电力牵引传动系统直接转矩控制若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高速重载干线铁路网的大规模建设,采用大功率异步电机驱动的电力机车与动车有着广阔的应用前景,而交流传动控制技术直接决定了机车/动车的运行性能,是整个机车/动车的核心所在。采用异步电机直接转矩控制技术的交流传动控制系统,低速启动时的转矩脉动引起空转。较低开关频率限制引起的定子电流低次谐波对牵引供电网的干扰。恶劣运行环境导致转速传感器故障后,引起的机车/动车动力切除。因此,研究异步牵引电机直接转矩控制低速起动时的转矩脉动特性及其脉动抑制方法,了解其高速运行时不同PWM调制方式所对应定子电流的谐波特性,提高其速度闭环动力单元在恶劣运行环境下的的可靠性,具有重要的学术价值和工程意义。
     以异步牵引电机直接转矩控制低速转矩脉动为对象,研究了定子坐标系下转矩脉动的各组成部分,综合考虑系统采样周期、开关周期以及参考电压矢量对转矩脉动的影响,建立了三者与转矩脉动的量化关系,从参考电压矢量减小转矩脉动的角度,讨论了间接定子量控制与无差拍空间矢量调制直接转矩控制的特点,提出一种结合查表法PWM和空间矢量调制的直接转矩控制方法。结果表明:在采样周期和开关周期一定的前提下,转矩脉动可分为与转速相关的反电动势衰减量,与当前转矩大小相关的电阻衰减量,以及由当前定子电压矢量引起的变化量;通过优化参考电压矢量的生成可以弥补前两者的衰减,使得转矩脉动最小。
     讨论了直接自控制法与分段同步调制的优缺点;研究了六边形磁链轨迹和单折角调制十八边形磁链轨迹的谐波特性,以及单折角调制的实现方式;提出了双折角调制三十边形磁链轨迹直接自控制及其两种实现方法;提出了平滑过渡策略以适应不同磁链轨迹的切换。结果表明:直接自控制法能有效抑制定子尖峰电流,谐波电流损耗与谐波转矩更小;单折角调制十八边形磁链轨迹能抑制低次谐波;但由于单折角的限制,会引起其它低次谐波上扬;双折角调制可以将主要低次谐波消除殆尽,且简化了单折角调制的实现方式;不同磁链轨迹的过渡措施亦减小了转矩冲击。
     考虑定子电阻偏差与直流偏置对电压电流模型的影响,提出定子电阻自适应的正交反馈补偿定子磁链观测器;研究了电压电流模型、电流转速模型、电压转速模型与状态方程的关系,以及各模型对电机参数的敏感性。基于异步电机的状态方程,提出了定子电阻自适应的定子磁链滑模观测器,降低观测器的参数敏感性。结果表明:正交反馈补偿定子磁链观测器能有效抑制定子磁链的直流偏置,但对定子电阻误差引起的定子估算误差无能为力;电压电流模型电流转速模型电压转速模型均为状态方程的特例;基于状态方程的全阶观测器对参数选择敏感,而滑模理论能降低参数敏感性,经验证,采用定子电阻自适应措施后的正交反馈补偿定子磁链观测器与定子磁链滑模观测器,定子磁链的观测精度得到提高。
     针对异步牵引电机动力单元运行环境恶劣,转速传感器容易故障的特点,研究了故障后的无速度传感器运行策略,以提高电力机车恶劣环境下的稳定性与可靠性;为了避免无速度信息下,电力机车在惰行与牵引逆变器脉冲封锁保护后,逆变器启动时的过电流与转矩冲击,提出了带速重投控制策略。结果表明:开环转速估算精度不高;受制于电力牵引系统较低的开关频率,高频注入法无法使用;利用模型参考自适应理论,在前续两种定子磁链观测器的基础上,可以完成定子电阻与转子转速的同时辨识;带速重投控制策略抑制了过电流和转矩冲击。
Along with the large-scale construction of high speed and heavy haul railway network project, the locomotive and EMU that drive with asynchronous motor has a wide application prospect, and the AC drive control technique sealed the locomotive and EMU's operational performance and it is the hard core of the locomotive and EMU. The AC drive control system adopted the asynchronous motor direct torque control technique has a torque ripple in low speed which cause wheel slide. The stator current distortion resulting from the limitation of Lower switching frequency provokes a pollution of the traction power network. The damage of speed sensor caused by bad operation environment lead to locomotive and EMU's traction power loss.Therefore, studying the torque ripple characteristics of asynchronous traction motor when it start under low speed range and its ripple suppression method, realizing characteristics of the stator current distortion while the asynchronous traction motor was operated in high speed range and improving the dependability of the speed close loop control power unit in harsh conditions have important academic value and project significance.
     The torque ripple of asynchronous motor controlled by direct torque control method under low speed range was the research object. The components of torque ripple in the stator reference frame were studied. The influences of system's sampling cycle, switching cycle and reference voltage vector on torque ripple were considered. The quantitative relationship between them was established. From the point of reference voltage vector decreasing the torque ripple, characteristics of ISC and Deadbeat-SVM-DTC were discussed and a new DTC method combined with select table DTC and SVM-DTC was put forward. The results show that under a certain sampling cycle and switching cycle, the components of torque ripple are constructing of back emf component which related to the speed, the resistance component which related to the torque and the component which caused by reference voltage. The torque ripple can be greatly depressed by compensate for the last two component decrement with optimizing reference voltage vector.
     Both advantages and disadvantages between synchronization PWM and DSC were discussed. The distoration characteristics of hexagon flux trace and single fold corner18-sides flux trace and its PWM method were studied. The double fold corner30-sides flux trace and its two approaches were put forward. A method for an even transferring different flux trace was put forward. The results show that DSC can depress the rush of stator current and has a less harmonic torque ripple and harmonic loss. The18-sides flux trace can suppress only one of the main low order harmonics but would lead to the raise of another low order harmonics, due to the limitation of the single fold corner. Most of the main low order harmonics can be eliminated to a much lower level and also the fold corner modulation can be simplified by the new double fold corner modulation method. The torque shock is also be restrained by the transferring measures.
     The influences of stator resistance error and DC offset on U-I model were considered, an observer combined with resistance adaptive and perpendicular feedback compensation was put forward. The relationship between U-I model, I-co model, U-co model and state equation and their susceptibility to motor parameter were studied. Based on the state equation of asynchronous motor, the resistance adaptive sliding mode stator flux observer was put forward to reduce the parametric sensitivity. The results show that perpendicular flux observer with compensation feedback is effective in suppressing the DC offset of stator flux but ineffective to the stator flux estimation error caused by the incorrect setting of stator resistance. All of the three models are special cases of state equation. The full order observer based on state equation is sensitive to the choice of parameter, while the sliding mode theory can decrease the sensitive. The stator flux calculated by perpendicular flux observer with compensation feedback and the sliding mode stator flux observer, both of which are stator flux adaptive in this paper has been proven to be high accuracy.
     In accordance with the characteristics of traction motor power unit operating in the severe environment and is easy to broke down. The speed sensor-less method for traction motor was studied to improve the reliability. In order to avoid the overcurrent and torque shock when the pulse was connected after the locmotive coasted and inverter pulses blocked, the strategy of restarting at unknown speed with speed-sensorless control were discussed. The results show that the precision of the open loop speed calculating is low. The high-frequency signal injection is invalid becase of the traction system's low switching frequency. Based on the former stator flux observers, the model adaptive reference system theory was used to identify the stator resistance and rotor speed on the same time. The overcurrent and torque shock were also refrained.
引文
[1]国家发改委国地所课题组.我国城市群的发展阶段与十大城市群的功能定位[J].改革,2009,(9):5-23.
    [2]曾鹏,陈芬.中国十大城市群经济增长差异的收敛性比较研究[J].统计与决策,2012,(14):115-118.
    [3]邓丽君,张平宇,李平.中国十大城市群人口与经济发展平衡性分析[J].中国科学院研究生院学报,2010,27(2):154-161.
    [4]习近平.大力发展循环经济,建设资源节约型、环境友好型社会[J].管理世界,2005,(7):1-4.
    [5]曾培炎.加快建设资源节约型和环境友好型社会[J].理论参考,2005,(8):5.
    [6]马凯.发展循环经济建设资源节约型和环境友好型社会[J].求是,2005,(16):7-9.
    [7]叶玉玲,季令.区域性轨道交通线网规划评价指标体系探讨[J].城市轨道交通研究,2006,(2):38-41.
    [8]李仁涵.我国大都市交通圈发展模式的研究[D].上海:同济大学,2007.
    [9]王洪勃.国外采用三相交流电传动技术的机车动车[J].机车电传动,1978,(3):38-41.
    [10]张正柟.四象限变流器—用于三相交流驱动机车动车的一种对电网作用好的特殊变流器[J].机车电传动,1978,(5):37-46.
    [11]邵丙衡,陈效国.西德E120型机车过变电路换向过程的初步分析[J].机车电传动,1979,(6):9-14.
    [12]F.Blaschke.The principle of field-orientation as applied to the trans-vector closed-loop control system for rotating-field machines. Siemens Rev.1972
    [13]张黎,姚永康SIBAS16在ICE动车上的应用[J].机车电传动,1989,(8):51-57.
    [14]U.Baader, M.Depenbrock, G.Gierse. Direct self control (DSC)of inverter fed induction machine: A basis for speed control without speed measurement[J]. IEEE Transactions on Industrial Applications,1992,28(3):581-588.
    [15]M.Depenbrock. Direct self control of inverter-fed induction machines[J]. IEEE Transactions on Power Electron,1988,3(4):420-429.
    [16]王渤洪.机车动车用分散式控制系统MITRAC[J].电力牵引快报,1998,(4):1-6.
    [17]黄济荣,张有松.交流传动电力机车的技术发展状况与趋势-续-[J].电力机车技术,1993,(3):1-4.
    [18]郭立新.牵引单元的MICAS-52分布式牵引控制系统[J].电力牵引快报,1996,(5):23-29.
    [19]无声TRAXX—提高铁路运输竞争能力的集成式机车平台[J].机车电传动,2007,(1):46-52.
    [20]谭学斌.Euro Sprinter大功率电力机车[J].电力牵引快报,1994,(6):1-6.
    [21]李晓春,毛业军,廖洪涛.和谐HXD1型大功率交流电力机车电传动系统[J].电力机车与城轨车辆,30(01):11-17.
    [22]樊俊杰Alstom公司研制的Prima家族机车[J].变流技术与电力牵引,2003,(3):41-43.
    [23]宁如斌,杨俊杰,赵明元.HXD2型交流传动重载货运电力机车[J].机车电传动,2008,(1):7-10.
    [24]葛兴来,冯晓云.三电平逆变器无拍频控制策略研究[J].铁道学报,2010,32(3):125-130.
    [25]秦方方,李华,李鹏.几种主要的“和谐”型电力机车主变流器主电路对比[J].机车电传动,2012,(5):43-46.
    [26]无名.“奥星”和“中原之星”在株洲电力机车厂竣工剪彩[J].电力机车技术,2001,(4):2.
    [27]刘可安,谭雪谦,马健.DF8BJ内燃机车交流传动控制系统[J].机车电传动,2003,(4):22-24.
    [28]I.Takahashi. High-performance direct torque control of an induction motor[J]. IEEE Transactions on Industrial Applications,1989,25(2):257-264.
    [29]I.Takahashi, T.Noguchi. A new quick-response and high efficiency control strategy of an induction machine[J]. IEEE Transactions on Industrial Applications,1986,18(22):820-827.
    [30]M.P.Kazmierkowski, A.Kasprowicz. Improved direct torque and flux vector control of PWM inverter fed induction motor drives[J]. IEEE Transactions on Industrial Electron,1995,42(4): 344-350.
    [31]T.Noguchi, M.Yamamoto, S.Kondo, I.Takahashi. High frequency switching operation of PWM inverter for direct torque control of induction motor[C]. in Conf. Rec. IEEE-IAS Annu. Meeting, New Orleans, USA,1997:775-780.
    [32]Sensor-less Vector and Direct Torque Control[D]. Clarendon:Oxford,1998.
    [33]T.Noguchi. Analysis and prediction of inverter switching frequency in direct torque control of induction machine based on hysteresis bands and machine parameters [J]. IEEE Transactions on Industrial Electronics,2001,48(3):545-553.
    [34]D.Casadei, G.Serra, A.Tani. Constant frequency operation of a DTC induction motor drive for electric vehicle[C]. in Proc. ICEM'96, Vigo, Spain,1996, (3):224-229.
    [35]F.Hoffman, M.Janecke. Fast torque control of an IGBT-inverter-fed tree-phase A.C. drive in the whole speed range-Experimental result[C]. in Proc. EPE'95 Conf, Sevilla, Spain,1995:3399-3404.
    [36]U.Baader. High dynamic torque control of induction motor in stator flux oriented coordinates[J]. ETZ Arch,1998,11(1):11-17.
    [37]X.Xue, X.Xu, T.G.Habetler, D.M.Divan. A low cost stator flux oriented voltage source variable speed drive[C]. in Conf. Rec. IEEE-IAS Annu. Meeting, Seattle, USA,1990, (1):410-415.
    [38]T.G.Habetler, F.Profumo, M.Pastorelli. Direct torque control of induction machines over a wide speed range[C]. in Conf. Rec. IEEE-IAS Annu. Meeting, Houston, USA,1992:600-606.
    [39]T.G.Habetler, F.Profumo, M.Pastorelli. Direct torque control of induction machines using space vector modulation[J]. IEEE Transactions on Industrial Applications,1992,28(5):1045-1053.
    [40]J.Maes, J.Melkebeek. Discrete direct torque control of induction motors using back e.m.f. measurements[C]. in Conf. Rec. IEEE-IAS Annu. Meeting, St.louis, USA,1998, (1):407-414.
    [41]J.H.Lee, C.G.Kim, M.J.Youn. A dead-beat type digital controller for the direct torque control of an induction motor[J]. IEEE Transactions on Power Electronics,2002,17(5):739-746.
    [42]D.Casadei, F.Profumo, G.Serra. FOC and DTC:Two viable schemes for induction motors torque control[J]. IEEE Transactions on Power Electronics,2002,17(5):779-787.
    [43]T.G.Habetler, D.D.Divan. Control strategies for direct torque control using discrete pulse modulation[J]. IEEE Transactions on Industrial Applications,1991,27(5):893-901.
    [44]M.Janecke, R.Kremer, G.Steuerwald. Direct self-control, a novel method of controlling asynchronous machines in traction applications[C]. in Proc. EPE'89 Conf, Aachen, Germany, 1989, (1):75-81.
    [45]C.Lascu, I.Boldea, F.Blaabjerg. A modified direct torque control (DTC) for induction motor sensor-less drive[C]. in Conf. Rec. IEEE-IAS Annu. Meeting, St.louis, USA,1998, (1):415-422.
    [46]J.K.Kang, S.K.Sul. New direct torque control of induction motor for minimum torque ripple and constant switching frequency[J]. IEEE Transactions on Industrial Applications,1999,35(5): 1076-1082.
    [47]J.K.Kang, S.K.Sul. Analysis and prediction of inverter switching frequency in direct torque control of induction machine based on hysteresis bands and machine parameters[J]. IEEE Transactions on Industrial Electron,2001,48(3):545-553.
    [48]C.Lochot, X.Roboam, P.Maussion. A new direct torque control strategy for an induction motor with constant switching frequency operation[C]. in Proc. EPE'95 Conf, Sevilla, Spain,1995:431-436.
    [49]T.Noguchi, M.Yamamoto, S.Kondo, I.Takahashi. High frequency switching operation of PWM inverter for direct torque control of induction motor[C]. in Conf. Rec. IEEE-IAS Annu. Meeting, New Orleans, USA,1997:775-780.
    [50]M.Bertoluzzo, G.Buja, R.Menis. Analytical formulation of the direct control of induction motor drives[C]. in Proc. IEEE ISIE'99, Bled, Slovenia,1999:14-20.
    [51]P.Z.Grabowski, M.P.Kazmierkowski, B.K.Bose. A simple direct-torque neuro-fuzzy control of PWM-inverter-fed induction motor drive[J]. IEEE Transactions on Industrial Electronics,2000, 47(4):863-870.
    [52]P.Hoft. Generalized technique of harmonic elimination and voltage control, Part 1:[J]. IEEE Transaction on Industry Applications,1973, IA-9(3):310-317. Part 2:[J]. IEEE Transaction on Industry Applications,1974, IA-10(5):666-673.
    [53]G.S.Buja. Optimum output waveforms in PWM inverters [J]. IEEE Transaction on Industry Applications,1980, IA-16(3):831-836.
    [54]J.Holtz, S.Stadtfeld, H.P.Wurm. A novel PWM technique minimizing the peak inverter current at steady-state and transient operation[J]. Elektrische Bahnen,1983:55-61.
    [55]J.Holtz. Pulse width modulation-A survey[J]. IEEE Transaction on Industry Electron,1992,39(5): 410-420.
    [56]D.M.Brod, D.W.Novotny. Current control of VSI-PWM inverters[J]. IEEE Transaction on Industry Applications,1985, IA(21):562-570.
    [57]I.Rodriguez, G.Kastner. Nonlinear current control of an inverter-fed induction machine[J]. ETZ Arch,1987,9(8):245-250.
    [58]J.Holtz, B.Beyer. Optimal synchronous pulse width modulation with a trajectory tracking scheme for high dynamic performance[J]. IEEE Transaction on Industry Applications,1993,29(6): 1098-1105.
    [59]J.Holtz, B.Beyer. The trajectory tracking approach A new method for minimum distortion PWM in dynamic high-power drives[C]. in Conf Rec. IEEE-IAS. Meeting, Houston, USA,1992:331-338.
    [60]J.Holtz, B.Beyer. Fast current trajectory tracking control based on synchronous optimal pulse width modulation[J]. IEEE Transaction on Industry Applications,1995,31(5):1110-1120.
    [61]D.Kulka, W.Gens, G.Berger. Direct torque controlling technique with synchronous optimized pulse pattern[C]. Power Electronics Specialists Conference, PESC'93, Seattle, USA,1993:245-250.
    [62]GNarayanan, V.T.Ranganathan. Synchronized PWM strategies based on space vector approach. Part 1:Principles of waveform generation[J]. IEEE Transaction on Industry Applications,1999, 146(3):267-275.
    [63]GNarayanan, V.T.Ranganathan. Synchronized PWM strategies based on space vector approach. Part 2:Performance assessment and application to V/F drives[J]. IEEE Transaction on Industry Applications,1999,146(3):276-281.
    [64]J.Sun, S.Beineke, H.Grotstollen. Optimal PWM based on real-time solution of harmonic elimination equations[J]. IEEE Transactions on Power Electronics,1996,11(4):612-621.
    [65]S.R.Bowes, S.S.Grewal, Novel space-vector-based harmonic elimination inverter control[J]. IEEE Transactions on Industrial Applications,2000,36(2):549-557.
    [66]S.R.Bowes. Regular Sampled Harmonic Elimination PWM Control of Inverter Drives[J]. IEEE Transactions on Power Electronics,1995,10(5):521-531.
    [67]S.R.Bowes, C.R.Paul. Regular sampled harmonic elimination PWM control of inverter drives[J]. IEEE Transactions on Power Electronics,1995,10(5):521-531.
    [68]S.R.Bowes. Novel Space-Vector-Based harmonic elimination inverter control[J]. IEEE Transactions on Industrial Applications,2000,36(2):549-557.
    [69]汤钰鹏,郝荣泰.16位单片机控制的多模式PWM控制器[J].机车电传动,1993,(3):26-29.
    [70]丁荣军.中间60。SPWM控制的特点及其电路的实现[J].机车电传动,1995,(1):13-17.
    [71]V.Oleschuk, F.Blaabjerg. Synchronized Scheme of Continuous Space-Vector PWM with the Real-Time Control Algorithms[C]. IEEE Power Electronics Specialists Conference, Aachen, Germany,2004:1207-1213.
    [72]V.Oleschuk, F.Blaabjerg. Direct synchronized continuous and discontinuous PWM based on algebraic approach[C]. in Proc. IEEE IECON'01, Denver, USA,2001:1243-1248.
    [73]V.Olescht, F.Blabjerg. Three-level inverters with common-mode voltage cancellation based on synchronous pulse width modulation[C]. IEEE Power Electronics Specialists Conference, Cairns, Australia,2002, (3):863-868.
    [74]V.Oleschuk, F.Blaabjerg, B.K.Bose. Analysis and comparison of algebraic and trigonometric methods of synchronous PWM for inverter drives[C]. IEEE Power Electronics Specialists Conference, Cairns, Australia,2002, (3):1439-1444.
    [75]V.Oleschuk, F.Blaabjerg. Direct synchronized PWM techniques with linear control functions for adjustable speed drives[C]. in proc IEEE APEC, Dallas, USA,2002:76-82.
    [76]V.Oleschuk, F.Blaabjerg, B.K.Bose. One-stage and two-stage schemes of high performance synchronous PWM with smooth pulse-ratio changing[C]. in Conf. Rec. IEEE-IAS Annu. Meeting, Pittsburgh, USA,2002:1974-1981.
    [77]J.Holtz, N.Oikonomou. Synchronous Optimal Pulse width Modulation and Stator Flux Trajectory Control for Medium-Voltage Drives[J]. IEEE Transactions on Industrial Applications,2007,43(2): 600-608.
    [78]J.Hu, B.Wu, E.D.Crainic. New integration algorithms for estimating motor flux over a wide speed range[J]. IEEE Transactions on Power Electron,1998,13(5):967-977.
    [79]P.L.Jansen, R.D.Lorenz, D.W.Novotny. Observer based direct field orientation:analysis and comparison of alternative methods[J]. IEEE Transactions on Industrial Applications,1994,30(4): 945-953.
    [80]G.C.Verghese, S.R.Sanders. Observers for flux estimation in induction machines[J]. IEEE Transactions on Industrial Electronics,1988,35(1):85-94.
    [81]M.Hinkkanen, J.Luomi. Parameter sensitivity of full-order flux observers for induction motors[J]. IEEE Transactions on Industrial Applications,2003,39(4):1127-1135.
    [82]M.Elbuluk, N.Langovsky, M.D.Kankam. Design and implementation of a closed loop observer and adaptive controller for induction motor drives[J]. IEEE Transactions on Industrial Applications, 1998,34(3):435-443.
    [83]N.T.West, R.D.Lorenz. Digital implementation of stator and rotor flux linkage observers and a stator current observer for deadbeat direct torque control of induction machines [J]. IEEE Transactions on Industrial Applications,2009,54(2):729-736.
    [84]G.Pellegrino, R.I.Bojo, P.Guglielmi. Accurate inverter error compensation and related self commissioning scheme in sensor-less induction motor drives[J]. IEEE Transactions on Industrial Applications,2010,46(5):1970-1978.
    [85]G.Pellegrino, P.Guglielmi, E.Armando. Self commissioning algorithm for inverter nonlinearity compensation in sensor-less induction motor drives[J]. IEEE Transactions on Industrial Applications,2010,46(4):1416-1424.
    [86]K.R.Cho, J.K.Seok. Correction on current measurement errors for accurate flux estimation of AC drives at low stator frequency[J]. IEEE Transactions on Industrial Applications,2008,44(2): 594-603.
    [87]F.R.Salmasi, T.A.Najafabadi, P.J.Maralani. An Adaptive Flux Observer With Online Estimation of DC-Link Voltage and Rotor Resistance For VSI-Based Induction Motors[J]. IEEE Transactions on Power Electronics,2010,25(5):1310-1319.
    [88]K.R.Cho, J.K.Seok. Pure integration based flux acquisition with drift and residual error compensation at a low stator frequency [J]. IEEE Transactions on Industrial Applications,2009, 45(4):1276-1285.
    [89]B.K.Bose, N.R.Patel. Quasi fuzzy estimation of stator resistance of induction motor[J]. IEEE Transactions on Power Electron,1998,13(3):401-409.
    [90]S.Mir, M.E.Elbuluk, D.S.Zinger. PI and fuzzy estimators for tuning the stator resistance in direct torque control of induction machines[J]. IEEE Transactions on Power Electron,1998,13(2): 279-287.
    [91]T.Noguchi, S.Kondo. Field oriented control of induction motor with robust on-line tuning of its parameters [J]. IEEE Transactions on Industrial Applications,1997,33(1):35-42.
    [92]C.B.Jacobina, J.E.C.Filho, A. M.N.Lima. On-line estimation of the stator resistance of induction machines based on zero sequence model[J]. IEEE Transactions on Power Electron,2000,15(2): 346-353.
    [93]H.J.Seok, K.O.Kwang, C.Y.Jin. Flux observer with online tuning of stator and rotor resistances for induction motors [J]. IEEE Transactions on Industrial Electronics,2002,49(3):653-664.
    [94]T.G.Habetler, F.Profumo, G.Griva. Stator Resistance tuning in a stator-flux field oriented drive using an instantaneous hybrid flux estimator[J]. IEEE Transactions on Power Electronics,1998, 13(1):125-133.
    [95]K.K.Shyu, L.J.Shang, H.Z.Chen. Flux compensated direct torque control of induction motor drives for low speed operation[J]. IEEE Transactions on Power Electronics,2004,19(6): 1608-1613.
    [96]U.Baader, M.Depenbrock, G.Gierse. Direct self control of inverter-fed induction machine, a basis for speed control without speed measurement[C]. in Conf. Rec.1989 IEEE-IAS Annu. Meeting, Orlando, USA,1989:486-492.
    [95]G.Yang, T.H.Chin. Adaptive speed identification scheme for a vector controlled speed sensor-less inverter induction motor drive[J]. IEEE Transactions on Industrial Applications,1993,29(4): 820-825.
    [96]H.Kubota, K.Matsuse, K.Matsuse. DSP-based speed adaptive flux observer of induction motor [J]. IEEE Transactions on Industrial Applications.1993,29(2):344-348.
    [97]C.Schauder. Adaptive speed identification for vector control of induction motor without rotational transducers[C]. in Conf. Rec.1989 IEEE-IAS Annu. Meeting, Long Beach, USA,1989:493-499.
    [98]J.N.Nash. Direct torque control, induction motor vector control without an encoder[J]. IEEE Transactions on Industrial Applications,1997,33(2):333-341.
    [99]J.Maes, J.A.Melkebeek. Speed sensor-less direct torque control of induction motors using an adaptive flux observer [J]. IEEE Transactions on Industrial Applications,2000,36(3):778-785.
    [100]H.Hofmann, S.R.Sanders. Speed sensor-less vector torque control of induction machines using a two-time-scale approach[J]. IEEE Transactions on Industrial Applications,1998,34(1):169-177.
    [101]F.Z.Peng, T.Fukao. Robust speed identification for speed sensor-less vector control of induction motors[C]. in Conf. Rec.1993 IEEE-IAS Annu. Meeting, Toronto, Canada,1993:419-426.
    [102]D.Casadei, G.Serra, A.Tani. Performance analysis of a speed sensor-less induction motor drive based on a constant switching frequency DTC scheme[J]. IEEE Transactions on Industrial Applications,2003,39(2):476-483.
    [103]J.Mae, J.A.Melkebeek. Speed sensor-less direct torque control of induction motors using an adaptive flux observer[J]. IEEE Transactions on Industrial Applications,2000,36(3):778-785.
    [104]M.Hinkkanen. Analysis and design of full order flux observers for sensor-less induction motors[J]. IEEE Transactions on Industrial Electronics,2004,51(5):1033-1040.
    [105]H.M.Kojabadi, L.C.Chang, R.Doraiswami. A MRAS-based adaptive pseudo reduced order flux observer for sensor-less induction motor drive[J]. IEEE Transactions on Power Electronics,2005, 20(4):930-938.
    [106]M.Hinkkanen, L.Harnefors, J.Luomi. Reduced order flux observers with stator resistance adaptation for speed sensor-less induction motor drives[J]. IEEE Transactions on Power Electronics,2010,25(5):1173-1183.
    [107]D.P.Marcetic, S.N.Vukosavic. Speed sensor-less AC drives with the rotor time constant parameter update[J]. IEEE Transactions on Industrial Electronics,2007,54(5):2618-2625.
    [108]GGuidi, H.Umida. A novel stator resistance estimation method for speed-sensorless induction motor drives [J]. IEEE Transactions on Industrial Applications,2000,36(6):1619-1627.
    [109]H. Tajima, G.Guidi, H.Umida. Consideration about problems and solutions of speed estimation method and parameter tuning for speed sensor-less vector control of induction motor drives[J]. IEEE Transactions on Industrial Applications,2002,38(5):1282-1289.
    [110]S.Maiti, C.Chakraborty, Y.Hori. Model reference adaptive controller based rotor resistance and speed estimation techniques for vector controlled induction motor drive utilizing reactive power[J]. IEEE Transactions on Industrial Electronics,2008,55(2):594-601.
    [111]M.S.Zaky. Stability analysis of speed and stator resistance estimators for sensor-less induction motor drives[J]. IEEE Transactions on Industrial Electronics,2012,59(2):858-870.
    [112]M.Saejia, S.W.W.Somboon, E.D.Crainic. Averaging analysis approach for stability analysis of speed sensor-less induction motor drives with stator resistance estimation[J]. IEEE Transactions on Industrial Electronics,2006,53(1):162-177.
    [113]J.I.Ha, S.K.Sul. Sensorless field orientation control of an induction machine by high-frequency signal injection[J]. IEEE Transactions on Industrial Applications,1992,35(1):45-51.
    [114]J.Holtz. Sensor-less control of induction machines with or without signal injection[J]. IEEE Transactions on Industrial Electronics,2005,53(1):7-30.
    [115]M.Hinkkanen, V.M.Leppnen, J.Luomi. Flux observer enhanced with low frequency signal injection allowing sensor-less zero frequency operation of induction motors[J]. IEEE Transactions on Industrial Applications,2005,41(1):52-59.
    [117]H.Kubota, I.Sato, Y.Tamura. Regenerating mode low speed operation of sensor-less induction motor drive with adaptive observer[J]. IEEE Transactions on Industrial Applications,2002,38(4): 1081-1086.
    [118]H.Kubota, Y.Tamura. Stator resistance estimation for sensor-less induction motor drives under regenerating condition [C]. in Proc. EPE'02 Conf, Sevilla, Spain,2002:426-430.
    [119]M.Hinkkanen, J.Luomi. Stabilization of regenerating mode operation in sensor less induction motor drives by full-order flux observer design[J]. IEEE Transactions on Industrial Electronics,2004, 51(6):1318-1328.
    [120]M.Depenbrock, F.Hofmann, S.Koch. Speed sensor-less high performance control for traction drives[C]. in Proc. EPE'97 Conf, Trondheim, Norway,1997:1418-1423.
    [121]M.Depenbrock, C.Evers. Model based speed identification for induction machines in the whole operating range[J]. IEEE Transactions on Industrial Electronics,2006,53(1):31-40.
    [122]M.H.Shin, D.S.Hyun. Speed sensor-less stator flux oriented control of induction machine in the field weakening region[J]. IEEE Transactions on Industrial Electronics,2003,18(2):580-586.
    [123]T.S.Kwon, M.H.Shin, D.S.Hyun. Speed sensor-less stator flux oriented control of induction motor in the field weakening region using Luenberger observer[J]. IEEE Transactions on Industrial Electronics,2005,20(4):864-869.
    [124]A.Benchaib, A.Rachid, E.Audrezet. Real-time sliding-mode observer and control of an induction motor[J]. IEEE Transactions on Industrial Electronics,1999,46(1):128-138.
    [125]Z.Yan, C.Jin, V.I.Utkin. Sensor-less sliding mode control of induction motors [J]. IEEE Transactions on Industrial Electronics,2000,47(6):1286-1297.
    [126]H.Rehman, A.Derdiyok, M.K.Guven. A new current model flux observer for wide speed range sensor-less control of an induction machine[J]. IEEE Transactions on Power Electronics,2002, 17(5):1041-1048.
    [127]C.Lascu, I.Boldea, F.Blaabjerg. Direct torque control of sensor-less induction motor drives:A sliding-mode approach[J]. IEEE Transactions on Industrial Applications,2004,40(2):582-590.
    [128]D.Traore, F.Plestan, A.Glumineau, J.d.Leon. Sensor-less induction motor:high-order sliding mode controller and adaptive interconnected observer[J]. IEEE Transactions on Industrial Electronics, 2008,55(11):3818-3827.
    [129]A.Derdiyok. Speed sensor-less control of induction motor using a continuous control approach of sliding-mode and flux observer[J]. IEEE Transactions on Industrial Electronics,2005,52(4): 1170-1176.
    [130]C.Lascu, I.Boldea, F.Blaabjerg. A class of speed sensor-less sliding-mode observers for high performance induction motor drives[J]. IEEE Transactions on Industrial Electronics,2009,56(9): 3394-3403.
    [131]S.M.N.Hasan, I.Husain. A Luenberger sliding mode observer for online parameter estimation and adaptation in high performance induction motor drives[J]. IEEE Transactions on Industrial Applications,2009,45(2):772-781.
    [132]A.B.Proca, A.Keyhani. Sliding mode flux observer with online rotor parameter estimation for induction motors [J]. IEEE Transactions on Industrial Electronics,2007,54(3):716-723.
    [133]M.S.Zaky, M.M.Khater, S.S.Shokralla. Wide speed range estimation with online parameter identification schemes of sensor-less induction motor drives[J]. IEEE Transactions on Industrial Electronics,2009,56(5):1699-1707.
    [134]M.Ghanes, G.Zheng. On sensor-less induction motor drives:sliding-mode observer and output feedback controller[J]. IEEE Transactions on Industrial Electronics,2009,56(9):3404-3413.
    [135]L.Guo. Estimating time-varying parameters by Kalman filter based algorithms:Stability and convergence[J]. IEEE Transactions on Automatic Control,1990,35(2):141-147.
    [136]L.Loron, GLaliberte. Application of the extended Kalman filter to parameter estimation of induction motors[C]. in Proc. EPE'93 Conf, Brighton, U.K,1993,85-90.
    [137]M.Barut, S.Bogosyan, M.Gokasan. Experimental evaluation of braided EKF for sensorless control of induction motors[J]. IEEE Transactions on Industrial Electron,2008,55(2):620-632.
    [138]Y.R.Kim, S.K.Sul, M.H.Park. Speed sensor-less vector control of induction motor using extended Kalman filter[J]. IEEE Transactions on Industrial Applications,1994,30(5):1225-1233.
    [139]S.M.Gadoue, D.Giaouris, J.W.Finch. Sensor-less control of induction motor drives at very low and zero speeds using neural network flux observers[J]. IEEE Transactions on Industrial Applications, 2009,56(8):3029-3039.
    [140]B.Karanayil, M.Rahman, C.Grantham. Implementation of an on-line resistance estimation using artificial neural networks for vector controlled induction motor drive[C]. in Proc. IEEE IECON'03, Brighton, U.K,2003,1703-1708.
    [141]B.Karanayil, M.Rahman, C.Grantham. Online stator and rotor resistance estimation scheme using artificial neural networks for vector controlled speed sensorless induction motor drive[J]. IEEE Transactions on Industrial Electronics,2007,54(1):167-176.
    [142]C.Maurizio, P.Marcello, C.Giansalvo. Sensor-less control of induction motors by reduced order observer with MCA EXIN+based adaptive speed estimation[J]. IEEE Transactions on Industrial Electronics,2007,54(1):150-166.
    [143]曾令全,王志霞,刘耀年.异步电动机无速度传感器再起动方法的研究[J].电工技术学报,2003,18(2):9-12.
    [144]曾令全,王志霞.基于自励振荡无速度传感器异步电动机的控制[J].控制工程,2003,10(4):379-381.
    [145]尚敬,刘可安.电力牵引异步电动机无速度传感器间接定子量控制[J].电工技术学报,2007,22(2):22-27.
    [146]J.Holtz, N.Oikonomou. Fast dynamic control of medium voltage drives operating at very low switching frequency-an overview[J]. IEEE Transactions on Industrial Electronics,2008,55(3): 1005-1013.
    [147]黄济荣.电力牵引交流传动与控制[M].北京:机械工业出版社,1998.
    [148]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,1994.
    [149]冯晓云.现代交流传动及其控制系统[M].北京:机械工业出版社,2010.
    [150]李夙.异步电机直接转矩控制[M].北京:机械工业出版社,1994.
    [151]高景德,王祥晰,李发海.交流电机及其系统分析[M].北京:清华大学出版社,1993.
    [152]S.B.Giuseppe, P.K.Marian. Direct torque control of PWM Inverter-Fed AC motors-a survey [J]. IEEE Transactions on Industrial Electronics,2004,51 (4):744-757.
    [153]丁湘.异步电机DTC系统仿真建模及性能改善研究[D].长沙:湖南大学,2005.
    [154]H.W.V.Brock, H.C.Skudelny, G.Stanke. Analysis and realization of a pulse width modulator based on voltage space vectors[C]. in Conf. Rec. IEEE-IAS Annu. Meeting, New Orleans, USA,1986: 244-251.
    [155]梁振鸿,温旭辉,应用过调制技术扩展永磁同步电机运行区域.电工电能新技术,2003,22(1):39-42.
    [156]童亦斌,刘京斗.空间电压矢量PWM过调制区连续控制方法研究.机车电传动,2004,3:21-
    [157]J.Holtz, W.L.Ashwin, M.Khambadkone. On continuous control of PWM inverters in the over modulation range including the six-step mode[J]. IEEE Transactions on Power Electronics.1993, 8(4):546-553.
    [158]D.C.Lee, G.M.Lee. Linear control of inverter out put voltage in over modulation[J]. IEEE Transactions on Industrial Electronics,1997,44(4):590-592.
    [159]A.M.Hava, R.J.Kerkman, T.A.lipo. Carrier based PWM-VSI over modulation strategies:analysis, comparison and design[J]. IEEE Transactions on Power Electronics,1998,13(4):674-689.
    [160]A.M.Hava, S.K.Sul, R.J.Kerkman. Dynamic over modulation characteristics of triangle intersection PWM methods[J]. IEEE Transactions on Industrial Applications,1999,35(4):896-907.
    [161]D.C.Lee, G.M.Lee. A novel over modulation technique for space-vector PWM inverter[J]. IEEE Transactions on Power Electronics,1998,13(6):1144-1151.
    [162]张彦林.异步牵引电动机直接转矩控制及其低速区控制方法的研究[D].长沙:湖南大学,2006.
    [163]魏欣,陈大跃,赵春宇.一种基于占空比控制技术的异步电机直接转矩控制方案[J].中国电机工程学报,2005,25(4):93-97.
    [164]A.Steimel. Direct self control and synchronous pulse techniques for High-Power traction inverters in comparison[J]. IEEE Transactions on Industrial Electronics,2004,51(4):810-820.
    [165]N.Oikonomou, J.Holtz. Closed-loop control of medium-voltage drives operated with synchronous optimal pulse width modulation[J]. IEEE Transactions on Industry Applications,2008,44(1): 115-122.
    [166]B.K.Bose. Modern power electronics and AC drives[M]. Beijing:China Machine Press,2004.
    [167]O.Bouhali, M.Berkouk, B.Francois. Solving harmonics elimination problem in Three-phase voltage controlled inverter using artificial neural networks[J]. Electrical Systems,2005, (1):39-51.
    [168]张艳莉,费万民.三电平逆变器SHEPWM方法及其应用研究[J].电工技术学报,2004,19(1):16-20.
    [169]宋平岗,官二勇.级联多电平逆变器全调制比的特定谐波消除[J].电工技术学报,2006,21(9):81-87.
    [170]费万民,张艳莉,都小利.五电平逆变器特定谐波消除脉宽调制方法[J].电工技术学报,2009,24(2):86-93.
    [171]李威,车向中.交直交电力机车矢量控制系统的研究[J].北京交通大学学报,1999,23(6):50-53.
    [172]谭新元.牵引逆变器SHEPWM控制技术的研究[J].中国电机工程学报,2001,21(9):47-52.
    [173]李威.交-直-交电力机车PWM调制方法研究[J].铁道学报,2002,22(6):26-31.
    [174]王琛琛,周明磊,游小杰.大功率交流电力机车脉宽调制方法[J].电工技术学报,2012,27(2):173-178.
    [175]何亚屏,文宇良,许峻峰.基于多模式SVPWM算法的永磁同步牵引电机弱磁控制策略[J].电 工技术学报,2012,27(3):92-99.
    [176]赵明花,赵雷廷,董侃.大功率逆变器混合脉宽调制策略研究[J].北京交通大学学报,2012,36(2):125-129.
    [177]A.Steimel, J.Wiesemann. Further development of direct self control for application in electric traction[C]. in Proc. IEEE ISIE'96, Warsaw, Poland,1996:180-185.
    [178]倪大成,年晓红.十八边形磁链直接转矩控制系统的设计及实现[J].铁道学报,2008,30(2):28-33.
    [179]陈高华,冯江华.折角控制的谐波分析及实现[J].大连铁道学院学报,2001,22(2):46-51.
    [180]夏雷,周国兴.直接转矩控制的谐波分析与改进方案[J].电气自动化,1999,(2):19-23.
    [181]王沫然.MATLAB与科学计算[M].北京:电子工业出版社,2003:90-92.
    [182]高培庆,杨慰怀.DJ2型交流传动客运电力机车用JD121异步牵引电动机[J].机车电传动,2001,(5):11-13.
    [183]B.K.Bose, N.R.Patel. A programmable cascaded low-pass filter based flux synthesis for a stator flux oriented vector controlled induction motor drive[J]. IEEE Transactions on Industrial Electronics,1997,44(1):140-143.
    [184]K.D.Hurst, T.GHabetler, GGriva. Zero speed tacholess IM torque control simply a matter of stator voltage integration[J]. IEEE Transactions on Industry Applications,1998,34(4):790-795.
    [185]N.R.N.Idris, A.H.M.Yatim. An improved stator flux estimation in steady-state operation for direct torque control of induction machines[J]. IEEE Transactions on Industry Applications,2002,38(1): 110-116.
    [186]何志明,廖勇,向大为.定子磁链观测器低通滤波器的改进[J].中国电机工程学报,2008,28(18):61-65.
    [187]文晓燕,郑琼林,韦克康.带零漂补偿和定子电阻自校正的磁链观测器[J].中国电机工程学报,2011,31(12):102-107.
    [188]肖建.现代控制系统综合与设计[M].北京:中国铁道出版社,2000.
    [189]L.Harnefors, M.Hinkkanen. Complete stability of reduced-order and full-order observers for Sensor-less IM drives industrial electronics[C]. in Conf. Rec. IEEE-IAS Annu. Meeting, New Orleans, USA,1997:775-780.IEEE Transactions on 2008 55(3)1319-1329
    [190]S.A.Davari, D.A.Khaburi, F.X.Wang. Using full order and reduced order observers for robust sensor-less predictive torque control of induction motors[J]. IEEE Transactions on Power Electronics,2012,27(7):3424-3433.
    [191]王坚.牵引电机无速度传感器间接定子量控制研究[D].长沙:湖南大学,2010.
    [192]年晓红,王坚,李祥飞.基于感应电机定子磁链U-N模型的速度自适应辨识方法[J].中国电机工程学报,2006,26(24):159-163.
    [193]H.Kubota. Speed Sensor less Field Oriented Control of Induction Motor with Rotor Resistance adaptation[J]. IEEE Transactions on Industry Applications,1994,30(5):1219-1224.
    [194]M.Mario, P.Segarich, E.Soressi. A simple approach to flux and speed observation in induction motor drives[J]. IEEE Transactions on Industry Applications,1997,44(4):528-535.
    [195]奚国华,高宏洋,许为.定子磁链全阶观测器增益矩阵的确定方法[J].中南大学学报,2008,39(4):793-798.
    [196]罗慧感应电机全阶磁链观测器和转速估算方法研究[D].武汉:华中科技大学,2009.
    [197]尚敬,刘可安全阶状态观测器在传动控制系统中的速度辨识[J].机车电传动,2004,(6):28-31.
    [198]S.Sanwonwanich, S.Doki. Adaptive sliding observers for direct field oriented control of induction motors[C]. in Proc. IEEE IECON'90, Pacific Grove, USA,1990:915-920.
    [199]F.Parasiliti, R.Petrella, M.Tursini. Adaptive sliding mode observer for speed sensor-less control of induction motors [J]. IEEE Transactions on Industry Applications,2000,36(5):1380-1387.
    [200]王丰尧.滑模变结构控制[M].北京:机械工业出版社,1995:315-330.
    [201]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996:140-210.
    [202]姚琼荟,黄继起,等.变结构控制系统[M].重庆:重庆大学出版社,1997:10-35.
    [203]张希,陈宗祥,潘俊民.永磁直线同步电机的固定边界层滑模控制[J].中国电机工程学报,2006,26(22):116-121.
    [204]方斯琛,周波.滑模控制的永磁同步电机伺服系统一体化设计[J].中国电机工程学报,2009,29(3):96-101.
    [205]童克文,张兴.基于新型趋近律的永磁同步电动机滑模变结构控制[J].中国电机工程学报,2008,28(21):102-106.
    [206]陈伯时,杨耕.无速度传感器高性能交流调速控制的三条思路及其发展建议[J].电气传动,2006,36(1):3-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700