斯堪的纳维亚树木径生长与气候变化的响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球气候变化的背景下,了解和掌握地球过去的气候变化和大尺度大气环流状况有助于我们对目前的气候状况及其影响因素做出正确评估,也能为气候模型的建立提供数据支持。理解斯堪地那维亚地区气候的时空特征及其与夏季北大西洋涛动的联系对了解高纬度地区过去的气候变化和夏季北大西洋涛动的历史演变具有重要意义。本文主要利用欧洲赤松(Pinus sylvestris)树木年轮宽度指标探讨斯堪地那维亚中西部地区沿东-西横断面树木径生长与温度和降水的响应关系,重建Storlien地区夏季平均温度,增加斯堪地那维亚地区温度重建网络节点,利用斯堪地那维亚地区欧洲赤松、欧洲冷杉(Picea abies)和欧洲桦(Betula pubescens)组成的树木年轮网络,探讨该地区树木年轮生长类型的时空分布及其与夏季北大西洋涛动的联系。
     以斯堪的纳维亚中西部地区沿东-西横断面五个样点的树木年轮宽度序列和五个气象站的温度和降水数据为基础,对树木年轮气候响应关系进行分析得出,斯堪的纳维亚中西部地区气候整体受海洋影响较大,温度和降水沿东-西方向呈明显的梯度分布。该地区树木年轮样本的序列间相关系数和敏感度较高,树木生长受前一年的气候状况影响较大。各序列的平均轮宽、一阶自相关系数和序列内相关系数均呈现随地理位置由西至东逐渐增大的变化趋势,体现了海洋气候对各样点序列特征的影响。生长季温度是该地区树木生长的主要限制因子,五个样点轮宽年表均能够较好地反映当地七月平均温度变化情况。年表与气候因子的响应关系呈现在内陆地区较强,在临海地区较弱的特点。在过去250年时间里,位于内陆四个样点的树木生长具有较高的相似性,临近海洋的Nonshaugen样点树木生长与其它地区树木相关性表现出随时间变化的规律。五个样点树木年轮年表与七月平均温度的相关关系在20世纪下半段较20世纪上半段有明显的减弱,相关范围缩小,并且相关中心有从北向南移动的迹象。
     利用Storlien地区的树木年轮宽度指标对该地区夏季温度进行重建,基于ARSTAN年表和差值年表的Storlien地区夏季温度重建分别解释了该地区夏季平均温度变化的30%和28%。该重建与Jamtland树木年轮最大晚材密度暖季温度重建在20世纪以前拟合程度较高,在20世纪后Storlien地区重建温度没有如Jamtland树木年轮最大晚材密度暖季重建温度一样骤然升高人。分析认为,这是由于Storlien样点距离海洋较近,海洋对气候的调节作用,使该地区树木年轮生长增量没有位于内陆的样点显著。内陆样点温度重建包含了更多的周期信号,而且存在两个较长的周期,而距海洋较近的Storlien样点所具有的周期信号较少,基本集中在3-5年和11-12年左右。Storlien地区距离海洋较近,整个地区的气候特点相对内陆更加单一,所以反映的信号也更少且更强。
     利用旋转主成分分析方法将斯堪的纳维亚地区树木年轮生长类型分为西北和东南两个区域。1860年至1978年的公共时段各样点按照空间位置相近程度聚合。树种因素没有影响该地区树木生长的分区状况,表明斯堪的纳维亚地区的区域气候因子差异决定了该地区树木年轮的生长类型。温度和降水分别为西北和东南两分区树木年轮生长的主要限制因素。随着时间变化,树木年轮生长类型,平均敏感度和树木年轮生长的一致性均发生改变。分析认为,夏季北大西洋涛动和20世纪全球温度升高均对该地区树木年轮生长变化产生影响。树木年轮生长类型的变化可以从一定程度上反映气候变化信息和大尺度气候环流状况。其中斯堪的纳维亚中西部地区树木年轮生长类型对气候变化反应最为敏感。
In the background of global climate change, knowledge of past climate variability and large-scale atmospheric circulation helps to accurately assess the current climate status in a historical context and the human impacts on climate change. In addition, it also provides paleoclimatic data to evaluate the ability of climate models to simulate realistic climate changes. Understanding temporal and spatial characteristics of climate in Scandinavia and its relationship with summer North Atlantic Oscillation is helpful for us to get the knowledge of past climate variability and large-scale atmospheric circulation in high-latitude region. In this thesis, tree ring width proxies of Scots pine were used to investigate the response of tree ring growth to temperature and precipitation along west-east transect in west-central Scandinavia, and used to reconstruct the average summer temperature of Storlien that enriched the temperature reconstruction networks based on tree ring width proxies in Scandinavia. The tree ring width chronology networks including multiple tree species such as Scots pine, Norway spruce and European birch in Scandinavia were used to investigate the temporal and spatial distribution of tree ring growth mode in this region and it relationship with summer North Alantic Oscillation.
     Five tree ring width series derived from five sites along west-east transect in west-central Scandinavia were used to do the response analysis against temperature and precipitation data collected from five meteorological station along the transect. The results showed that the Atlantic Ocean had a big impact on climate in west-central Scandinavia, while temperature and precipitation along west-east transect showed a significant gradient distribution. Tree ring width series in these five sites showed high series intercorrelations, high average mean sensitivities, and high value on first order autocorrelations which emphasized the effect of precedent year's climate on the current year's tree ring growth. The statistical characteristics of these tree ring width series such as average ring widths, first order autocorrelations, and series intercorrelations showed a gradually increasing trend along the west-east direction which underlined the Atlantic Ocean effect on tree ring growth characteristics. Growing season temperature was a primary limiting factor of tree ring growth in this area. Tree ring width series in these five sites could well reflect local July average temperature variation. Tree ring width indexes and July average temperature showed a stronger response relationship in inland area compare with that in oceanic area. In the past250years, tree ring growth variation in the four inland sites showed a high homogeneity, while tree ring growth variation in the most oceanic site of Nonshaugen showed a significant changing correlation with tree ring growth in other sites along the time. Significant decreasing correlations between five tree ring width chronologies and July average temperature appeared in the second half20th century comparing with those in the first half20th century. At the same time, the area of tree ring chronology-July average temperature spatial correlation extent decreased, and correlation center had moved from north to south.
     Tree ring width proxies of Scots pine were used to reconstruct the average summer temperature of Storlien. The temperature reconstructions based on ARSTAN chronology and residual chronology separately explained30%and28%variation of Storlien average summer temperature. The reconstructions well correlated with Jamtland Maximum latewood density (MXD) warm season temperature reconstructions before20th century. In20th century, the Jamtland MXD reconstructions showed a distinct increase of warm season temperature which didn't appear in the Storlien reconstruction. This was probably due to the adjustment of Atlantic Ocean on climate which induced less distinct increase of tree ring growth in Storlien than of that in inland sites. The results showed that the inland reconstruction contained more periodic signals including tow long cycles than that of Storlien reconstruction which primarily contained two cycles of3-5years and11-12years. We inferred that the stable climate in Storlien caused by the ocean impact leaded to less but stronger periodic signals in tree ring series in Storlien than that in inland sites.
     Based on multiple-species tree ring width chronology networks, rotated principal component analysis was used to divide tree ring growth mode into tow types in Scandinavia. One type contained the tree ring series from the sites mainly located in north-west area, the other type contained the series from the sites mainly locate in south-east area. The results showed that in the period of AD1860-AD1978, the tree ring growth modes were clustered according to the approximation degree of the locations of sampling sites. The factor of tree species didn't influence the cluster results which indicated climate factors were the most significant factors on determining the tree ring growth modes in Scandinavia. Temperature and precipitation were separately the primary limiting factors of tree ring growth in north-west mode and south-east mode. Tree ring growth modes and average mean sensitivity in Scandinavia changed along the time. We inferred that summer North Atlantic Oscillation and the20th century global warming had a big influence on tree ring growth mode in Scandinavia. The classification of tree ring growth modes could reflect changes of climate and large-scale atmospheric circulation. The west-central Scandinavia was the most sensitive area of Scandinavia concerning the response of tree ring growth modes variations to climate changes.
引文
[1]Bradley, R.. Past Global Changes and Their Significance for the Future. Quaternary Science Review,2000,19:391-402
    [2]邵雪梅.树轮年代学的若干进展.第四纪研究,1997,3:265-271
    [3]Briffa, K. R., F. H. Schweingruber, P. D. Jones., T. J. Osborn, S. G. Shiyatov, and E. A. Vaganov. Reduced Sensitivity of Recent Tree-growth toTemperature at High Northern Latitudes. Nature,1998,391 (6668):678-682
    [4]Briffa, K. R., P. D. Jones, F. H. Schweingruber, and T. J. Osborn. Influence of Volcanic Eruptions on Northern Hemisphere Summer Temperature over the Past 600 years. Nature, 1998,393 (6684):450-455
    [5]Mann, M. E., R. S. Bradley, and M. K. Hughes. Global-scale Temperature Patterns and Climate Forcing over the Past Six Centuries. Nature,1998,392:779-787
    [6]Crowley, T. J., Causes of Climate Change over the Past 1000 years. Science,2000,289: 270-277
    [7]Esper, J., E. R. Cook, and F. H. Schweingruber. Low-frequency Signals in Long Tree-ring Chronologies for Reconstructing Past Temperature Variability. Science,2002,295 (5563):2250-2253
    [8]Cook, E. R., J. Esper, and R. D. D'Arrigo, Extra-tropical Northern Hemisphere Land Temperature Variability over the Past 1000 years. Quaternary Science Reviews,2004,23 (20-22):2063-2074
    [9]Briffa, K. R., T. J. Osborn, F. H. Schweingruber. Low-frequency Temperature Variations from a Northern Tree Ring Density Network. Journal of Geophysical Research-Atmospheres,2001,106 (D3):2929-2941
    [10]陈峰,袁玉江,魏文寿,范子昂,喻树龙,张瑞波,张同文,尚华明.树轮记录的酒泉近240年来6-9月气温变化.干旱区研究,2012,29(1):47~54
    [11]孙毓,王丽丽,陈津,段建平.利用兴安落叶松树轮最大晚材密度重建大兴安岭北部5-8月气温变化.科学通报,2012,57(19):1785-1793
    [12]侯红亚,王立海,徐华东,宋世全,孙天用.目测法估测树高的误差分析[J].森林工程,2012,02:6-8.
    [13]刘俊国,宋辉,刘桂丰,赵光仪.塔河蒙克山西伯利亚红松试验林高生长分析[J].森林工程,2009,01:1-3.
    [14]闫明准,刘兆刚.帽儿山地区次生林椴树单木胸高断面积生长模型的研究[J].森林工程,2009,02:1-4+21.
    [15]沈微,王立海,孟春.小兴安岭天然针阔混交林择伐后土壤呼吸动态变化[J].森林工程,2009,03:1-4+10.
    [16]陈礼清,余海清,杨旭,杨平.川西南枊杉年轮宽度指数与气候变化的关系.四川农业大学学报,2012,30(3):293~299
    [17]尚建勋,时忠杰,高吉喜,徐丽宏,吕世海,冯朝阳,王鲁秀.呼伦贝尔沙地樟子松年轮生长对气候变化的响应.生态学报,2012,32(4):1077~1084
    [18]单莉莉,郑红,张健,庄凯,刘婷岩.CO_2浓度与N素形态对白桦幼苗NO_3--N代谢的影响[J].森林工程,2011,05:20-23+57.
    [19]张瑞波,袁玉江,魏文寿,尚华明,喻树龙,张同文,陈峰,范子昂,秦莉.西伯利亚落叶松树轮稳定碳同位素对气候的响应.干旱区研究,2012,29(2):328~334
    [20]李颖俊,勾晓华,方克艳,杨涛,邓洋,满子红.祁连山东部188年上年8月至当年6月降水量的树轮重建.中国沙漠,2012,32(5):1393~1401
    [21]施双林,薛伟.落叶松人工林抚育间伐技术的研究[J].森林工程,2009,03:53-56.
    [22]王鹏,李国江,王石磊,张象君,王庆成,李开隆.帽儿山实验林场白桦人工幼林适宜微立地研究[J].森林工程,2010,03:11-13+17.
    [23]朱元金,钟兆华,孙志虎.三江平原丘陵区长白落叶松适生立地条件分析[J].森林工程,2010,05:13-16.
    [24]杨荣兴.光皮桦生长量分析及与杉木混交技术研究[J].森林工程,2012,05:26-27.
    [25]田沁花,周秀骥,勾晓华,赵平,范泽鑫,Samuli HELAMA.祁连山中部近500年来降水重建序列分析.中国科学:地球科学,2012.42(4):536~544
    [26]张瑞波,袁玉江,魏文寿,喻树龙,张同文,尚华明,陈峰,秦莉.树轮记录的天山南坡阿克苏河流域2-3月平均气温.高原气象,2012,31(3):804~809
    [27]田园,宋维明,程宝栋.中国木材市场供给结构分析.森林工程,2012,21(5):9~22
    [28]朱洪革.东北内蒙古地区2010年木材供需预测.森林工程,2008,24(6):84~91
    [29]Briffa, K. R., P. D. Jones, and F. H. Schweingruber Tree-ring Density Reconstructions of Summer Temperature Patterns across Western North America since 1600. Journal of climate,1992,5:735-754
    [30]Cook, E. R., D. M. Meko, D. W. Stahle, and M. K. Cleaveland. Drought Reconstructions for the Continental United States. Journal of Climate,1999,12 (4):1145-1162
    [31]Briffa, K. R., P. D. Jones, and F. H. Schweingruber. Summer Temperature Patterns over Europe:A Reconstruction from 1750 A. D. based on Maximum Latewood Density Indices of Conifers. Quaternary Research,1988,30:36-52
    [32]Frank, D. and J. Esper. Temperature Reconstructions and Comparisons with Instrumental Data from a Tree-ring Network for the European Alps. International Journal of Climatology,2005,25 (11):1437-1454
    [33]Buntgen U., Frank D. C., Kaczka R. J., Verstege A., Zwijacz-Kozica T., Esper J.. Growth Responses to Climate in a Multi-species Tree-ring Network in the Western Carpathian Tatra Mountains, Poland and Slovakia. Tree Physiology,2007,27 (5):689-702
    [34]Frank D., Esper J.. Characterization and Climate Response Patterns of a High-elevation, Multi-species Tree-ring Network in the European Alps. Dendrochronologia,2005,22 (2):107-121
    [35]Grudd, H., Briffa, K. R., Karlen, W., Bartholin, T. S., Jones, P. D., and Kromer, B.. A 7400-year Tree-ring Chronology in Northern Swedish Lapland:Natural Climatic Variability Expressed on Annual to Millennial Timescales. Holocene,2002,12:657-665
    [36]Briffa, K. R., Bartholin, T. S., Eckstein, D., Jones, P. D., Karlen, W., Schweingruber, F. H., and Zetterberg, P..1,400-year Tree-ring Record of Summer Temperatures in Fennoscandia. Nature,1990,346:434-439
    [37]Grudd, H.. Tornetrask Tree-ring Width and Density AD 500-2004:a Test of Climatic Sensitivity and a New 1500-year Reconstruction of North Fennoscandian Summers, Clim. Dynam.,2008,31:843-857
    [38]Wallen, C. C.. Climates of Northern and Western Europe. World Survey of Climatology. Amsterdam:Elsevier,1970,5
    [39]Rogers, J. C.. North Atlantic Storm Track Variability and its Association to the North Atlantic Oscillation and Climate Variability of Northern Europe. Journal of Climate,1997, 10 (7):1635-1647
    [40]Hurrell J. W.. Decadal Trends in the North Atlantic Oscillation:Regional Temperatures and Precipitation. Science,1995,269 (5224):676-679
    [41]Rogers J. C.:The Association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere. Monthly Weather Review,1984,112 (10): 1999-2015
    [42]吴祥定.树木年轮与气候变化.北京:气象出版社,1990
    [43]Broocman, C. F.. Beskrifning Ofwer the i Oster-Gotland Befintelige Stader, Slott, Sokne-Kyrkor, Soknar, Saterier, Ofwer-Officers-Bostallen, Jernbruk och Prestegardar, med mera, Johan Edman, Norrkoping,1760:770
    [44]Linne, C.. Olandska och Gotlandska resa:pa riksens hoglovlige standers befallning foraattad ar 1741:med anmarkningar uti ekonomien, naturalhistorien, antikviteter etc.: med atsskillige figurer. Gottfried Riefemetter, Stockholm och Uppsala,1745:406
    [45]Douglass, A. E.. Weather Cycles in Growth of Big Trees. Mon. Weather Rev.,1909,37: 226
    [46]Douglass, A. E.. Climate Cycles and Tree-growth, Carnegie Inst. Wash. Pub.,1919,1
    [47]Siren, G. Skogsgranstallen som indicator for klimatfluktuationerna i norra Fennoskandien under historisk tid, Comm. Inst. Forest. Fenn.,1961,54:1-66
    [48]Aniol, R. W. and Eckstein, D.. Dendrochronological Studies, at the Northern Timberline, in: Climate Changes on a Yearly to Millennial Basis. edited by:Morner, N. A. and Karlen, W., Reidel, Dordrecht,1984:273-279
    [49]Schweingruber, F. H., Bartholin, T., Schar, E., and Briffa, K. R.. Radiodensitometric Dendroclimatological Conifer Chronologies from Lapland (Scandinavia) and the Alps (Switzerland). Boreas,1988,17:559-566
    [50]Briffa, K. R., Jones, P. D., Pilcher, J. R., and Hughes, M. K.. Reconstructing Summer Temperatures in Northern Fennoscandinavia back to AD 1700 using Tree-ring Data from Scots Pine. Arctic Alpine Res.,1988,20:385-394
    [51]Helama, S., Timonen, M., Holopainen, J., Ogurtsov, M. G., Mielikainen, K., Eronen, M., Lindholm, M., and Merilainen, J.. Summer Temperature Variations in Lapland during the Medieval Warm Period and the Little Ice Age Relative to Natural Instability of the Thermohaline Circulation on Multi-decadal and Multicentennial Scales. J. Quaternary Sci., 2009,24:450-456
    [52]Kalela-Brundin, M.. Climatic Information from Tree- rings of (Pinnus sylvestris L.) and a Reconstruction of Summer Temperatures back to AD 1500 in Femundsmarka, Eastern Norway, Using Partial Least Squares Regression (PLS) Analysis. Holocene, 1999,9:59-77
    [53]Kirchhefer, A. J.. Reconstruction of Summer Temperatures from Tree-rings of Scots Pine (Pinus sylvestris L.) in Coastal Northern Norway. Holocene,2001,11:41-52
    [54]Gouirand, I., Linderholm, H. W., Moberg, A. and Wohlfarth, B.. On the Spatiotemporal Characteristics of Fennoscandian Tree-ring Based Summer Temperature Reconstructions. Theor. Appl. Climatol.,2008,91:1-25
    [55]Ljungqvist, F. C.. Temperature Proxy Records Covering the Last Two Millennia:a Tabular and Visual Overview. Geogr. Ann.,2009,91 (1):11-29
    [56]Jones, P. D., Briffa, K. R., Osborn, T. J., Lough, J. M., van Ommen, T. D., Vinther, B.M., et al. High-resolution Paleoclimatology of the Last Millennium:a Review of Current Status and Future Prospects. Holocene,2009,19:3-49
    [57]Haggstrom, C. A.. Nordens aldsta tall, [The Oldest Known Scots Pine Tree in the Nordic countries], Svensk Botanisk Tidskrift,2005,99:218
    [58]Briffa, K. R., Jones, P. D., Bartholin, T. S., Eckstein, D., Schweingruber, F. H., Karlen, W., Zetterberg, P., and Eronen, M.. Fennoscandian Summers from AD 500:Temperature Changes on Short and Long Time Scales, Clim. Dynam.,1992,7:111-119
    [59]Jones, P. D., Briffa, K. R., Barnett, T. P., and Tett, S. F. B.. Highresolution Palaeoclimatic Records for the Last Millennium:Interpretation, Integration and Comparison with General Circulation Model Control-run Temperatures. Holocene,1998,8:455-471
    [60]Mann, M. E., Bradley, R. S., and Hughes, M. K.. Northern Hemisphere Temperatures during the Past Millennium:Inferences, Uncertainties and Limitations. Geophys. Res. Lett., 1999,26:759-762
    [61]Briffa, K. R. and Matthews, J. A.. ADVANCE-10K:a Europeean Contribution Towards a Hemispheric Dendroclimatology for the Holocene. Holocene,2002,12:639-642
    [62]Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M., and Karlen, W.. Highly Variable Northern Hemisphere Temperatures Reconstructed from Low-and High-resonlition Proxy Data. Nature,2005,433:613-617
    [63]D'Arrigo, R. D., Wilson, R., and Jacoby, G. On the Long-term Context for Late Twentieth Century Warming, J. Geophys. Res.,2002,111, D03103, doi:10.1029/2005JD006352
    [64]Gunnarson B. E. and Linderholm H. W.. Improving a Tree-ring Reconstruction from West-central Scandinavia:900 Years of Warm-season Temperatures. Clim Dyn,2011,36:97-108
    [65]Gunnarson, B. E.. Lake Level Changes Indicated by Dendrochronology on Subfossil Pine, Jamtland, Central Scandinavian Mountains, Sweden. Arct. Antarct. Alp. Res.,2001,33: 274-281
    [66]Gunnarson, B. E.. Temporal Distribution Pattern of Subfossil Pines in Central Swenden: Perspective on Holocene Humidity Fluctuations. Holocene,2008,18:569-577
    [67]Linderholm, H. W. and Gunnarson, B. E.. Summer Climate Variability in West-central Fennoscandia during the Last 3600 Years. Geogr. Ann. A,2005,87:231-241
    [68]Gunnarson, B. E., Borgmark, A., and Wastegard, S.. Holocene Humidity Fluctuations in Sweden Inferred from Dendrochronilogy and Past Stratigraphy. Broreas,2003,32:347-360
    [69]McCarroll, D., Jalkanen, R., Hicks, S., Tuovinen, M., Gagen, M., Pawellek, F., Eckstein, D., Schmitt, U., Autio, J., and Heikkinen, O.. Multiproxy Dendroclimatology:a Pilot Study in Northern Finland. Holocene,2003,13:829-838
    [70]Linderholm, H. W. and Molin, T. Early Nineteenth Century Drought in East Central Sweden in Ferred from Dendrochronological and Historical Archives. Clim. Res.,2005,29: 63-72
    [71]Jonsson, K. and Nilsson, C.. Scots Pine (Pinus sylvestris L.) on Shingle Fields:a Dendrochronolic Reconstruction of Early Summer Precipitation in Mideast Sweden. J. Climate,2009,22:4710-4722
    [72]Linderholm, H. W. and Chen, D.. Cental Scandinavian Winter Precipitation Variability during the Past Five Centuries Reconstructed from Pinus Sylvestris Tree Rings. Boreas, 2005,34:43-52
    [73]Linderholm, H. W., Bjorklund, J. A., Seftigen, K., Gunnarson, B. E., Grudd, H., Jeong, J. H., Drobyshev, I., and Liu, Y. Dendroclimatology in Fennoscandia-from Past Accomplishments to Future Potential. Clim. Past,2010,6:93-114
    [74]Folland, C. K., Knight, J., Linderholm, H. W., Fereday, D., Ineson, S., and Hurrell, J. W.. The Summer North Atlantic Oscillation:Past, Present and Future. J. Climate,2009,22: 1082-1103
    [75]Linderholm, M., Eggertsson, O., Lovelius, N., Raspopov, O., Shumilov, O., and Laanelaid, A.. Growth Indices of North European Scots Pine Record the Seasonal North Atlantic Oscillation. Boreal Environ. Res.,2001,6:1-10
    [76]Solberg, B. O., Hofgaard, A., and Hytteborn, H.. Shifts in Radial Growth Responses of Coastal Picea Abies Induced by Climate Change during the 20th Century, Central Norway. Ecoscience,2002,9:79-88
    [77]Linderholm, H. W., Solberg, B. O., and Linderholm, M.. Tree-ring Record from Central Fennoscandia:The Relationship Between Tree Growth and Climate along an East West Transect. Holocene,2003,13:887-895
    [78]Macias, M., Timonen, M., Kirchhefer, A. J., Linderholm, M., Eronen, M., and Gutierrez, E.. Growth Variability of Scots Pine (Pinus sylvestris) along a Weat-East Gradient across Northern Fennoscandia:A Dendroclimatic Approach, Arct. Antarct, Alp. Res.,2004,36: 565-574
    [79]D'Arrigo, R. D., Cook, E. R, Jacoby, G. C., and Briffa, K. R.. NAO and Sea Surface Temperature Signatures in Tree-ring Records from the North Atlantic Sector. Quaternary Sci. Rev.,1993,12:431-440
    [80]Cook, E. R., D'Arrigo, R. D., and Briffa, K. R.. A Reconstruction of the North Atlantic Oscillation using Tree-ring Chronologies from North America and Europe. Holocene,1998, 8:9-17
    [81]Glueck, M. F. and Stockton, C. W.. Reconstruction of the North Atlantic Oscillation. Int. J. Climatol.,2001,21:1453-1465
    [82]Cook, E. R., D'Arrigo, R. D., and Mann, M. E.. A Well-verified, Multiproxy Reconstruction of the Winter North Atlantic Oscillation Index since AD 1400. J. Climate, 2002,15:1754-1764
    [83]Fritts H. C. Tree-rings and Climate, Great Britain:Academic Press,1976
    [84]Briffa, K. R., Shweingruber, F. H., Jones, P. D., Osborn, T. J., Haris, I. C., Shiyatov, S. G., Vaganov, E. A., and Grudd, H.. Trees Tell of Past Climates:But are They Speaking Less Clearly Today?. Phil. T. Roy. Soc. B,1998,353:65-73
    [85]Vaganov, E. A., Hughes, M. K., Kirdyanov, A. V., Schweingruber, F. H., and Silkin, P. P.. Influence of Snowfall and Melt Timing on Tree Growth in Subarctic Eurasia. Nature,1999, 400:149-151
    [86]Barber, V. A., Juday, G. P., and Finney, B. P.. Reduced Growth of Alaskan White Spruce in the Twentieth Century from Temperature Induced Drought Stress. Nature,2000,405:668-673
    [87]Linderholm, H. W.. Twentieth-century Scots Pine Growth Variations in the Central Scandinavian Mountains Related to Climate Change. Arct. Antarct. ALP. Res.,2002,34: 440-449
    [88]Kirchhefer, A. J.. A Discontinuous Tree-ring Record AD 320-1994 from Dividalen, Norway:Inferences on Climate and Treeline History, in:Mountain Ecosystems, edited by: Broll, G and Keplin, K., Springer, Berlin, Heidelberg, New york,2005:219-235
    [89]Douglass A. E.. Evidence of Climatic Effects in the Annual Rings of Trees. Ecology,1920, 1:24-32
    [90]Fritts H. C., Shashkin A. V.. Modeling Tree-ring Structure as Related to Temperature, Precipitation and Day Length. Tree Rings as Indicators of Ecosystem Health,1995:17-57
    [91]Linderholm H. W.. Climatic Influence on Scots Pine Growth on Dry and Wet Soils in the Central Scandinavian Mountains, Interprete from Tree-ring Widths. Silva Fennica,2001, 35:415-424
    [92]Cook E. R. and Kairiukstis L. A.. Methods of Dendrochronology, Applications in the Environmental Sciences. The Netherlands:Kluwer Academic Publishers, Dordrecht,1989
    [93]Schweingruber F. H.. Tree Rings, Basics and Applications of Dendrochronology. Holland: D. Reidel Publishing Company, Dordrecht,1987
    [94]Lundqvist, J.. Beskrivning till Jordartskarta over Jamtlands Lan. Sveriges Geologiska Undersokning,1969, Serie Ca 45:418
    [95]Borgstrom, I.. Geomorfologiska Kartbladet 19C Storlien-beskrivning och Naturvardesbedomning. SNV PM1144.1979:58
    [96]Linderholm H. W.. Age-dependent Climate Sensitivity of Pinus Sylvestris L. in the Central Scandinavian Mountains, Boreal Environment Research,2004,9:307-317
    [97]Lundqvist, J.. Late Weichselianglaciation and Deglaciation in Scandinavia. Quaternary Science Reviews,1986,5:269-292
    [98]Segerstrom, U. and von Stedingk H.. Early-Holocene Spruce, Picea Abies (L.) Karst., in West Central Sweden as Revealed by Pollen Analysis. The Holocene,2003,13:897-906
    [99]Stokes, M. A. and T. L. Smiley, An Introduction to Tree-Ring Dating. Chicago:University of Chicago Press,1968
    [100]Aniol R. W.. Tree-ring Analysis using CATRAS. Dendrochronologia,1983,1:45-53
    [101]Holmes R. L.. Users Manual for Program COFECHA. Laboratory of Tree-ring Research, University of Arizona, United States of America,1999
    [102]Cook E. R., Holmes R. L.. Users Manual for Program ARSTAN. Laboratory of Tree-ring Research, University of Arizona, United States of America,1999
    [103]Cook E. R.. A Time Series Analysis Approach to Tree-ring Standardization. PhD Dissertation, The University of Arizona, Tucson, Arizona,1985
    [104]Ritters K. H.. Analysis of Biweight Site Chronologies:Relative Weights of Individual Trees over Time. Tree-ring Bull,1990,50:11-19
    [105]Cook E. R., Kairiukstis L. A.. Methods of Dendrochology. Application in the Environment Science. Kluwer Academic Publisher, Dordrecht,1990
    [106]Wigley T., Briffa K. R., Jones P. D.. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. J. Clim. Appl. Meteorol., 1984,23:201-213
    [107]Walker, G. T. Correlation in Seasonal Variations of the Weather, IX. A Further Study of World Weather. Indian Meteor. Mem.,1924,24:275-332
    [108]Guiot J.. The Bootstrapped Response Function. Tree-ring Bulletin,1991,51:39-41
    [109]]Biondi F., Waikul K.. DENDROCLIM2002:a C++Program for Statistical Calibration of Climate Signals in Tree-ring Chronologies. Comput. Geosci.,2003,30:303-311
    [110]]Fritts H. C.. Reconstructing Large-scale Climatic Patterns from Tree-ring Data. University of Arizona Press, Tucson and London,1991
    [111]Fritts H. C., Swetnam T. W.. Dendroecology:a Tool for Evaluating Variations in Past and Present Forest Environments. Advance in Ecological Research,1989,19:111-188
    [112]Mitchell, T. D., Jones, P. D.. An Improved Method of Constructing a Database of Monthly Climate Observations and Associated High-resolution Grids. International Journal of Climatology,2005,25:693-712
    [113]Meko D. M., Graybill D. A.. Tree-ring Reconstruction of Upper Gila River Discharge. Water Resour. Bull.,1995,31 (4):605-616
    [114]Wilson R., D. Arrigo R., Buckley B., Buntgen U., Esper J., Frank D., Luckman B., Payette S., Vose R., Youngblut D.. A Matter of Divergence:Tracking Recent Warming at Hemispheric Scales using Tree Ring Data. J. Geophys. Res. Atmospheres,2007,112:17
    [115]D. Arrigo R., Wilson R., Liepert B., Cherubini P.. On the'Divergence Problem'in Northern Forests:a Review of the Tree-ring Evidence and Possible Causes. Global Planet Change,2008,60:289-305
    [116]Briffa K. R., Osborn T. J., Schweingruber F. H., Jones P. D., Shiyatov S. G., Vaganov E. A.. Tree-ring Width and Density Data around the Northern Hemisphere:Part 2, Spatio-temporal Variability and Associated Climate Patterns. Holocene,2002,12:759-789
    [117]Cook E. R., Briffa K. R., Meko D. M., Graybill D. A., Funkhouser G. The'Segment Length Curse'in Long Tree-ring Chronology Development for Paleoclimatic Studies. Holocene,1995,5:229-237
    [118]Erlandsson S.. Dendrochronological Studies. PhD Dissertation, University of Uppsala, Uppsala, Sweden,1936
    [119]Briffa K. R., Jones P. D., Schweingruber F. H., Karlen W., Shiyatov S. G. Tree-ring Variables as Proxy-indicators:Problems with Low-frequency Signals. In:Jones P. D., Bradley R. S., Jouzel J. (eds) Climatic Variations and Forcing Mechanisms of the Last 2000 Years. NATOASI Series 1,1996,41:9-41
    [120]Linderholm H. W.. A Comparison of Two Scots Pine Tree-ring Proxies and Standardization Methods-examples from the Central Scandinavian Mountains. Dendrochronologia,2010,28:239-249
    [121]Mann M. E., Lee J. M.. Robust Estimation of Background Noise and Signal Detection in Climatic Time Series. Clim. Change,1996,33:409-445
    [122]Ghil M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, M. E. Mann, A. Robertson, A. Saunders, Y. Tian, F. Varadi, and P. Yiou. Advanced Spectral Methods for Climatic Time Series. Rev. Geophys.,2002,40 (1):3.1-3.41
    [123]Dettinger, M. D., Ghil, M., Strong, C. M., Weibel, W., and Yiou, P.. Software Expedites Singular-spectrum Analysis of Noisy Time Series. Eos, Trans. American Geophysical Union, v.1995,76 (2):12,14,21
    [124]Sutton, R. T. and Allen, M. R.. Decadal Predictability of North Atlantic Sea Surface Temperature and Climate. Nature,1997,388:563-567
    [125]Schlesinger, M. E. and Ramankutty, N.. An Oscillation in the Global Climate System of Period 65-70 Years. Nature,1994,367:723-726
    [126]Fritts H. C.. Relationships of Ring Widths in Arid-site Conifers to Variations in Monthly Temperature and Precipitation. Ecological Monographs,1974,44:411-440
    [127]Cook E. R., Glitzenstein J. S., Krusic J. K., Harcombe P. A.. Identifying Functional Groups of Trees in West Gulf Coast (USA):a Tree-ring Approach. Ecol. Appl.,2001, 11:883-903
    [128]Richman M. B.. Rotation of Principal Components. J. Clim.,1986,6:293-335
    [129]Cook E. R., Anchukaitis K. J., Buckley B. M., D. Arrigo R. D., Jacoby G C, Wright W. E.. Asian Monsoon Failure and Megadrought during the Last Millennium. Science,2010, 328:486-489
    [130]Qian W. H., Qin A.. Precipitation Division and Climate Shift in China from 1960 to 2000. Theor. Appl. Climatol.,2008,93:1-17
    [131]]Li J., Cook E. R., D. Arrigo R., Chen F., Gou X.. Moisture Variability over China and Mongolia:1951-2005. Clim. Dyn.,2009,32:1173-1186
    [132]Andrew L., Gutierrez E., Macias M., Ribas M., Bosch O., Camarero J.. Climate Increases Regional Tree-growth Variability in Iberian Pine Forests. Global Change Biology,2007,13: 804-815

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700