人为硫酸盐增多对长江中下游夏季降水年代际转型的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文使用全球大气模式(GFDL-AM2)对人为硫酸盐气溶胶直接气候效应进行了模拟,研究人为硫酸盐增长对上世纪70年代末长江中下游夏季降水年代际转型的影响,通过将模拟结果与观测和再分析资料进行对比,分析其影响机制。在此基础上,将硫酸盐和黑碳气溶胶的效应进行对比,并考察两者的协同作用。
     我们完成了两组集合试验,每组集合试验各由5个成员组成,每个成员是由一自1970至2000共31年的模式积分。在第一组试验中,模式被给定随时间演变的气溶胶强迫。在第二组试验中,在东亚区域,人为硫酸盐气溶胶被固定在1970年的水平不变,其余完全同第一组试验。第一组试验与第二组试验的差异被用来分析人为硫酸盐气溶胶的气候影响。
     从30年平均结果看,东亚区域的人为硫酸盐在大气顶和地面造成显著的负辐射强迫,最大值可达-3W·m-2,其引起的气温变化中国范围内绝大部分地区不超过-0.3-0.1℃,降水变化不超过-0.1-0.2mm·day-1。从年代际变化看,硫酸盐气溶胶增长引起的降水年代际变化与观测到的降水转型有很好的时空一致性,在长江中下游流域都表现为0.5-1mm·day-1的降水增多;观测中包括副热带高压西伸南移、我国东部近地面异常北风等夏季风年代际减弱信号以及对应的垂直温度、上升运动分布等均能很好地被模式再现。机制上,硫酸盐气溶胶通过引起负辐射强迫,造成我国中东部的大部分地区地面到对流层中层降温,其中地面最大降温幅度达到-1℃以上,由此海陆热力对比减小,使东亚夏季风减弱,雨带容易在长江中下游停留,从而导致该区域降水增多。于是,硫酸盐气溶胶增多对长江中下游降水年代际转型有重要贡献。
     与黑碳的对比以及对两种气溶胶协同作用的模拟表明:从年代际变化看,黑碳气溶胶在地表同样引起减温效应,大值可达-1℃,因此存在与人为硫酸盐类似的使夏季风减弱和长江流域降水增多的效应,量值同样可达0.5-1mm·day-1以上。而两种气溶胶协同作用则与单独作用体现出完全不同的特征:协同作用使长江以南降水减少达1mm·day-1以上,地表升温0.6-1℃。从机制上,两种气溶胶的协同作用阻断了中国东部夏季风的水汽输送,使整个中国东部夏季降水减少。两种气溶胶协同作用与单一气溶胶作用的关系是非线性的。
To explore the direct effect of the increased anthropogenic sulfate aerosols concentration on the decadal shift of summer precipitation in the middle and lower reaches of the Yangtze River valley since the late-1970s, a global climate model (GFDL-AM2) is employed to conduct ensemble sensitive experiments. The results are compared with observation and reanalysis data to understand the mechanism for the impact. Then, this effect is compared with that of black carbon. Particularly, the synergy effect of the combined two kinds of aerosols is examined.
     Two sets of ensemble experiments are performed. Each ensemble constitutes5members with a31-year integration beginning from1970. In the first ensemble, the AGCM is prescribed with historically evolving aerosol forcing, while the anthropogenic sulfate aerosol is fixed at the level of1970over East Asia in the second ensemble. The difference of the first ensemble minus the second ensemble is used to analytze the impact of anthropogenic sulfate. As far as the30-year average is concerned, anthropogenic sulfate aerosols causes obvious negative radiative forcing at the top of atmosphere and the surface in East Asia from1971-2000, with the maximum close to-3W·m-2. It results in significant changes in temperature within (-0.3,0.1)℃and precipitation change within (-0.1,0.2) mm-day-1in most areas in China. As far as the interdecadal variation is concerned, the spatial-temporal structure shift of modeled summer rainfall bears a big similarity to the observed, exhibiting a rainfall increase in the middle and lower reaches of the Yangtze River. In particular, the shift characteristics in several East Asian Summer Monsoon subsystems, including the southward and westward stretch of the western Pacific subtropical high and the anomalous northerly along the east coast of East China as well as those in the vertical distribution of air temperature and vertical velocity, can be captured. Mechanisticly, the increased sulfate aerosols causes intensified negative radiative forcing, results in cooling in much of east China from the surface to the middle troposphere with the maximum cooling rate of more than-1℃on the surface. Subsequently, this weakens the land-sea thermal contrast and East Asian Summer Monsoon, and favors the rainband staying in the Yangtze River basin rather than moving northward to North China and Northeast China in middle summer (July-August). Thus, it is concluded that the increased anthropogenic sulfate aerosols have contributed substantially to the decadal shift of summer precipitation in the middle and lower reaches of the Yangtze River since the late-1970s.
     When it is compared with Black carbon(BC), BC causes a surface temperature cooling close to-1℃and weakened summer monsoon and increased precipitation in the Yangtze River basin, which are similar to those of anthropogenic sulfate. Synergy impact of the combined two kinds of aerosols shows completely different characteristics in that decreased precipitation close to-1mm-day-1and warmed surface air temperature as large as0.6-18℃are seen over the south of the Yangtze River. A further analysis displays that synergy impact of the two kinds of aerosols tends to block moisture transport toward east Asia, causing decreased precipitation in eastern China. This suggests that the synergy impact of the combined two kinds of aerosols is different from the sum of their individual impacts. Thus, a nonlinear interaction between the impacts of the two kinds of aerosols may exist
引文
[1]IPCC (2007), Climate Change 2007:The Physical Science Basis, Working Group I Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press,2007,135-136;
    [2]V. Ramanathan, et al, Aerosols, Climate, and the Hydrological Cycle, Science, 2001(294),2119;
    [3]IPCC (2007), Climate Change 2007:The Physical Science Basis, Working Group I Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press,2007,153-154;
    [4]IPCC (2007), Climate Change 2007:The Physical Science Basis, Working Group I Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press,2007;
    [5]Hansen J, Sato M, Ruedy R, et al, Global warming in the twenty-first century: an alternative scenario, Proc Nalt Acad Sci,2000,97(18),875-9880;
    [6]Jacobson MZ, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature,2001,409,695-697;
    [7]吉振明,高学杰,张冬峰,等,亚洲地区气溶胶及其对中国区域气候影响的数值模拟,大气科学,2010,34(2),262-274;
    [8]Yang FL, Lau KM, Trend and variability of China precipitation in spring and summer: linkage to sea-surface temperatures, Int J Climatol, 2004,24(13),1625-1644;
    [9]Ding YH, Chan JCL, The East Asian summer monsoon:an overview, Meteorol Atmos Phys,2005,89(1-4),117-142;
    [10]黄荣辉,徐予红,周连童,我国夏季降水的年代际变化及华北干旱化趋势,高原气象,1999,18(4):465-476;
    [11]黄荣辉,蔡榕硕,陈际龙,等,我国旱涝气候灾害的年代际变化及其与东亚气候系统变化的关系,大气科学,2007,30(5):730-743;
    [12]Yong Liu, Gang Huang, Ronghui Huang, Inter-decadal variability of summer rainfall in Eastern China detected by the Lepage test, Theor Appl Climatol, 2011;
    [13]邓伟涛,孙照渤,曾刚,等,中国东部夏季降水型的年代际变化及其与北太平洋海温的关系,大气科学,2009,33(4):835-846;
    [14]Gong DY, Ho CH, Shift in the summer rainfall over the Yangtze River valley in the late 1970s, Geophys Res Lett,2002,29(10);
    [15]Wang S, Jinhong Z, Jingning C, Interdecadal variability of temperature and precipitation in China since 1880, Adv Atmos Sci,2004,21(3):307-313;
    [16]IPCC (2007), Climate Change 2007:The Physical Science Basis, Working Group I Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press,2007,996;
    [17]Haywood, J., and O. Boucher, Estimates of the direct and indirect radiative forcing due to tropospheric aerosols:A Review, Rev. Geophys,2000,38, 513-543;
    [18]Ramanathan, V., and P. J. Kiehl, et al., New directions:Atmospheric brown "Clouds", Atmos. Environ,2003,37,4033-4035;
    [19]IPCC (2007), Climate Change 2007:The Physical Science Basis, Working Group I Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press,2007,160;
    [20]石广玉等,大气气溶胶的辐射与气候效应,大气科学,2008,32(4),826-840;
    [21]IPCC (2007), Climate Change 2007:The Physical Science Basis, Working Group I Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press,2007,161;
    [22]Kiehl, J. T, and B. P. Briegleb, The relative roles of sulfate aerosols and greenhouse gases in climate forcing, Science,1993,260,311-314,;
    [23]高丽洁,王体健,徐永福,闵锦忠,中国硫酸盐气溶胶及其辐射强迫的模拟,高原气象,2004,23(5),612-619;
    [23]王喜红,石广玉,马晓燕,东亚地区对流层人为硫酸盐辐射强迫及其温度响应,大气科学,2002,26(6),751-760;
    [24]高学杰,林一骅,赵宗慈,用区域气候模式模拟人为硫酸盐气溶胶在气候变化中的作用,热带气象学报,2003,19(2),169-176;
    [25]孙家仁,刘煜,中国区域气溶胶对东亚夏季风的可能影响(Ⅰ):硫酸盐气溶胶的影响,气候变化研究进展,2008,4(2),111-116;
    [26]Chung, C. E., V. Ramanathan, and J. T. Kiehl, Effects of the South Asian absorbing haze on the northeast Monsoon and surface-air heat exchange, J. Climate,2002,15,2462-2476;
    [27]Meehl, G. A., J. M. Arblaster, and W. D. Collins, Effects of black carbon aerosols on the Indian monsoon, J. Climate,2008,21,2869-2882;
    [28]IPCC (2007), Climate Change 2007:The Physical Science Basis, Working Group I Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press,2007,165;
    [29]Ramaswamy, V., et al, Radiative forcing of climate change. In:Climate change 2001:The Science Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change[Houghton, J.T., et al.(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,2001,349-416;
    [30]陆日宇,华北汛期降水量年代际和年际变化之间的线性关系,科学通报,2003,48(7),718-722;
    [31]Nitta T, Hu ZZ, Summer climate variability in China and its association with 500 hPa height and tropical convection. J Meteorol Soc Jpn,1996,74(4), 425-445;
    [32]Ding YH, Wang ZY, Sun Y, Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I:observed evidences, Int J Climatol,2008,28(9),1139-1161;
    [33]Yao C, Yang S, Qian W, Lin Z, Wen M, Regional summer precipitation events in Asia and their changes in the past decades, J Geophys Res,2008, 113(D17),D17107;
    [34]叶红,东亚夏季降水和环流年际变化特征的年代际转变,北京,中国科学院大气物理研究所,2011,1;
    [35]Zeng, G, Z. L. Wang, P. W. Guo, et al., A modeling study of the effects of direct radiative forcing due to carbonaceous aerosol on the climate in East Asia, Adv. Atmos. Sci.,2009,26(1),57-66
    [36]Fu, J. J., S. Li, and D. H. Luo, Impact of global SST on decadal shift of east Asian summer climate, Adv. Atmos. Sci.,2009,26(2),191-201;
    [37]Yang, X., Q. Xie, Y. Zhu, et al., Decadal-to-interdecadal variability of precipitation in North China and associated atmospheric and oceanic anomaly patten, Chinese J. Geo. Phys. (in Chinese),2005,48(4),789-797;
    [38]Zhao, P., X.. Zhang, X. Zhou, et al., The sea ice extent anomaly in the North Pacific and its impact on the East Asian summer monsoon rainfall, J. Climate, 2004,17,3434-3447;
    [39]Xu Q, Abrupt change of the mid-summer climate in central east China by the influence of atmospheric pollution, Atmos Environ,2001,35,5029-5040;
    [40]Menon, S., J. Hansen, L. Nazarenko, et al., Clilmate effects of black carbon aerosol in China and India, Science,2002,297,2250-2253;
    [41]Wang Huijun, The weakening of the Asian monsoon circulation after the end of 1970's, Adv. Atmos. Sci.,2001,18(3),376-386;
    [42]Ramanathan V, C. Chung, D. Kim, T. Betge, L. Buja, J. T. Kiehl, W. M. Washington, Q. Fu, D. R. Sikka, and M. Wild, Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc. Natl. Acad. Sci., 2005,102;
    [43]Lau, K. M., and K. M. Kim, Observational relationships between aerosol and Asian monsoon rainfall, and circulation, Geophys. Res. Lett.,2006,33(21), L21810;
    [44]Kim, M. K., K. M. Lau, Mian Chin, K. M. Kim, Y. C. Sud, G. Walker, Atmospheric Teleconnection over Eurasia induced by aerosol radiative forcing during boreal spring. J. Climate,2006,19,4700-4718;
    [45]Kim, M.-K., W. K. M. Lau, K.-M. Kim, and W.-S. Lee, A GCM study of effects of radiative forcing of sulfate aerosol on large scale circulation and rainfall in East Asia during boreal spring, Geophys. Res. Lerr.,2007, (34)
    [46]Massimo A. Bollasina, et al., Anthropogenic Aerosols and the Weakening of the South Asian Summer Monsoon, Science,2011,334,520-505;
    [1]孙颖,丁一汇,IPCC AR4气候模式对东亚夏季风年代际变化的模拟性能评估,气象学报,2008,66(5),765-780;
    [2]张莉,丁一汇,孙颖,全球海气耦合模式对东亚季风降水模拟的检验,大气科学,2008,32(2),261-276;
    [3]FU Jianjian, LI Shuanglin, LUO Dehai, Impact of Global SST on Decadal Shift of East Asian Summer Climate, Adv Atmos Sci,2009,26(2),192-201;
    [4]Anderson et al, The New GFDL Atmosphere and Land Model AM2-LM2:Evaluation with Prescribed SST simulations, J. Climate,2004,17, 4641-4673;
    [5]Wyman, B.L., A step-mountain coordinate general circulation model: Description and validation of medium-range forecasts., Mon.. Wea. Rev.,1996, 124:102-121
    [6]王喜红,石广玉,东亚地区人为硫酸盐气溶胶柱含量变化的数值研究,气候与环境研究,2000,5(1),58-66;
    [7]GAMT (the GFDL global Atmospheric Model development Team), The new GFDL Atmosphere and Land Model AM2-LM2:Evaluation with prescribed SST simulations., J. Climate,2004,17:4641-4673;
    [8]姚锦烽,东亚季风区人为气溶胶直接气候效应的模拟研究,南京,南京信息工程大学大气科学学院[硕士学位论文],2010;
    [9]Horowitz, L. W., S. Walters, D. L. Mauzerall, et al., A global simulation of tropospheric ozone and related tracers:Description and evaluation of MOZART, version 2, J. Geophys. Res.,2003,108(D24),4784;
    [10]Hauglustaine, D. A., G. R. Brasscur, S. Walters, et al., MOZART:A global chemical transport model for ozone and related chemical tracers 2. Model results and evaluations, J. Geophys. Res.,1998,103, D21,28291-28335;
    [11]Ming, Y, V. Ramaswamy, P. A. Ginoux, et al., Direct radiative forcing of anthropogenic organic aerosol, J. Geophys. Res.,110;
    [12]Tie, X., G Brasseur, L. Emmons, L. Horowitz, and D. Kinnison, Effects of aerosols on tropospheric oxidants:A global model study, J. Geophys. Res., 2001,106, (22),931-964;
    [13]Tie, X., S. Madronich, S. Walters, D. P. Edwards, P. Ginoux, N. Mahowald, R. Zhang, C. Lou, and G Brasseur, Assessment of the global impact of aerosols on tropospheric oxidants, J. Geophys. Res.,2005,110;
    [14]Haywood, J. M., V. Ramaswamy, and B. J. Soden, Tropospheric aerosol climate forcing in clear-sky satellite observations over the oceans, Science,1999,283, 1299-1303;
    [15]J. T. Kiehl, T. L. Schneider, P. J. Rasch, and M. C. Barth, Radiative forcing due to sulfate aerosols from simulations with the National Center for Atmospheric Research Community Climate Model, Version 3, J. Geophys. Res.,2000, 105(D1),1441-1457;
    [16]David G Streets, Carolyne Yu, Ye Wu et al., Aerosol trend over China, 1980-2000, Atmospheric Research,2007,88(2008):174-182;
    [17]EVA BAUER, VLADIMIR PETOUKHOV, ANDREY GANOPOLSKI and ALEXEY V. ELISEEV, Climatic response to anthropogenic sulphate aerosols versus well-mixed greenhouse gases from 1850 to 2000 AD in CLIMBER-2,// Tellus 60B, Singapore:Blacewell Munksgaard,2008:82-97;
    [18]CHANG Wenyuan, LIAO Hong, and WANG Huijun, Climate Response to Direct Radiative Forcing of Anthropogenic Aerosol, Tropospheric Ozone, and Long-Lived Greenhouse Gases in Eastern China over 1951-2000, Adv Atmos Sci,2009,26(4),748-762;
    [1]田华,马建中,李维亮,等,中国中东部地区硫酸盐气溶胶直接辐射强迫及气候效应的数值模拟,应用气象学报,2005,16(3),322-333;
    [2]许潇锋,牛生杰,邱金恒,等,兰州1960-2003年大气气溶胶光学厚度和太阳辐射变化特征,中国沙漠,2009,29(5),966-970;
    [3]CHANG Wenyuan, LIAO Hong, and WANG Huijun, Climate Response to Direct Radiative Forcing of Anthropogenic Aerosol, Tropospheric Ozone, and Long-Lived Greenhouse Gases in Eastern China over 1951-2000, Adv Atmos Sci,2009,26(4),748-762;
    [4]Ding, Y., Z. Wang, and Y. Sun, Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I:Observed evidences, International Journal of Climatology, 2008,28,1139-1162;
    [5]Yong Liu, Gang Huang, Ronghui Huang, Inter-decadal variability of summer rainfall in Eastern China detected by the Lepage test, Theor Appl Climatol, 2011;
    [6]任国玉,郭军,徐铭志,等,近50年中国地面气候变化基本特征,气象学报,2005,63(6),942-956;
    [7]Hongmei Li, Aiguo Dai, Tianjun Zhou, Jian Lu, Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950-2000, ClimDyn,2010,34,501-514;
    [8]Xu Q, Abrupt change of the mid-summer climate in central east China by the influence of atmospheric pollution, Atmos Environ,2001,35,5029-5040;
    [9]孙家仁,刘煜,中国区域气溶胶对东亚夏季风的可能影响(Ⅰ):硫酸盐气溶胶的影响,气候变化研究进展,2008,4(2),111-116;
    [10]Chang, C. P., Y. S. Zhang, and T. Li,2000:Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge [J]. J. Climate,2000,13:4310-4325.
    [11]魏凤英,宋巧云,韩雪,近百年北半球海平面气压分布结构及其对长江中下游梅雨异常的影响,自然科学进展,2006,16(2),215-222;
    [12]周波涛,王会军,Hadley环流的年际和年代际变化特征及其与热带海温的关系,地球物理学报,2006,49(5),1271-1278;
    [13]平凡,罗哲贤,琚建华,长江流域汛期降水年代际和年际尺度变化影响因子的差异,科学通报,2006,51(1),104-109;
    [14]Gong DY, Ho CH, Shift in the summer rainfall over the Yangtze River valley in the late 1970s, Geophys Res Lett,2002,29(10);
    [15]叶红,东亚夏季降水和环流年际变化特征的年代际转变,北京,中国科学院大气物理研究所,2011,1
    [16]司东,丁一汇,柳艳菊,中国梅雨雨带年代际尺度上的北移及其原因,科学通报,2010,55(1),68-73;
    [17]Yali Zhu, Huijun Wang, Wen Zhou, and Jiehua Ma, Recent changes in the summer precipitation pattern in East China and the background circulation, Clim Dyn,2010;
    [18]孙家仁,刘煜,中国区域气溶胶对东亚夏季风的可能影响(Ⅰ):硫酸盐气溶胶的影响,气候变化研究进展,2008,4(2),111-116;
    [19]吉振明,高学杰,张冬峰,等,亚洲地区气溶胶及其对中国区域气候影响的数值模拟,大气科学,2010,34(2),262-274;
    [1]Menon, S., J. Hansen, L. Nazarenko, et al., Clilmate effects of black carbon aerosol in China and India, Science,2002,297,2250-2253;
    [2]IPCC (2007), Climate Change 2007:The Physical Science Basis, Working Group I Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press,2007,163;
    [3]孙家仁,刘煜,中国区域气溶胶对东亚夏季风的可能影响(Ⅰ):硫酸盐气溶胶的影响,气候变化研究进展,2008,4(2),111-116;
    [4]孙家仁,中国地区黑碳气溶胶的输送及其气候效应研究,中国气象科学研究院,2007
    [5]常文渊,利用CACTUS模式模拟空气污染和气候变化间相互影响,中国科学院研究生院,2008
    [6]IPCC (2007), Climate Change 2007:The Physical Science Basis, Working Group I Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press,2007,169;
    [1]IPCC (2007), Climate Change 2007:The Physical Science Basis, Working Group Ⅰ Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press,2007,563;
    [2]常文渊,利用CACTUS模式模拟空气污染和气候变化间相互影响,中国科学院研究生院[博士学位论文],2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700