白扦的树木年轮生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树木年轮生态学是利用树木年轮来评价生态环境及其变化的学科,其基本依
    据是系列年轮宽度和结构特征的变化。一般情况下,半干旱草原的环境条件不
    适宜树木的生长,但在我国内蒙古锡林河流域的草原沙地上,存留着一片天然
    白扦林,它们被认为是第四纪早期的残遗植被。鉴于锡林河流域半干旱的环境
    条件已接近白扦的生存界限,此片残遗白扦林可认为是进行树木年轮生态学研
    究的理想材料。
     本文应用树木年轮生态学的方法,结合木材解剖、气候资料、历史文献记录
    等,研究了这片残遗白扦林中白扦的生长与环境、年龄结构与环境干扰事件、
    白扦年轮宽度与羊草地上生物量的关系,以及全球变暖可能对该白扦林的影响
    等。主要结果归纳如下:
     1)依据国际树木年轮库的标准,建立了65年的白扦标准年轮年表。年表的
    平均序列相关系数为0.47,信噪比为14.44,平均敏感度为0.18。白扦的年轮宽
    度年表与上年9月、当年2、5月份的降雨量之间存在显著的正相关关系。
     2)通过对白扦年轮结构的观察确认,1966、1968、1972年存在高频率的窄
    年轮,这些年轮通常仅有两至三层晚材细胞,因此可以认为它是一类特殊的树
    木年轮—浅轮。
     3)白扦的年轮分析结果显示,锡林河流域的小片白扦林可能形成于20世纪
    20年代末至30年代初期。白扦年表(XLPI)与大青山(HHT)油松、准格尔
    旗(JGB)油松以及白云敖包(BYAB)红杆云杉年表之间存在显著的正相关关
    系;尤其值得提出的是,在20世纪20年代,HHT、JGB和BYAB年表都同时
    出现明显的生长下降现象。
     4)根据相关函数的分析,羊草的生长对当年5月份、7—8月份的降雨量较
    为敏感,与白扦的年轮宽度之间也存在两组显著的生长关系。基于这两种生长
    关系和白扦年轮宽度序列,本文重建了1955—1994年的羊草地上生物量动态。
     5)当地气象资料显示,近40年来锡林河流域的年平均温度和各季节平均温
    度都呈增加的趋势,但只有夏季平均温度与白扦的年轮宽度之间存在显著的负
    相关关系。本文研究也发现白扦的生长与5月份的平均温度、平均最高温度以
    
    
     梁尔源:白扦的树木年轮生态学研究
    及5、6月份的极端最高温度之间存在着显著的负相关关系。
     白扦标准年轮年表的统计特征表明,锡林河流域残遗白扦年轮序列包含丰富
    的环境信息,适合于树木年轮生态学的研究。白扦5月份开始生长,此时的降
    雨是最显著的生长限制因子,从而造成了白扦年轮年表与5月份降雨量之间的
    显著正相关关系。8—10月份,锡林河流域的降雨为全年降雨量的 1/3,由于沙
    地土壤可以减少地面径流和有效防止土壤水分蒸发,所以此阶段内的降雨能存
    留在沙地内,以供笠年白扦生长发育的需要。因此,这种降雨分布和沙地基质
    的特征可能是白扦在年蒸发量为降雨量4—5倍的锡林河流域仍能正常生长的主
    要原因。
     1966、1968和 1972年浅轮的出现与前年和当年的特殊气候有关。气候资料
    的分析表明,这三年的上年生长季末至当年生长季都干旱少雨,并且生长季后
    期伴随着异常高温天气,这种干旱伴随高温的气候特点是造成白扦浅轮的主要
    因素。因此,白扦浅轮与亚北极区针叶树浅轮的发生机理是完全不同的,为进
    一步研究浅轮的形成机制提供了新线索。
     白扦年表与 HHT。JGB和 BYAB年表之间的年轮宽度变化的同步性显示,
    这些年表能间接地反映30年代以前造成白扦林较小年龄结构的环境干扰事件。
    降雨是华北半干旱区树木最突出的生长限制因子,在 20世纪 20年代,HHT、
    JGB和 BYAB年表同时出现的生长下降,反映了该时期华北地区可能发生了大
    范围的旱灾,这一结论也为历史资料所证明。20年代白扦林的消失以及30年代
    后这片天然白扦林的重新出现表明了,20年代的旱灾可能是影响白扦年龄结构
    的主要干扰事件,它还有可能是造成臼扦成片死亡的直接原因。
     在锡林河流域,7—8 月份是降雨最充柿的时期。相关分析表明,建群种羊
    草能充分利用这一水热配比最佳的时期快速生长,但白扦对当年7—8月份的降
    雨反应却不敏感,而与上年8一IO月份的降咐量之间有显著的正相关关系。这
    些都证明白扦和羊草对半干旱草原环境具有不同的适应方式。羊草地上生物量
    与白扦年轮宽度之间的两组显著的关系可归结于两种季节降雨分配模式,它为
    利用白扦年轮宽度重建羊草的地上生物量的变化奠定了基础。羊草产量的重建
    不仅延长了锡林河流域草产量的记录,而且还开拓了用年轮宽度重建草产量的
    方法。
     白扦年表与温度变量之间的相关分析进一步表明,不同季节温度的升高对白
     5
    
     梁尔源:白扦的树木年轮生态学研究
    扦的生长产生不同的影响,尤其是夏季温度的变化,可以直接影响白扦的生长。
    白扦年表与5月份温度资料之间的相关分析还揭示,用月平均最高和最低温度
    来替代月平均温度更能说明温度变化对树木生长的影响。5、6月份是锡林河流
    域白扦形成层活动较旺盛的时期,因此,
Dendroecology refers to the application of dated tree-ring information to ecological investigations, with particular emphasis on the reconstruction or identification of specific ecological events, past forest disturbances and climatic conditions by using the variations in ring structure. In general, semi-arid climates in the typical steppe are unfavorable for the natural growth and survival of most trees. However, one patch of Meyer spruce (Picea Meyeri) forest, a climatically remnant community from the early Holocene, appears in the Xilin River Basin. Meyer spruce forest is currently restricted to wet and cold mountainous regions in north-central China, and is clearly out-of-phases with semi-arid climates in the Xilin River Basin. Therefore, this relict coniferous forest provides a unique site to exploit the ecological adaptation of natural forest in the typical steppe. Using dendroecological methods together with wood anatomy technology, meteorological data and historical records, we evaluated climate-growth relationships of Meyer spruce on a sandy substrate, the stand disturbance history, tree-grass growth relationships, the forest response to global change in the typical steppe. The main results are briefly summarized as follows:
    1) A 65-year tree-ring standardized chronology ranging from 1930 to 1994 was developed. Statistical analysis of the chronology showed a mean series inter-correlation of 0.47, a signal-to-noise ratio of 14.44, and a mean sensitivity of
    
    
    
    
    0.18. Correlation function and response function analyses indicated that radial growth was positively correlated with precipitation in February and May of the current year, and in September of the preceding year.
    2) Light rings are characterized by one or very few latewood-cell layers, showing a lighter color under the microscope. By means of tree-ring analysis coupled with wood anatomy technology, we observed the occurrence of light rings in 1966, 1968 and 1972.
    3)Tree-ring analysis showed that the existing Meyer spruce was recruited in the late 1920s or early 1930s. In addition, strong correlation was found between Meyer spruce (XLPI) chronology with other three tree-ring chronologies from Korean spruce (Picea koraiensis) (BYAB), and Chinese pine (Pinus tabulaeformis ) (JGB and HHT), as reported by other investigators. The comparatively synchronized growth decline of JGB, HHT, and BYAB was also observed in the 1920s
    4) Chinese leymus (Leymus chinensis) displayed significantly positive growth response to May precipitation (P < 0.05) and the sum of current July and August precipitation (P<0.05). Moreover, two predominant collinear relationships was detected between above-ground biomass of Chinese leymus and ring width of Meyer spruce, each being corresponded to different precipitation patterns in this region. Furthermore, grass production from 1955 to 1979 was primarily reconstructed using tree-ring width of Meyer spruce and two models derived from tree-grass growth relationships with reference to seasonal precipitation patterns.
    5) The recorded meteorological data demonstrated that the increases in temperature were synchronous with slight decreases in precipitation during the recent 40 yeas. Correlation function analysis indicated the annual mean temperature and accumulated temperature (above 5癈, 10癈) respectively showed no significant correlation with the spruce growth relative to summer mean temperature, which displayed strong coherence with tree growth (P<0.01). The mean temperature in May showed significantly negative correlation with spruce growth (P<0.05). Furthermore, it was revealed that the negative influence of May temperature was due to the monthly mean maximum temperature (Tmax) (P<0.01) other than the monthly mean
    
    
    
    minimum temperature (Tmin) values (P<0.1). With this, it was speculated that extreme maximum temperature in May and June might impose the most detrimental influence on the growth of Meyer spruce in the Xilin River Basin.
    From all the data combined, we may safely conclud that Meyer spruce in this sta
引文
1. Abrams M D, Ruffher C M, Morgan T A. Tree-ring response to drought across species and contrasting sites in the ridge and valley of central Pennsylvania. For Sci, 1998,44:550-558
    2. Allen C D, Breshears D D. Drought-induced shift of a forest-woodland ectone: rapid landscape response to climate variation. Proc Natl Acad Sci USA, 1998, 95: 14839-14842
    3. Antonova G F, Stasova V V. Effects of environmental factors on wood formation in Scots pine stems. Trees, 1992, 7: 214-219
    4. Astrade L, Begin Y. Tree-ring response of Populus tremula L. and Quercus robur L. to recent spring floods of the Saone River, France. Ecoscience, 1997, 4: 232-239
    5. Bailey I W. The "spruce budworm" biocoenose. 1. Frost rings as indicators of the chronology of specific biological events. Bot Gazette, 1925, 80: 93-101
    6. Baillie M G L. Extreme environmental events and the linking of the tree-ring and ice-core records. In: Dean J S, Meko D M, Swetnam T W eds. Tree Rings, Environment, and Humanity. Radiocarbon, 1996, 703-711
    7. Barber V A, Juday G P, Flnney B P. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature, 2000, 405: 668-673
    8. Bergeron Y, Leduc A, Morin H, Joyal C. Balsam fir mortality following the last spruce budworm outbreak in northwestern Quebec. Can J For Res, 1995, 25: 1375-1384
    9. Bernier B, Brazeau M. Nutrient deficiency symptoms associated with sugar maple dieback and decline in the Quebec Appalachians. Can J For Res, 1988, 18:762-767
    10. Biasing T J, Solomon A M, Duvick D N. Response functions revisited. Tree-Ring bull, 1984,44: 1-15
    
    
    11. Biasing T J, Stahle D W, Duvick D N. Tree ring-based reconstruction of annual precipitation in the south-central United States from 1750 to 1980. Water Resour Res, 1988,24: 163-171
    12. Brauning A. Dendroclimatological potential of drought-sensitive tree stands in southern Tibet for reconstruction of monsoon activity. IAWA, 1999, 20: 325-338
    13. Briffa K R, Bartholin T S, Eckstein D, Jones P D, Karlen W, Schweingruber F H, Zetterberg P. A 1,400-year tree-ring record of summer temperatures in Fennoscandia. Nature, 1990, 346: 434-439
    14. Briffa K R, Jones P D, Basic chronology statistics and assessment. In: Cook E R, Kairiukstis L A eds. Methods of Dendrochronology: Applications in the Environmental Sciences. Dordrecht: Kluwer Academic Publishers, 1990, 137-152
    15. Briffa K R, Jones P D, Schweingruber F H, Osborn T J. Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature, 1998 a, 393:450-455
    16. Briffa K R, Jones P D, Schweingruber F H, Shiyatov S G, Vaganov E A. Development of a North Eurasian chronology network: Rationale and preliminary results of comparative ring-width and densitometric analyses in northern Russia. In Dean J S, Meko D M, Swetnam T W eds. Tree Rings, Environment, and Humanity. Radiocarbon 1996, 25-41
    17. Briffa K R, Schweingruber F H, Jones P D, Osborn T J, Shiyatov S G, Vaganov E A. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature, 1998 b, 391: 678-682
    18. Carlquist S ed. Ecological strategies of xylem evolution. Berkeley: University of Califormia, 1975
    19. Carlquist S. Wood anatomy of Tremandraceae: phylogentic and ecological implication. Am J Bot, 1977, 64: 704-713
    20. Ceulemans R, Mousseau M. Effects of elevated atmospheric CO_2 on woody plants. New Phytol, 1994,127: 425-446
    
    
    21. Cherubini P, Schweingruber F H, Forster T. Morphology and ecological significance of intra-annual radial cracks in living conifers. Trees, 1997, 11: 216-222.
    22. Cook E R, Briffa K R. comparison of some tree-ring standardization methods. In: Cook E R, Kairiukstis L A eds. Methods of Dendrochronology: Applications in the Environmental Sciences. Dordrecht: Kluwer Academic Publishers, 1990,153-162.
    23. Cook E R, Kairiukstis L A eds. Methods of Dendrochronology: Applications in the Environmental Sciences. Dordrecht: Kluwer Academic Publishers, 1990
    24. D'Arrigo R D, Jacoby G C, Pederson N, Frank D, Buckley B, Baatarbileg N, Mijiddorj R, Dugarjav Ch. Mongolian tree rings, temperature sensitivity and reconstructions of Northern Hemisphere Temperature. Holocene, 2000 10: 669-672
    25. D'Arrigo R D, Jacoby G C. A 1000-year record of winter precipitation from northwestern New Mexico, USA: a reconstruction from tree-rings and its relation to El Nino and the Southern Oscillation. Holocene, 1991, 1: 95-101
    26. D'Arrigo R D, Jacoby G C. Tree growth-climate relationships at the northern boreal forest tree line of North America: evaluation of potential response to increasing carbon dioxide. Global Biogeochem Cycles, 1993, 7: 525-535
    27. Dean J S. Dendrochronology and the study of human behavior. In: Dean J S, Meko D M, Swetnam T W eds. Tree Rings, Environment, and Humanity. Radiocarbon 1996, 461-469
    28. Douglass A E. A method for estimating rainfall by the growth of trees. In: Huntington E ed. The Climatic Factor as Illustrated in Arid America. Carnegie Inst Wash Publ, 1914, 192: 101-121
    29. Douglass A E. Evidence of climatic effects in the annual rings of trees. Ecology, 1920,1:24-32
    30. Eckstein D, Baillie M G L, Egger H. Handbooks for Archaeologists, No. 2: Dendrochronological Dating. European Science Foundation, Strasbourg, 1984
    31. Eckstein D, Frisse E. The influence of temperature and precipitation on vessel
    
     area and ring width of oak and beech. In: Hughes M K, Kelley P M, Pilcher J R, LaMarche Jr V C eds. Climate from tree ring. Cambridge: Cambridge University Press, 1982,12-13
    32. Emmingham W H. Ecological indexes as a means of evaluating climate, species distribution, and primary production. In: Edmonds R L ed. Analysis of coniferous forest ecosystems in the western United, United States/Intentional Biological Program, Synthesis Series, 14. Stroudsburg: Hutchinson Ross, 1982, 45-67
    33. Ettl G J, Peterson D L. Growth response of subalpine fir (Abies lasiocarpa) to climate in the Olympic Mountains, Washington, USA. Global Change Biol, 1995,1:213-230
    34. February E C. Plant xylem anatomy, dendrochronology and stable carbon isotopes as tools in rainfall reconstruction in southern Africa. Ph.D dissertation, The University of Cape Town, South Africa, 1996
    35. Feng X H, Cui H T, Conkey L E. Tree-ring δ D as an indicator of Asian Monsoon intensity. Quat Res, 1999, 51: 261-266
    36. Filion L, Payette S, Gauthier L, Boutin Y. Light rings in subarctic conifers as a dencrochronological tool. Quat Res, 1986. 26: 271-279
    37. Flannigan M D, Bergeron Y. Possible role of disturbance in shaping the northern distribution of Pinus resinosa. J Veg Sci. 1998, 9: 477-482
    38. Foster D R. Disturbance history, community organization and vegetation dynamics of the old-growth Pisgah Forest, south-western New Hampshire, U.S.A. J Ecol, 1988, 76: 105-134
    39. Fritts H C, Shashkin A V. Modeling tree-ring structure as related to temperature, precipitation, and day length., In: Lewis T E ed. Tree Rings as Indicators of Ecosystem Health. Boca Raton: CRC Press, 1995, 17-57
    40. Fritts H C, Swetnam T W. Dendroecology: a tool for evaluating variations in past and present forest environments. Advs Eco Res. 1989,19: 111-188
    41. Fritts H C. Growing-Ring of tree: their correlation with climate. Science, 1966, 154: 973-979.
    
    
    42. Fritts H C. Relationships of ring widths in arid-site conifers to variations in monthly temperature and precipitation. Ecol Monograph, 1974, 44: 411-440
    43. Fritts H C. Tree Ring and Climate. London: Academic Press, 1976
    44. Garson P. Automatic measurement of vessel lumen area and diameter with particular reference to pedunculate oak and commen beech. IAWA, 1985, 6: 219-237
    45. Glock W S. Tree growth II. Growth rings and climate. Bot Rev, 1955, 21: 73-188
    46. Graumlich L J. Subalpine tree growth, climate, and increasing CO_2: An assessment of recent growth trends. Ecology, 1991,72: 1-11
    47. Graybill D A, Shiyatov S G. Dendroclimatic evidence from Northern Soviet Union. In: Bradely R S, Jones P D eds. Climate since A.D. 1500. London: Routledge, 1992,393-414
    48. Grissino-Mayer H D, Swetnam T W. Century-scale climate forcing of fire regimes in the American Southwest. Holocene, 2000, 19: 213-220
    49. Grissino-Mayer H D. A 2129-year reconstruction for nothwestern New Mexico, USA. In: Dean J S, Meko D M, Swetnam T W eds. Tree Rings, Environment, and Humanity. Radiocarbon, 1996, 191-204
    50. Gutierrez E. Climate tree-growth relationships for Pinus uncinata Ram. in the Spanish pre-Pyrenees. Acta Oeccol, 1991, 12: 213-225.
    51. Harrington C R ed. The Year Without a Summer? World Climate in 1816. Ottawa: Canadian Museum of Nature, 1992
    52. Holmes R L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull, 1983, 43: 69-75
    53. Houghton J T, Jenkins G J, Ephraums J J eds. Climate change: the IPCC scientific assessments. Cambridge: Cambridge university press, 1990
    54. Houghton J T ed. Global Warming: The Complete Briefing. Cambridge: Cambridge University Press, 1997
    55. Huettl R F, Mueller-Dombois D eds. Forest decline in the Atlantic and pacific regions. Berlin: Springer-Verlag, 1993
    
    
    56. Hughes M K, Graumlich L J. Multimillennial dendroclimatic studies from the western United States. NATO ASI Ser, 1996,I41: 109-124
    57. Hughes M K, Kelly P M, Pilcher J R, LaMarche Jr. V C eds. Climate from Tree Rings. Cambridge: Cambridge University Press, 1982
    58. Hughes M K, Schweingruber F H, Cartwright D, Kelly P M. July-August temperature at Edinburgh between 1721 and 1975 from tree-ring density and width data. Nature, 1984, 308: 341-344
    59. Hughes M K, Wu X D, Shao X M, Garfin G M. A preliminary reconstruction of rainfall in North-central China since A. D. 1600 from tree-ring density and width. Quat Res, 1994,42: 88-99
    60. Idso S B. The long-term response of trees to atmospheric C02 enrichment. Global change Biol, 1999, 5: 493-495
    61. Innes J L. Forest decline. Progr Phys Geogr, 1992, 16: 1-64
    62. Iverson L R, Prasad A M, Hale B J, Sutherland E K eds. Atlas of current and potential future distributions of common trees of the Eastern United States. Pennsylvania: USDA Forest Service, 1999
    63. Jacoby G C, Bunker D E, Benson B E. Tree-ring evidence for an A.D. 1700 Cascadia earthquake in Washington and northern Oregon. Geology, 1997, 25: 999-1002
    64. Jacoby G C, D'Arrigo R D, Davaajamts T. Mongolian tree rings and 20th-century warming. Science, 1996, 273: 771-773
    65. Jacoby G C, D'Arrigo R D, Pederson N, Buckley B, Dugarjav C, Mijiddorj R. Temperature and precipitation in Mongolia based on dendroclimatic investigations. IAWA, 1999, 20: 339-350
    66. Jacoby G C, D'Arrigo R D. Tree rings, carbon dioxide, and climatic change. Proc Natl Acad Sci USA, 1997, 94: 8350-8353
    67. Jacoby G C, D'Arrigo R D. Tree ring width and density evidence of climatic and potential forest change in Alaska. Global Biogeochem Cycles, 1995, 9: 227-234
    68. Jacoby G C, Lovelius N V, Shumilov O I, Raspopov 0 M, Karbainov J M,
    
     Frank D C. Long-term temperature trends and tree growth in the Taymir region of northern Siberia, Quat Res, 2000, 53: 312-318
    69. Jagels R, Telewski F W. Computer-aided image analysis of tree rings. In: Cook E R, Kairiukstis L A eds. Methods of dendrochronology. Dordrecht: Kluwer Academic Publishers, 1990, 76-93.
    70. Jenkins M A, Pallardy S G. The influence of drought on red oak group species growth and mortality in the Missouri Ozarks. Can J For Res, 1995, 25: 1119-1127
    71. Jones P D, Briffa K R, Schweingruber F H. Tree-ring evidence of the widespread effects of explosive volcanic eruptions. Geoph Res Lett, 1995, 22: 1333-1336.
    72. Kairiukstis L, Vaganov E, Dubinskaite J. Examples of Dendrochronologyical Prognoses. in: Cook E R, Kairiukstis L A eds. Methods of dendrochronology. Application in the environmental sciences. Dordrecht: Kluwer Academic Publishers, 1990,323-332
    73. Kaiser K F, Kaiser-Bernhard. The Katmai eruption of 1912 and the Alaska earthquake of 1964 as reflected in the annual rings of sitka spruces on Kodiak Island. Dendrochronologia, 1987, 5: 111-125
    74. Kienast F, Schweingruber F H, Braker O U, Schar E. Tree-ring studies on conifers along ecological gradients and the potential of single-year analysis. Can J For Res, 1987, 17: 683-696.
    75. Kojo Y, Kalin R M, Long A. High-precision "wiggle-matching" in radiocarbon dating. J Archaeol Sci, 1994, 21:475-479
    76. Krause C, Eckstein D. Dendrochronology of roots. Dendrochronologia, 1993, 11:9-23
    77. LaMarche V C, Graybill H C, Fritts H C, Rose M R. Increasing atmospheric carbon dioxide: tree ring evidence for growth enhancement in natural vegetation. Science, 1984, 225: 1019-1021
    78. LaMarche V C, Hirschboeck K K. Frost rings in trees as records of major volcanic eruptions. Nature, 1984, 307: 121-128
    
    
    79. Liang E Y, Shao X M, Hu Y X, Lin J X. Dendroclimatic evaluation of climate-growth relationships of Meyer spruce (Picea meyeri) on a sandy substrate in semi-arid grassland, north China. Trees, 2001 a, 15: 230-235
    80. Liang E Y, Shao X M, Hu Y X, Lin J X. A dendroclimatic study of relic Picea meyeri in Inner Mongolian Steppe. Acta Bot Sin, 2001 b, 288-294
    81. Liang E Y, Hu Y X, Lin J X. Relationships between grass (Leymus chinensis), climate and tree-ring width of Meyer spruce (Picea meyeri) in Inner Mongolian steppe. Trees, (in review a)
    82. Liang E Y, Shao X M, Hu Y X, Kong Z C, Lin J X. Young age structure of meyer spruce (Picea meyeri) forest in the typical steppe: possible causes deduced from tree-ring analysis. Can J For Res, (in review b)
    83. Lin J X, Jach M E, Ceulemans R. Stomatal density and needle anatomy of Scots pine (Pinus sylvestris) are effected by elevated CO_2. New Phytol, 2001, 150:665-674
    84. Lloyd A H, Graumlich L J. Holocene dynamics of treeline forests in the Sierra Nevada. Ecology, 1997, 78: 1199-1210
    85. Luckman B H. Dendrochronology and global change. In: Dean J S, Meko D M, Swetnam T W eds. Tree Rings, Environment, and Humanity. Radiocarbon 1996,1-24
    86. Mann M E, Bradley R S, Hughes M K. Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 1998, 392, 779-787
    87. McClenahen J R. Potential dendroecological approaches to understanding forest decline. In: Lewis T E ed. Tree rings as indicators of ecosystem health. Boca Raton: CRC Press, 1995, 59-79
    88. McLaren B E, Peterson R O. Wolves, moose, and tree rings on Isle Royale. Science, 1994,266: 1555-1558
    89. Mcmillan C W. Application of automatic image analysis to wood science. Wood sci, 1982, 14:97-105
    90. Meko D M, Stockton C W, Boggess W R. A tree-ring reconstruction of drought in southern California. Water Resour Bull, 1980, 16: 594-600
    
    
    91. Michaelsen J, Haston L, Davis F W. 400 years of central California precipitation variability reconstructed from tree rings. Water Resour Bull, 1987, 3:809-818
    92. Oberhuber W, Stumbock M, Kofler W Climate-tree-growth relationships of Scots pine stands (Pinus sylvestris L.) exposed to soil dryness. Trees, 1998, 13: 19-27
    93. Ojima D S, Parton W J, Schimel D S, Scurlock J M O, Kittel T G F. Modeling the effects of climatic and CO_2 changes on grassland storage of soil C. Water, Air, Soil Pollut, 1993, 70: 643-657
    94. Park W K. Development of anatomical tree-ring chronologies from Southern Arizona using image analysis. Ph.D Dissertation, University of Arizona, 1990
    95. Parker M L, Henoch WES. The use of Engelmann spruce latewood density for dendrochronological purposes. Can J For Res, 1971, 1: 90-98.
    96. Payette S, Fortin M J, Morneau C. The recent sugar maple decline in southern Quebec: probable causes deduced from tree rings. Can J For Res, 1996 26: 1069-1078
    97. Pederson N, Jacoby G C, D'Arrigo R D, Cook E R, Buckley B M, Dugarjav C, Mijiddorj R. Hydro meteorological reconstructions from northeastern Mongolia derived from tree rings: 1651-1995. J dim, 2001, 14: 872-881
    98. Polge H. The use of X-ray densitometric methods in dendrochronology. Tree-Ring Bull, 1970, 30: 1-10
    99. Raitio H. Anatomical symptoms in the wood of Scots pine damaged by frost and pine bark bugs. Flora, 1992, 186: 187-193
    100. Riding R T, Little C H A. Anatomy and histochemistry of Abies balsamea cambial zone cells during the onset and breaking of dormancy. Can J Bot, 1984, 62, 2570-2579
    101. Rogers A, Humphries S. A mechanistic evaluation of photosynthetic acclimation at elevated CO_2. Global Change biol, 2000, 6: 1005-1011
    102. Rolland C. Tree-ring and climate relationships for Abies alba in internal Alps. Tree-Ring Bull, 1993, 53: 1-11
    
    
    103. Sass U, Eckstein D. The variability of vessel size in beech and its ecophysiological interpretation. Trees, 1995, 9: 247-252
    104. Sataki K, Shimazaki K, Tsuji Y, Ueda K. Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700. Nature, 1996, 379: 246-249
    105. Schaberg P G, Wilkinson R C, Shane J B, Donnelly J R, Call P F. Winter photosynthesis of red spruce from three Vermont seed sources. Tree Physiol, 1995,15:345-350
    106. Schulman E. Bristlecone pine, oddest known living thing. Nat Geogr Mag, 1958,113:354-372
    107. Schulze E D. Air pollution and forest decline in spruce (Picea abies). Science, 1989, 244: 776-783
    108. Schweingruber F H, Braeker 0 U, Schaer E. X-ray densitometric results for subalpine conifers and their relationship to climate. In: Fletcher J ed. Dendrochronology in Europe. British Archaeological Reports International Series, 1978,51:89-100
    109. Schweingruber F H, Briffa K R, Nogler P. A tree-ring densitometric transect from Alaska to Labrador: comparison of ring-width and maximum-latewood-density chronologies in the conifer belt of northern North America. Int J Biometeorol, 1993, 37: 151-169
    110. Schweingruber F H. Tree rings and environment. Dendroecology. Bern: Haupt, 1996,21-39
    111. Schweingruber F H. Tree Rings: Basics and Applications of Dendrochronology. Dordrecht: Reidel, 1988
    112. Schweingruber F H. Trees and Wood in Dendrochronology. Berlin: Springer-Verlag, 1993
    113. Sheppard P R, Graumlich L J, Conkey L E. Reflected-light image analysis of conifer tree rings for reconstructing climate. Holocene, 1996, 6: 62-68
    114. Shi Y F, Kong Z C, Wang S M, Tang L Y, Wang F B, Yao T D, Zhao X T, Zhang P Y, Shi S H. Mid-Holocene climates and environments in China.
    
     Global Planet Change, 1993, 219-233
    115. Skog G, Regnell J. Precision calendar-year dating of the elm decline in a sphagnum-peat bog in southern Sweden. Radiocarbon, 1995, 37:197-202
    116. Smith D J, Laroque C P. Mountain hemlock growth dynamics on Vancouver Island. Northwest Sci, 1998, 72: 67-70
    117. Stahle D W, Cleaveland M K, Blanton D B, Therrell M D, Gay D A. The Lost Colony and Jamestown droughts. Science, 1998, 564-567
    118. Stahle D W, Cleaveland M K, Hehr J G. A 450-year drought reconstruction for Arkansas, United States. Nature, 1985, 316: 530-532
    119. Stahle D W. The tree-ring record of false spring in the south central USA. Ph.D dissertation, Arizona State University, 1990
    120. Stokes M A, Smiley T L. An Introduction to Tree Ring Dating. Chicago: University of Chicago Press, 1968
    121. Stone E I. Frost rings in longleaf pine. Science, 1940, 92: 478
    122. Swetnam T W. Fire history and climate change in giant sequoia groves. Science, 1993, 262: 885-889
    123. Tardif J, Bergeron Y. Radial growth of Fraxinus nigra in a Canadian boreal floodplain in response to climatic and hydrological fluctuations. J Veg Sci, 1993,4:751-758
    124. Teleski F W, Wakefield A E, Jaffe M J. Computer-Assisted Image Analysis of Tissus of Ethtel-Treated Pinus taeda seedings. plant physiol, 1983, 72: 177-181
    125. Tessier L. Spatio-temporal analysis of climate-tree ring relationships. New Phytol, 1989, 111: 517-529
    126. Thetford R D, D'Arrigo R D, Jacoby G C. An image analysis system for determining dendsitomotric and ring-width time series. Can J For Res, 1991, 21: 544-549
    127. Vaganov E A, Hughes M K, Kirdyanov A V, Schweingruber F H, Silkin P P. Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature, 1999,400, 149-151
    128. Vaganov E A, Shashkin A V, Vysotskaya L G. Ecological and statistical
    
     prognosis of the dynamics of fish catch based on dendrochronological data. Sov JEcol 1987, 17: 187-193.
    129. Vaganov E A. Method for forecasting grain yield with the aid of dendrochronological data. Sov J Ecol, 1990 a, 20: 139-146
    130. Vaganov E A. The tracheidgram method in tree-ring analysis and its application. In: Cook E R, Kairiukstis L A eds. Methods of dendrochronology. Dordrecht: Kluwer Academic Publishers, 1990 b, 63-76
    131. Vaganov E, Kachaev A. Construction and usage of a complex model to illustrate the relationship between tree increment and wheat crop yield. Lundqua Report, 1992, 34: 327-330
    132. Veblen T T, Hadley K S, Reid M S, Rebertus A J. The response of subalpine forests to spruce beetle outbreak in Colorado. Ecology, 1991, 72: 213-231
    133. Villalba R, Veblen T T. Improving estimates of total tree ages based on increment core samples. Ecoscience, 1997, 4: 534-542
    134. Vysotskaya L G, Vaganov E A. Components of variability of radial cell size in tree-rings of conifers. IAWA, 1989, 10: 417-428
    135. Wang L. Tree-ring growth of black spruce at arctic treeline in notrhern Quebec:implication for climate change. Ph.D Dissertation, Universite Lava, 2000
    136. Wang L, Payette S, Begin Y. A quantitative definition of light rings in black spruce (Picea mariana) at the arctic treeline in northern Quebec, Canada. Arc Alp Res, 2000, 32: 324-330
    137. Weber U M. Dendrochronological reconstruction and interpretation of latch budmonth outbreaks in two central alpine valleys of Switzerland from 1470-1990. Trees, 1997 11: 277-290
    138. Weis E, Berry J A. Plants and high temperature. In: Long S P, Woodward F I ed. Plants and temperature. Cambridge: Company of Biologists, 1988. 329-346
    139. Wigley T M L, Briffa K R, Jones P D. On the average values of correlated time series, with applications in dendroclimatology and Hydrometeorology. J dim Appl Meteorol, 1984, 23: 201-213
    
    
    140. Wimmer R, Grabner. A comparison of tree-ring features in Picea abies as correlated with climate. IAWA, 2000, 403-416
    141. Woodcock D. Climate sensitivity of wood-anatomical features in a ring-porous (Quercus macrocarpa). Can J For Res, 1989, 19: 639-644
    142. Woodcock D. Sensitivity of vessel diameter to climatic conditions in bur oak (Quercus macrocarpa). In: Cosgrove D, Knievel D P eds. Physiology of Cell Expansion during Cell Growth: Proceedings of the 2nd Annual Perm State Symposium in Plant Physiology. American Society of Plant Physiologists, 1987
    143. Wu X. Dendroclimatic studies in China. In: Bradley R S, Jones P D eds. Climate since A.D. 1500. London: Routledge, 1992, 432-445
    144. Xiao X, Ojima D S, Parton J. Sensitivity of Inner Mongolia Grassland to climate change. J Biogeogr, 1995, 22: 643-646
    145. Yamaguchi D K, Atwater B F, Bunker D E, Benson B E, Reid M S. Tree-ring dataing the 1700 Cascadia earthquake. Nature, 1997, 389: 922
    146. Yamaguchi D K, Filion L, Savage M. Relationship of temperature and light ring formation at subarctic treeline and implications for climate reconstruction. Quat Res, 1993,39:256-262
    147. Yamaguchi D K, Lawrence D B. Tree-ring evidence for 1842-1843 eruptive activity at the Goat Rocks dome, Mount St. Helens, Washington. Bull of Volcano, 1993, 55: 264-272
    148. Young P J, Megonigal J P, Scharitz R R, Day F P. False ring formation in Baldcypress (Taxodium distichum). Wetlands, 1999, 13: 293-298
    149. Zhang S Y. Variations and correlation of various ring width and ring density features in European oak: implication in dendrochronology. Wood Sci Tech, 1997,31:63-72
    150. Ziska L H. The influence of root zone temperature on photosynthetic acclimation to elevated carbon dioxide concentrations. Ann Bot, 1998, 81: 717-721
    151. 白永飞,陈佐忠。锡林河流域羊草草原植物种群和功能的长期变异及其对
    
    群落稳定性的影响。植物生态学报,2000,24:641—647
    152.白永飞,许志信。降水量的季节分配对羊草群落地上生物量影响的数学模拟。草业学报,1997,6(2):1—6
    153.白永飞,许志信。羊草草原群落初级生产力动态研究。草地学报,1995,3(1): 57—64
    154.陈敏,王艳华。栽培条件下羊草生物学特性的观察。草原生态系统研究,1985,1:212—223
    155.陈佐忠。锡林河流域的地形与气候概况。草原生态系统研究,1988,3:13—22
    156.崔海亭,孔昭宸。内蒙古中东部地区全新世高温期气候变化的初步分析。中国全新世大暖期气候与环境(施雅风和孔昭宸主编)。北京:海洋出版社,1992,72—79
    157.崔海亭,刘鸿雁,腰希申。浑善达克沙地古云杉木材的发现及其古生态意义。中国科学(D辑),1997,457—461
    158.崔克明,魏令波,李举怀,李绍文,李正理。构树形成层活动周期中过氧化物酶和酯酶同工酶的变化。植物学报,1995,37:800—806
    159.郭连生和田有亮。4种针叶幼树光合速率、蒸腾速率与土壤含水量的关系及其抗旱性的研究。应用生态学报,1994,5:32—36
    160.贺新强,林月惠,林金星,胡玉熹。气孔密度与近一个世纪大气CO_2浓度变化的相关性研究。科学通报,1998,43:860—862
    161.姜恕。草原生态系统实验地的设置及其植被背景。草原生态系统研究,1988,3:1—12
    162.蒋高明,韩兴国,林光辉。大气CO_2浓度升高对植物的直接影响—国外十余年来模拟实验研究之主要手段及基本结论。植物学报,1997,21:489—502
    163.金艳,刘云祥,马颖志。1925年黑龙江省特大干旱浅析。黑龙江水专学报,1997,3:81—82
    164.康兴成,Graumlich L J,Sheppard。青海都兰地区1835年来的气候变化—来自树轮资料。第四纪研究,1997,1:70—75
    165.李博,雍世鹏,李忠厚。锡林河流域植被及利用。草原生态系统研究,1988,3:84—183
    
    
    166.李江风等著。新疆年轮气候年轮水文研究。北京:气象出版社,1989
    167.李凌浩,陈佐忠,刑雪荣。草地生态系统的碳循环与全球变化。植物科学进展,1998,1:249—256
    168.李森,孙武,李孝泽,张勃。浑善达克沙地全新世沉积特征与环境演变。中国沙漠,1995,15:323—331
    169.梁尔源,胡玉熹,林金星。C0_2浓度加倍对辽东栎维管组织结构的影响。植物生态学报,2000,24:506—510
    170.梁尔源,邵雪梅,胡玉熹,林金星。内蒙古草原沙地白扦年轮生长指数的变异。植物生态学报,2001,25:190—194
    171.林金星,胡玉熹。大气二氧化碳浓度对植物营养器官和生殖器官形态结构的影响。植物学集刊,1994,7:60—68
    172.刘洪滨,吴祥定,邵雪梅。采用树轮图像分析方法研究历史时期气候变化的可能性。地理研究,1996,15(2):45—51
    173.刘鸿雁。内蒙古高原东南缘森林—草原过渡带景观及其演化的生态学研究。北京大学博士论文,1998
    174.刘禹,马利民。树轮宽度对376年呼和浩特季节降水的重建。科学通报,1999,44:1986—1992
    175.刘禹,吴祥定,邵雪梅,刘洪滨,安芷生,祝一志,李兆元。树轮密度、稳定C同位素对过去100a陕西黄陵季节气温与降水的恢复。中国科学(D辑),1997,27:271—276
    176.刘钟龄,李忠厚。内蒙古羊草十大针茅草原植被生产力的研究。干旱区资源与环境,1987,1:13—33
    177.邵雪梅,吴祥定。华山树木年表的建立。地理学报,1994,49:174—181
    178.邵雪梅,吴祥定。利用树轮资料重建长白山区过去气候变化。第四纪研究,1997,2:76—85
    179.邵雪梅,范金梅。树轮宽度所指示的川西过去气候变化。第四纪研究,1999,1:81—89
    180.邵雪梅,吴祥定。华山松横向生长与气候要素之间的关系。中国博士后首届学术会议论文集(冯恩波主编),北京:国防工业出版社,1993,1841—1844
    
    
    181.邵雪梅。树轮年代学的若干进展。第四纪研究,1997,3:266—270
    182.水利部黄河水利委员会勘测规划设计院规划一处编。黄河1922至1932年连续枯水段研究报告,1989,预印本
    183.王绍武,叶瑾琳,龚道溢,朱锦红。近百年中国年气温序列的建立。应用气象学报,1998,9:392—401
    184.王义凤。大针茅草原地上生物量的规律与特点。植物生态学与地植物学学报,1989,13:297—308
    185.吴锡浩。暗针叶林带温度研究。科学通报,1983,23:1451—1454
    186.吴祥定著。树木年轮与气候变化。气象出版社,1990
    187.夏冰,贺善安,兰涛,邓飞,姚淦。亚高山云杉混交林树木生长释放与干扰分析。植物资源与环境,1997,6:1—8
    188.夏冰,贺善安,兰涛。溧阳马尾松与当地作为产量之间关系的研究。植物资源与环境,1994,3:27—32
    189.肖向明,王义凤,陈佐忠。内蒙古锡林河流域典型草原初级生产力和土壤有机质的动态及其对气候变化的反应。植物学报,1996,38:45—52
    190.肖向明。内蒙古锡盟白音希锡勒牧场沙地植被的空间分布格局与演替。植物生态学与地植物学学报,1989,13:308—316
    191.徐国昌等著。中国干旱半干旱区气候变化。北京:气象出版社,1997,85—101
    192.徐化成著。油松。中国林业出版社,1990
    193.徐文铎。内蒙古白音敖包自然保护区沙地云杉的基本特征、存在问题和解决途经。生态学杂志,1993,12(5):39—44
    194.杨宗贵,杜占池。不同生长时期羊草、大针茅光合速率与气温关系的比较研究。植物生态学与地植物学学报,1989,13:367—371
    195.叶笃正,黄荣辉等著。长江黄河流域旱涝规律和成因研究。济南:山东科学技术出版社,1996
    196.叶笃正。中国全球变化预研究。北京:气象出版社,1992
    197.袁玉江。试用年轮作阿勒泰县小麦产量预报。新疆年轮气候与年轮水文研究(李江风等主编)。北京:气象出版社,1989,174—179
    
    
    198.张捷。内蒙古农牧交错带东西部年轮气候序列建立及年轮气候区域差异研究。北京师范大学硕士论文,1994
    199.张英伯,郑槐明,龙瑞芝,杨炳才。八种华北树木形成层季节活动及韧皮部与木质部形成的研究。林业科学,1982,18:366—379
    200.张志华,吴祥定。利用树木年轮资料恢复祁连山地区近700年来气候变化。科学通报,1997,42:849—851
    201.赵献英,姚彦臣,杨汝荣。锡林河流域天然草场资源的生态地理特征及其展望。草原生态系统研究,1988,3:184—226
    202.郑万钧,傅立国。中国植物志,第七卷。北京:科学出版社,1978
    203.中国气象局气象科学研究院编。中国近500年旱涝分布图集。北京:地图出版社,1981
    204.中国植被编辑委员会编。中国植被。北京:科学出版社,1980
    205.中科院植物所形态室编。松树形态结构与发育。北京:科学出版社,1978
    206.朱震达著。中国沙漠概论。北京:科学出版社,1978

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700