domain YBCO bulk superconductors [J]. Superconductor. Sci. Techno,2008,16(7):789-792

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700