金刚石磨粒激光钎焊工艺与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有优化地貌的高温钎焊单层金刚石工具具有磨粒出露高、容屑空间大、基体对金刚石磨粒把持强度高以及高的锋利度、高的磨削效率和磨料利用率等特点,在难加工材料高效、重负荷加工中已显示出传统金刚石工具无法比拟的优异性能。它们各有自己的优势和适用范围,同时,也各有自己的不足和工艺局限性。从长远看,在钎焊工具的制作领域,它们都还有自己进一步完善和发展的空间。本文在借鉴炉中钎焊和高频感应钎焊已取得的研究成果的基础上,通过对激光与材料相互作用的原理和特点的深入分析,提出采用CO2激光作为热源,高温钎焊金刚石工具的设想,试图为金刚石钎焊开辟一条新的途径。
     本文完成的研究工作主要包括:
     (1)与试验用激光加工设备配套,设计、研制成功了专用的工艺试验平台(装置),该平台可在激光头与工件配合移动的条件下,在提供完善的氩气保护氛围的同时,实施对工具基体表面金刚石磨粒的选择性扫描钎焊。配置在该试验平台上的热电测温系统具有对基体表面温度的瞬时响应能力,可跟踪记录激光钎焊时试样表面温度的动态变化。此项工作为激光钎焊金刚石磨粒的工艺研究奠定了基础。
     (2)利用已研制成功的工艺试验平台和在若干简化假设条件下建立起来的数学模型,完成了激光钎焊时试样表面(层)温度的实验测试与仿真研究。此项研究的结果对优化确定激光钎焊的用量组合条件有重要的意义。
     (3)按照优化获得的用量参数范围选择一组用量组合条件,在国内外率先采用Ni-Cr钎料激光钎焊金刚石磨粒取得了成功。采用三维体视显微镜、扫描电镜、EDS能谱仪和X射线衍射仪对钎焊金刚石试样进行形貌观察和理化分析。结果证明:Ni-Cr合金钎料对金刚石磨粒的浸润爬升效果良好,钎焊过程中钎料中的活性元素Cr向金刚石表面扩散、富集,生成了层片状碳化物Cr3C2;在钎料与钢基体结合界面上Ni-Cr合金和钢基体中的元素相互扩散形成化学冶金结合,从而实现了金刚石磨粒与基体的牢固连接。运用激光拉曼光谱和扫描电镜对热应力、石墨化和化学侵蚀等热损伤现象进行了深入研究,结果表明,只要采用合适的钎焊工艺,可在磨料不受热损伤的前提下确保其界面获得理想的高性能结合把持强度。
     (4)成功制备出国内外第一块激光钎焊的金刚石固结磨料砂轮,加工性能试验表明:金刚石磨粒在磨削过程中基本上为正常磨损,无磨粒脱落现象。
Single-layer brazed diamond abrasive tools with optimum grit distribution have some distinguished advantages, such as high grit exposure, large storage space, strong grit retention, high grinding efficiency and high utilization rate of grits. Consequently, the brazed diamond tools show remarkable merits over the conventional electroplated diamond tools in the high efficiency and heavy load machining process of the difficult-to-cut materials. On the other hand, the different diamond tools have their unique advantages and working field. Additionally, they also have some inevitably disadvantageous. From a long-run viewpoint, the brazed tools have an improving and developing space. Based on the former research on the fabrication technology of the diamond tools, including vacuum furnace brazing and induction brazing, and the analysis of the interaction behavior between the laser and the materials as well, the way to develop diamond tools by laser brazing was put forward in this investigation. It could provide a new means to braze diamond grits.
     The main contents in this paper are as follows:
     1. Experiment platform for laser brazing has been established to match the laser machining equipment, including inert gas protecting device, temperature measuring and controlling system. Through the platform, the temperature measuring and controlling system for instant response could trace the transient surface temperature of the samples, and laser scan brazing was conducted under the cooperation of the laser equipment and the work pieces. The preparative work is essential to the subsequent brazing experiments.
     2. The instantaneous temperature on the specimen surface was measured successfully by the experiment platform. Furthermore, depending on the model derived from some simple calculations and conditions, the 3D dynamic simulation on the temperature field of laser brazing was completed satisfactorily. It is very important to optimize the working parameters in the laser brazing.
     3. By choosing the process parameter according to the optimized scope of parameters acquired previously, laser brazing experiments were carried out with Ni-Cr filler alloy and the brazed diamond tool was accomplished. The new-formed reaction products and the interfacial microstructure under the different conditions have been detected by three-dimensional stereomicroscope, scanning electron microscope (SEM), energy dispersion spectrometer (EDS), and X-ray diffraction (XRD). The results show that Ni-Cr alloy has good soakage to diamond grits, and the grits were held firmly by the chemical bonding. During brazing, Cr atoms segregated to the interface area and reacted with C ones to form carbide Cr3C2, which distributed as flake around the diamond. The special filler alloy realized the wetting and joining of both the diamond grits and steel substrate. Laser Raman spectroscopy (LRS) and SEM were used to detect the heat residual stress, the graphitization effects and the chemical soakage. The result indicates that high bond strength between the filler alloy and the grits without the thermal damage could be reached by applying the optimum induction brazing technique.
     4. In this work, the diamond grinding wheels with segment structure were firstly prepared successfully by laser brazing at home and abroad. Meanwhile, the machining performance of the brazed diamond tools was evaluated. The result shows that the main wear of the diamond grits was normal. None of the grits in the connecting layer was pulled out from the tools.
引文
[1]王秦生.超硬材料制造,北京,中国标准出版社,2001
    [2]傅玉灿,孙方宏,徐鸿钧.从电镀到钎焊单层超硬磨粒砂轮新发展.工具技术,1998,32(8):4~8
    [3]任敬心,康仁科.难加工材料的磨削,北京,国防工业出版社,1999
    [4] H.J. Xu, Y.C. Fu, B. Xiao, et al. Fabrication of monolayer brazed diamond tools with optimum grain distribution, Key Engineering Materials, 2004, 259: 6-9
    [5] A.K.Chattopadhyay, H.E.Hintermann . Induction Brazing of Diamond with Ni-Cr Hardfacing Alloy Under Argon Atmosphere.Surface and Coating Technology,1991,45:293-298
    [6] A.K. Chattopadhyay, H.E. Hintermann.Experimental Investigation on Induction Brazing of Diamond with Ni-Cr Hardfacing Alloy under Argon Atmosphere.Journal of Materials Science,1991,20:5093-5100
    [7]马楚凡,王忠义,南俊马,孟卫如.一种牙科单层高温钎焊金刚石砂轮的研制.金刚石与磨料磨具工程,2002,2(128):34-35
    [8]李菊丽,李长诗,郭健明.金属结合剂金刚石砂轮的研究进展工具技术. 2003,09:3~6
    [9]林增栋.钎焊法制造金刚石单层工具的研究.金刚石与磨料磨具工程,2004,141(3):1-5
    [10] C.M. Sung. Brazed diamond grid:A revolutionary design for diamond saws. Diamond and Related Materials,1999,8:1540-1543
    [11]肖冰,徐鸿钧,武志斌.Ni-Cr合金真空炉中钎焊单层金刚石砂轮的实验研究.焊接学报,2001,22(2):23-26
    [12]傅玉灿,徐鸿钧.一种适于国内引进开发的新型超硬磨料砂轮.中国机械工程,1999,10(4):375-377
    [13]卢金斌.金刚石钎焊机理与工艺基础研究,[博士学位论文],南京,南京航空航天大学,2004
    [14]马伯江.金刚石磨粒高频感应钎焊的基础研究,[博士学位论文],南京,南京航空航天大学,2005
    [15] Sheng-Fang Huang,Hsien-Lung Tsai,Shun-Tian Lin.Effects of brazing route and brazing alloy on the interfacial structure between diamond and bonding matrix.Materials Chemistry and Physics 84 (2004):251–258
    [16] Sheng-Fang Huang,Hsien-Lung Tsai,Shun-Tian Lin.Laser Brazing of Diamond Grits Using a Cu-15Ti-10Sn Brazing Alloy.Materials Transactions.Vol.43.No.10(2002):2604-2608
    [17] Y.C. Fu. B. Xiao. J.H. Xu. Machining performance of monolayer brazed diamond tools source. Key Engineering Materials, 2004,v 258-259: 73-77
    [18]郑启光编著.激光先进制造技术,华中科技大学出版社,2002.12
    [19]蔡方寒.高功率CO2激光烧结金属粉末-金刚石颗粒的机理研究,[硕士学位论文],武汉,华中科技大学,2005
    [20]杨卫红,唐霞辉,秦应雄,刘天明,阮海洪.高功率CO2激光钎焊金刚石颗粒.中国激光.2007,34(4):569-573
    [21]张剑锋,张建华,赵剑锋,等.激光快速成形制造技术的应用研究进展.航空制造技术2002. 7: 34-37
    [22] C. Martin, J. V Sasutil, M. Kouhkan. Comparative analysis of different methods of rapid tooling. Materials Science Forum, 2005, 4:2873-2879
    [23] J.Y. Jeng,S.C. Peng and C.J. Chou. Metal Rapid Prototype Fabrication Using Selective Laser Cladding Technology. Int J Adv Manuf Technol. 16 (2000):681-687
    [24] X.C.Wang, T.Laoui, J. Bonse. et al. Direct Selective Laser Sintering of Hard Metal Powders:Experiment Study an Simulation. Int. J. of Advance Manufacturing Technology . 2002 , 19:351-357
    [25]隆太,陆宗仪.当前快速成型技术研究和应用的热点问题.机械设计与制造工程.1999,28 (3):5-7
    [26] H. Durr, R. Pilz, N.S. Eleser. Rapid tooling of EDM electrodes by means of selective laser sintering. Computers in Industry 39 1999:35–45
    [27] D. Suman , W. Martin , J. Joseph, L. Bourell. Producing metal parts with selective laser sintering/hot isostatic pressing. Int. JOM Journal of the Minerals, Metals and Materials Society. 1998, 12 V(50):17-20
    [28] P. K Bai., W.F. Wang. Selective laser sintering mechanism of polymer-coated molybdenum powder. Trdns. Nonferrous Met. Soc. China I7(2007):543-547
    [29] Y E Kathuria. Selective laser sintering of metallic powder for microfabrication technology .1997 International Symposium on Micromechatronics and Human Science: 41-47
    [30]杨森,钟敏霖,张庆茂等.激光快速成型金属零件的新方法.激光技术. 2001, 25 (4): 254-257
    [31]陈森昌,黄树槐,史玉生.选择性激光烧结间接成形金属及其在机械工业中的应用.机械工程材料.2002, 26 (8):1-7
    [32]赵剑峰,吴晓鸣,唐亚新等.激光烧结快速成形技术误差综合分析.航空工艺技术.1999,2: 26-29
    [33]郭作兴,沈平,刘亦率等.激光烧结三种铁基粉末压丕的初步研究.应用激光.1999, 19(2 ): 52-56
    [34]胥橙庭. Ni-Cu基合金混合粉末选择性激光烧结成形技术研究,[硕士学位论文],南京,南京航空航天大学,2005
    [35]黄家胜.大功率激光滚覆快速成形工艺实脸研究,[硕士学位论文],苏州,苏州大学,2006
    [36] N. K. Tolochko, M. K. Arshinov, A. V. Gusarov, et al. Mechanisms of selective laser sintering and heat transfer in Ti powder. Rapid Prototyping Journal. 2003,9(5): 314-326.
    [37]沈以赴,顾冬冬,余承业,等.直接金属粉末激光烧结成形过程温度场模拟.中国机械工程,2005, 16(1): 67-73
    [38]白培康,黄树槐,程军.树脂基复合成型材料激光烧结过程温度场数值模拟.应用基础与工程科学学报,2002, 10(1): 68-72.
    [39] T. H. C. Childs, M. Berzins, G. R. Ryder, et al. Selective laser sintering of an amorphous- simulations and experiments . Proc Instn Mech Engrs, 1999, 213B: 333-349
    [40]闰毓禾,钟敏霖,高功率激光加工及其应用.天津科学技术出版社,1994
    [41] T. Markovits,J. Takács,et al.Laser brazing of aluminium.Journal of Materials Processing Technology,V143–144 (2003):651–655
    [42] M. K. Jeon,W. B. Kim,et al.A study on heat flow and temperature monitoring in the laser brazing of a pin-to-plate joint.Journal of Materials Proessing Technology,82 (1998):53-60
    [43]苏彦祝.PECT激光钎焊技术的研究.焊接技术,2000.10:14-15
    [44]何云峰.多层异质复合结构激光钎焊工艺.焊接学报,2001.12:21-25
    [45]许友谊.激光焊和钎焊飞锤支架部件的比较研究.应用激光,2003.10:277-280
    [46]姜光强,吴爱萍,任家烈.极薄钛板的激光钎焊.中国激光,1999.10:955-960
    [47]梁旭文,王春青,钱乙余.激光钎焊中锡铅钎料在PCB铜导体上的润湿特点.焊接,1998.7:2-4
    [48]夏锦华,殷声,叶宏煜.金刚石锯片的激光焊接.北京科技大学学报,1999.6
    [49]关振中著.激光加工工艺手册.北京:中国计量出版社,1998
    [50]陆建,倪晓武,贺安之。激光与材料相互作用物理学.北京:机械工业出版社.1996
    [51]雷卡林.材料的激光加工.北京:科学出版社1982
    [52] X. Wang, J.P. Kruth. A simulation model for direct selective laser sintering of metal powders. Proc. 5th Int, Conf. On Computational Structures Technology, 2000: 57-71
    [53] D. Tabor, J. E. Field. The Properties of Natural and Synthetic Diamond, Edit by Field J. E. London. Academic, 1992: 515-547
    [54]康仁科史兴宽任敬心彭炎午激光修整金刚石砂轮的研究,西北工业大学学报1999,V17(4):42-48
    [55]祖国兴.高温熔炼降低电真空钎料中碳含量的研究.稀有金属材料与工程, 1992, 21(5): 43-45
    [56] R. D. Mottram. Brazing Copper to Mild Stainless Steels Using Copper-phosphorus-tin Pastes. Welding Journal, 1986(4): 126-131
    [57]吕崇德.热工参数测量与处理(第二版).北京:清华大学出版社,2005
    [58]刘战强,黄传真,万熠等.切削温度测量方法综述.工具技术,2002.36(3):3-7
    [59]袁哲俊.金属切削试验技术.北京:机械工业出版社,1988
    [60]李杰.炮膛内壁瞬态温度测试技术研究,[硕士学位论文],南京,南京理工大学,2004
    [61]史健军.激光宽带熔覆装置及工业研究. [硕士学位论文],苏州,苏州大学,2006
    [62]孙秀兰,李吉林.热电偶温度-毫伏对照表[M].北京:中国计量出版社, 1988:50-621
    [63]姜同川.正交试验设计.山东科学技术出版社,1985
    [64] K. asubuchi. Prediction and control of residual stresses and distortion in welded structures. Proc. Theoretical Prediction in Joining and Welding, Osaka, Japan, Nov . 1996: 71-88
    [65]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北大学出版社,1999
    [66]谭建国编著.使用ANSYS6.0进行有限元分析.北京:北京大学出版社,2002.5
    [67]王家金主编.激光加工技术.北京,中国计量出版社. 1992. 99-117
    [68]杨世铭,陶文栓.传热学(第3版).北京,高等教育出版社,1998.
    [69]路有勤,郭伟.激光熔覆三维温度场数值模型的建立与计算[J].山西机械,1999(2):32-35
    [70]戴锅生.传热学[M].北京:高等教育出版社,1998
    [71]谢元峰,基于ANSYS的焊接温度场和应力的数值模拟研究,[硕士学位论文],武汉,武汉理工大学, 2006
    [72]陈楚等.数值分析在焊接中的应用.上海:上海交通人学出版社,1985,1.80-82
    [73]林得超.焊接过程应力应变特征及其控制的数值模拟.[博士学位论文].西安,西安交通大学,1997
    [74]孔祥谦.热应力有限单元法分析.上海:上海交通大学出版社,1999,10
    [75]拉达尹,熊第京等译.接热效应温度场残余应力变形.北京:机械工业出版社,1997.3
    [76] ANSYS.inc. ANSYS Transient Analysis Guide. ANSYS.Inc. 2001
    [77] D.C Wang, G.S. Du, J.y. Wu. Numerical experimental study on the 3-D ?ow field around a van with a dome for energy saving. Energy Conversion and Management. 46 (2005) :833–846
    [78]方俊飞.同轴激光TIG电弧复合热源焊接温度场的数值模拟. [硕士学位论文],黑龙江:哈尔滨工业大学,2002.
    [79]董志波,魏艳红,等.不锈钢焊接温度场的二维数值模拟[[J].焊接学报,2004,25(2):9-14
    [80]沈显峰,多组元金属粉末直接激光烧结过程数值模拟及烧结区域预测,[博士学位论文],四川,四川大学,2005
    [81]武传松.焊接热过程数值分析,哈尔滨,哈尔滨工业大学出版社,1990
    [82]姜任秋著.热传导、质扩散与动量传递中的瞬态冲击效应.北京,科学出版社,1997
    [83]周建兴,刘瑞祥,陈立亮,等.凝固过程数值模拟中潜热处理方法.铸造, 2001, 50 (7):404~407
    [84]夏恭忱,石玉珍.工程材料实用手朋fMl. .I,国标准出版社,1988.12-103
    [85]谭真,郭广文.工程合金热物性.北京:冶金工业出版社,1994
    [86] C.L.Tsai and Z.L.Feng . A Computational Ansysis of Thermal and Mechanical Conditions For Weld Metal Solidification Cracking . Welding Research Abroad,1996,42(1):34-41
    [87]李东林,焊接应力和变形的数值模拟研究,硕士学位论文,武汉理工大学2003.3
    [88]王硕桂等.等离子表面淬火过程的简化算法和淬硬相变温度计算.金属热处理. 1998. 50 (3):58-62
    [89]温焱,阎吉祥.基于ANSYS的激光与物质相互作用的仿真研究.光学技术.2005.V31:250-253
    [90]张启运,庄鸿寿.钎焊手册.北京:机械工业出版社,1999.1
    [91]徐瑞.材料热力学与动力学,哈尔滨,哈尔滨工业大学出版社,2003
    [92]任耀文.真空钎焊工艺(第一版).北京:机械工业出版社,1993
    [93] A. K. Chattopadhyay. H. E Hintermann. On Brazing of Cubic Boron Nitride Abrasive Crystals to Steel Substrate with Alloys Containing Cr or Ti. Journal of Material Science, 1993(28): 5887-5893
    [94] P. R Chidambaran, G. R Edwards and D. L Oison. Metall. Trans. B 1992, 23B: 215
    [95]徐祖耀,李麟.合金热力学(第三版).科学出版社,2000,1
    [96] H. E. Chattopadhyay et al.On brazing of cubic boron nitride abrasive crystals to steel substrate with alloys containing Cr or Ti.Journal of Materials Science,(28):5887-5893
    [97]李文超主编.冶金与材料物理化学.北京:冶金工业出版社.2001
    [98]虞觉奇,易文质,陈邦迪等.二元合金状态图.上海:上海科学技术出版社, 1987
    [99]林化春,黄新波.镍基-碳化铬复合涂层材料的界面分析.金属热处理,2002:5-7
    [100]段隆臣,杨凯华,汤凤林.镀NiWB金刚石在高温下的热损伤特征.材料开发与应用,1999,1:1-4
    [101] J. A. Harrington, R. T. Harley and C. T. Walker.. Raman Scattering by Localized Modes. Solid state commun. 1970(8): 407
    [102]李芙蓉,霍立兴,张玉凤.非破坏性测量焊接残余应力方法的应用现状.焊接技术, 2001, 30(3): 37-39
    [103]李耕.金刚石与其表面金属化层及胎体间的热应力分析.粉末冶金技术,2002,4,209~214
    [104]方容川.固体光谱学.合肥:中国科学技术大学出版社.2001,5
    [105] Y. V Naidich, V. V Shurkhal, V. P Umanskii, etal. Adhesion of Molten and Solidified Copper-Germanium-Chromium Alloys to Diamond. Soviet Journal of Superhard Materials, 1988, 10(5): 1-4
    [106]方啸虎.超硬材料科学与技术.北京:中国建材工业出版社,2000
    [107]孙毓超,刘一波,王秦生编著.金刚石工具与金属学基础.北京:中国建材工业出版.1999
    [108]王适,张弘弢.金刚石热稳定性研究现状.金刚石与磨料磨具工程,2001,5:36-39
    [109] C. J. Noble,T. H. Pawlik,J. M. Spaeth.Electron paramagnetic resonance investigations of nickel defects in natural diamonds.J.Phy.Condens.Matter,1998,10:11781-11793
    [110]宋振武,高航.螺旋槽砂轮磨削性能的试验研究,磨料磨具与磨削,1985,6:1-5
    [111] A. Ersoy,S. Buyuksagic,U. Atici. Wear characteristics of circular diamond saws in the cutting of different hard abrasive rocks. Wear , 2005,258:1422-1436
    [112]张幼桢,金属切削理论.北京:航空工业出版社,1988:385-386
    [113] A. J. Shih,W. I. Clark, J. L. Akemon. Wear of the blade diamond tools in truing vitreous bond grinding wheels Part II. Truing and grinding forces and wear mechanism. Wear 250 (2001): 593–603
    [114]詹友基.钎焊金刚石平面磨削的试验研究,[硕士学位论文],厦门,华侨大学2006
    [115] S.Y.Luo. Study of the behavior of diamond saw-blades in stone processing. Journal of Materials Processing Technology. 1995,(51):296-308
    [116] T. W Hwang, C. J Evans and S Malkin.‘‘High Speed Grinding of Silicon Nitride with Electroplated Diamond Wheels, Part 2: Wheel Topography and Grinding Mechanisms’’ASME J. Manuf. Sci. Eng., 2000, 122: 42–50.
    [117] S. Malkin.磨削技术与理论(蔡光起译),沈阳,东北大学出版社,2002
    [118]殷玲,刘忠,陈日耀.陶瓷磨削中金刚石砂轮磨损形式及其生成原因.华中理工大学学报,1996,24(4):19-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700