中国东北亚高山林线对全球气候变化的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用树木年轮气候学、树干解析、地统计学以及遥感影像解译等方法并结合当地气候资料分析,以中国东北地区亚高山林线与全球气候变化之间的关系为核心,依照现代生态学的层次观,以吉林省长白山和黑龙江省老秃顶子林线为例,从个体、种群、生态系统和景观水平系统地分析了亚高山林线过渡带中树木年轮宽度、高生长、径生长、材积生长、种群年龄结构和种群个体空间分布格局等对全球变暖的响应,并且应用不同时期TM图像分析了全球变暖对林线位置、形状、宽度,以及林线景观格局指数和NDVI植被指数等景观特征的影响,得出如下结论:
     1、近50年中国年平均气温以0.04℃/10a的速率上升,这一趋势与全球变暖的趋势相一致。就地区而言,东北地区升温趋势最明显。大海林和长白山地区近几十年来气温呈上升趋势,尤其是月最低温、寒冷时期和温暖时期温度升高非常明显,积温也有所增加;月均温中,以2月份增温幅度最大,季节均温中,以冬季增温最明显;季节热幅减少,但全年的总量有所增加。降水资料分析结果表明,大海林地区年降雨量波动性略有增加,但不是十分明显。长白山林线区夏季降水量呈下降趋势,春季、秋季和冬季的降水量都呈轻微的上升趋势,年降水量也呈下降趋势。
     2、年轮指数与气候因子相关性分析表明,温度对高山林线树种的影响明显,而降雨的影响相对较弱,6~9月温度和积温与年轮指数呈正相关,寒冷时期的温度与年轮指数呈负相关。对1905年以来老秃顶子地区的夏季平均温度进行了重建,重建值和实测值的基本趋势非常一致,表现出明显的上升趋势。
     3、对林线过渡带内树木年轮结构进行分析,结果表明中年树木对气候变暖最为敏感,岳桦对气候变暖的敏感性要比云冷杉大,在不同的岳桦个体中又以林线的中上部敏感度最好。气候变暖造成树木直径生长增加,年轮指数的变化趋势与气候变暖非常一致,表明气候变暖已经在林线树木个体生长中得到响应。
     4、岳桦解析木分析表明,随着全球气候变暖,年径生长量增大;高生长也增加,但增加的幅度非常小,材积生长指数也增加。通过相关分析可知,径生长、高生长、材积生长与温度的相关性较强,与降水的相关较弱;在温度中与6~9月的平均温度相关较大,在测树因子中,径生长与温度的相关较大,表明径生长对气候变化更为敏感。
     5、通过传统的数理统计分析和地统计学分析,结果表明气候变暖使得林线过渡带中上部的幼苗、幼树增多,径级和年龄分布呈倒J字型,种群呈聚集分布,空间异质性由空间自相关引起,对空间占据能力相对较弱,种群呈增长趋势;在林线过渡带的中下部和岳桦的典型分布区,岳桦大树较多,种群呈随机分布,空间异质性主要由随机性因素引起,对空间占据能力较强,种群呈稳定态势;整个岳桦种群随着全球气候变暖有一种整体向上迁移的趋势,岳桦向苔原侵入的程度加强。全球变暖导致林线上部更新增多,从林线上部到林线下部树木的密度降低,而树高增大,树木年龄增高。
    
     6、通过对不同时期老秃顶子林线区域的景观变化分析,结果表明随着全球气候变暖林
    线上升,北坡相对较快,其它坡向相对较慢。全球变暖使林线形状更趋于复杂化,全球变
    暖还对岳桦郁闭林与疏林之间的过渡带和岳桦疏林灌丛与山顶裸地之间的过渡产生影响,
    使得峭度降低,过渡更为缓慢,整个林线的宽度加宽。
     7、林线区域的景观格局分析表明,从1985年到1997年,老秃顶子林线区域景观中阔
    叶林面积有所增加,山顶裸地的面积减少,斑块数量增多,斑块密度加大,平均斑块大小
    减少,斑块间的毗连程度减弱,但是斑块的形状逐渐趋于相对规则,斑块的边界趋于简单
    化,说明全球变暖使林线向山顶裸地侵入加剧,异质性增强,斑块的连通度减弱,整个林
    线景观逐渐趋于破碎化。
     8、通过对老秃顶子林线两个时相NDVI的变化分析中得出,全球变暖使山顶裸地的
    NDVI植被指数增加,尤其是在有植被与无植被的交错区NDVI变化明显,表明从1 985年
    到1997年林线向上迁移,使得裸地边缘的植被指数增加;因此,可以得出全球变暖己经对
    林线区域的景观产生了影响。
According to the hiberarchy of modern ecology, focusing on the relationship of global climate change and the subalpine timberline in northeast China, a case study was carried out at the timberlines of Changbai Mountain in Jilin Province and Laotudingzi Mountain in Heilongjiang Province. The responses of ring width, growth in high, diameter and volume, population age structure and spatial distribution of trees at the timberline to global warming at individual, population, ecosystem and landscape scales were studied by using the methods of dendroclimatology, stem analysis, geostatistics, remote sensing image and the local climate data analysis. The effects of global warming on the location, shape, width, pattern index and NDVI of the timberlines landscape character were analyzed. The main results are as follwing:
    The annual mean temperature increases as 0.04C/10a in China in recent 50 years. This trend is consistent with global warming. In terms of region, the warming in Northeast is clear, and the trend of subalpine timberline in Northeast is more significant.
    The climate data in Changbai Mountain and Dahailin region show that the global warming was very obvious in recent several decade years, especially the lowest month temperate, cold and warm periods temperature. The accumulated temperature increased slightly. February was the month with the greatest increaseing magnititude in a year. As to seasonal changes, winter was the most obvious. The seasonal thermal amplitude decreased, while the whole year heat increased. The rainfall data show that annual rainfall in Dahailin fluctuated with sightly increase, but there was no clear trend. The rainfall in Changbai Mountain showed that there was a decreasing trend in summer, and aslight increase in spring, autumn and winter. However, the annual rainfall exhibited decreasing trend.
    The correlation analysis between the ring index and the climate factors suggests that the ring index at timberline was strongly correlated with the temperature and slightly with precipitation. However, the warm period temperature and accumulated temperature were the positively correlated with the ring index, and the cold period temperature and mean annul temperature were negatively correlated with the ring index. According to the relationship between annual ring index and summer mean temperature, the summer temperature has been reconstructed in Laotudingzi region since 1905. Though there were some offset between reconstruct value and observed value, the increase trend was consistent.
    The results of tree annual ring analysis at timberline shows that trees with different age structure response to global change differently, and the middle-aged tree were the most sensitive. The different species and location were also different. With comparision, the sensitivity of Betula ermanii was better than that of spruce-fir, and it is mainly related with the location, and the middle-aged tree had the better sensitivity. The global warming resulted in the increase of diameter growth, and the trend of annual index was consistent with the trend of temperature.
    Through stem analysis, the growth in diameter, height and volume increased with global warming, but the height growth trend was the lowest. With the correlation analysis among measured trees and climate factors, the growth index of height, diameter and volume correlated with temperature strongly, with rainfall slightly or irrelative. Among the temperature factors, the mean temperature from June to September was more important, and the diameter growth was the clearest in the measured tree factors. The result indicates that the individual trees at timberline have been response to global warming.
    
    
    The effects of global climate change on timberline have been demonstrated by the difference of distribution and dynamics of structure with traditional statistics and geostatistics. The results show that the seedling and young tree predominated in upper timberline with global warming, the class structure showed inverse J type, and the population pattern exhibited
引文
1. Allen T R., Walsh S J. Spatial and compositional pattern of alpine treeline, Glacier National Park, Montana. Photogrammetric Engineering and Remote Sensing. 1996, 62:11, 1261-1268
    2. Armand A. D. Sharp and gradual mountain timberlines as a result of species intersection, in Hanson A J. Casri F D(Editors). 1992. landscape Boundaries - Consequences for Biotic Diversity and Ecological Flows. New York: Springer -Verlag. 1992. 360-378
    3. Baigs M N, Quanquillini W. The effects of wind and temperature on transpiration of Picea abies and Pinus cernbra and their significance in desiccation damage at alpine tree line. Oeclogia, 1980, (47): 252-256
    4. Baker W L., Honaker J J., Weisberg P J. Using aerial photography and GIS to map the forest-tundra ecotone in Rocky Mountain National Park, Colorado, for global change research. Photogrammetric Engineering and Remote Sensing. 1995, 61: 3, 313-320
    5. Baker W L., Weisberg P J. Using GIS to model tree population parameters in the Rocky Mountain National Park forest-tundra ecotone. Journal of Biogeography. 1997, 24: 4, 513-526
    6. Barry R G, Ives J D. Introduction. In Jack DIves and Barry R G(Editors) Arctic and Alpine Environment. Methuon, 1974. 1-13
    7. Barry, R. G. Mountain weather and climate. Methuen, London. 1981
    8. Beaman, J. H. The timberlines of lztaccihautl and popocatepetl. Mexico Ecology. 1962, 43:377-385
    9. Billings, W. D. and Marks, A. F. Factors involved in the persistence of montane treeless balds. Ecology. 1957, 38:140-142
    10. Bitvinskas, T T., Stupneva, A V., Kovalev, P V., et al. Temporal and spatial changes in climate and tree rings. Dendroklimatokhronologicheskaya Laboratoriya Instituta Botaniki AN Litovskoi SSR. 1984, 103
    11. Bliss L C. Alpine. in B F Chabot and H A Mooney (Editors). Physiological Ecology in North America Plant Communities. Champan &Hall. New York. U. S. A., 1985. 41-65
    12. Briffa, K R., Jones, P D., Pilcher, J R., et al. Reconstructing summer temperatures in northern Fennoscandinavia back to A. D. 1700 using tree-ring data from Scots pine. Arctic and Alpine Research. 1988, 20: 4, 385-394
    13. Brucet Milne, Alan R. Johnson. Timothy H, Keitt. Detection of critical densities associated with PINON-JUNIPER wooland ecotone. Ecology. 1996 (77): 805-821
    14. Bugmann H., Fischlin A., Smith T M. Simulating forest dynamics in a complex topography using gridded climatic data. Climatic Change. 1996, 34: 2, 201-211
    15. Cairns D M., Malanson G P. Environmental variables influencing the carbon balance at the alpine treeline: a modeling approach. J. Veg. Sci. 1998. 9 (5): 679-692
    16. Camarero, J. J. and Gutierrez, E. Structure and recent recruitment at alpine forest-pasture ecotones in the Spanish Pyrenees. Ecoscience. 1999, 6:451-464
    
    
    17. Clark J S. Twentieth century climate change, fire suppression, and forest production and decomposition in northwestern Minnesota. Can. J. For. Res. 1990, 20: 2, 219-232
    18. Colenutt M E., Luckman B H. The dendrochronological characteristics of alpine larch. Can. J. For. Res. 1995, 25:5, 777-789
    19. Colinvaux P. Ecology. New York: John Wiley & Sons. Inc., 1986. 102-120
    20. Cook E R., Johnson A H., White E H., et al. Climate change and forest decline: a review of the red spruce case. Acidic deposition and forest decline. Proceedings of an International Symposium, Rochester, NY, 20-21 Oct. 1988. Water, Air, and Soil Pollution. 1989, 48: 1-2, 127-140
    21. Cook, E R., Johnson, A H., Biasing, T J. Forest decline: modeling the effect of climate in tree rings. Tree Physiology. 1987, 3: 1, 27-40
    22. Cox D F. Alpine plant succession on Jams Peak. Colorado. Ecological Monograph. 1933, 3: 300-372
    23. Dang, Q L., Lieffers, V J. Climate and annual ring growth of black spruce in some Robertson, E O., Jozsa, LA. Alberta peatlands. Can. J. Bot. 1989, 67: 6, 1885-1889
    24. Dniker A. Biologische Studien über Baum-und Waldgrenze, insbesondereüber die klimatischen Ursachen und deren Zusammenhnge. Vierteljahresschr. Naturforsch. Ges. Zürich. 1923, 68, 1-102
    25. D'Arrigo R D., Jacoby G C. Secular trends in high northern latitude temperature reconstructions based on tree rings. Climatic Change. 1993, 25: 2, 163-177
    26. D'-Arrigo R D., Jacoby G C., Free R M. Tree-ring width and maximum latewood density at the North American tree line: parameters of climatic change. Can. J. For. Res. 1992, 22: 9, 1290-1296
    27. Daubenmire R. Alpine timberline in the Americas and their interpretation. Bulter Univ. Bot. Stud. 1954, 11:119-136
    28. Dhyani, P P., Purohit, A N., Negi, D C S. Variations in energy budget and water vapour transfer processes in some broadleaf timberline tree species at different altitudes. Plant Physiology and Biochemistry, India. 1988, 15: 1, 64-74
    29. Diaz, H F., Andrews, J T., Short, S K. Climate variations in northern North America (6000 BP to present) reconstructed from pollen and tree-ring data. Arctic and Alpine Research. 1989, 21: 1, 45-59
    30. Drew, J. V. and Shanks, R. E. Landscape relationships of soils and vegetation in the forest-tundra ecotone, upper Firth River Valley, Alaska-Canada. Ecol. Monogy. 1965, 35:285-306
    31. Dwyer J P., Cutter B E., Wetteroff J J. A dendrochronological study of black and scarlet oak decline in the Missouri Ozarks. Forest Ecology and Management. 1995, 75: 1-3, 69-75
    32. Ellenberg H. Leben und Kampf an den Baumgrenzen der Erde. Naturwiss. Rundsch. 1966, 19, 133-139
    33. Elliott-fisk, D. L. The boreal forest in: North American Terrestrial Vegetation. Barbour, M. G. and Billings, W. D. (eds). Cambridge University Press. New York. 1988, 33-62
    
    
    34. Falion, L. Payette, S. Delwaide, A. and Bhiry, N. Insect defoliators as major disturbance factors in the high-altitude balsam fir forest of Milunt Megantic, southern Quebec. Can. J. For. Res. 1998, 28:1832-1842
    35. Ferrari C., Rossi G. Relationships between plant communities and late snow melting on Mount Prado (Northern Apennines, Italy). Vegetatio. 1995, 120: 1, 49-58
    36. Fischlin A., Gyalistras D. Assessing impacts of climatic change on forests in the Alps. Global Ecology and Biogeography Letters. 1997, 6: 1, 19-37
    37. Florineth F., Barker D H. Erosion control above the timberline in South Tyrol, Italy. Vegetation and slopes: stabilisation, protection and ecology. 1995, 85-94
    38. Franco Biondi. A 400-year tree-ring Chronology from the tropical treeline of North America. Ambio. 2001, 30(3): 162-166
    39. Frei-Raj S., Schweingruber F H., Raj S F. A dendrochronological study on the dying-off of young conifers in an afforestation at the Alpine timberline. Dendrochronologia. 1993, 11, 159-164
    40. Friend, A L., Harley, W L. Climatic limitations to growth in loblolly and shortleaf pine (Pinus taeda and P. echinata): a dendroclimatological approach. Forest Ecology and Management. 1989, 26: 2, 113-122
    41. Fritts H C., Dean J S. Dendrochronological modeling of the effects of climatic change on tree-ring width chronologies from the Chaco Canyon area, southwestern United States. Tree Ring Bulletin. 1994, 52:31-58
    42. Fujimoto S., Miyakawa M. Growth characteristics of Betula ermanii in particular reference to response patterns at timber lines. Journal of the Faculty of Agriculture, Hokkaido University. 1991, 65: 2, 219-228
    43. George P. Malanson. Effects of feedbacks and seed rain on ecotone patterns Landscape Ecology. 1997, 12(1): 27-38
    44. Georgiadis T., Dimopoulos P. Study of the vegetation above the timberline on Mount Killini (Peloponnese-Greece). Botanica Helvetica. 1993, 103: 2, 149-175
    45. Germaine H L., McPherson G R. Effects of biotic factors on emergence and survival of Quercus emoryi at lower treeline, Arizona, U. S. A. Ecoscience. 1999. 6 (1): 92-99
    46. Grace J. Cuticular water loss unlikely to explain tree-line in Scotland. Oecologia. 1990, 84: 1, 64-68
    47. Grace J., Jarvis P G., Monteith J L., et al. Tree lines. Forests, weather and climate. Proceedings of a Royal Society discussion meeting held on 2 and 3 June 1988. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 1989, 324: 1223, 233-245
    48. Grace, J. Plant responses to wind. Academic press, London. 1977
    49. Grant W E., French N R. Response of alpine tundra to a changing climate: a hierarchical simulation model. Biological Modelling. 1990, 49: 3-4, 205-227
    50. Griggs R F. On the behavior of some species on the edges of their ranges. Bulletin of the Torrey Botanical Club, 1914, (41): 25-49
    
    
    51. Griggs R F. The timberline of north America and their interpretation. Ecology, 1946, (27): 275-289
    52. Griggs R F. Timberline in the north Rocky Mountains. Ecology, 1938, (19): 548-564
    53. Guiot, J. ARMA techniques for modelling tree-ring response to climate and for reconstructing variations of paleoclimates. Ecological Modelling. 1986, 33: 2-4, 149-171
    54.H.沃尔特(中国科学院植物研究所生态室译).世界植被.北京:科学出版社.1979.268-274
    55. Hadley J L., Smith W K. Influence of wind exposure on needle desiccation and mortality for timberline in Wyoming, U. S. A. Arctic and Alpine Research, 1983, 15:127-135
    56. Hadley J L., Smith W K. Wind effects on needles of timberline conifers: seasonal influence on mortality. Ecology. 1986, 67: 1, 12-19
    57. Hansen B C S., MacDonald G M., Moser K A. Identifying the tundra-forest border in the stomate record: an analysis of lake surface samples the Yellowknife area, Northwest Territories, Canada. Can. J. Bot. 1996, 74:5, 796-800
    58. Hansen-Bristow K. Influence of increasing elevation on growth characteristics at timberline. Can. J. Bot. 1986, 64: 11, 2517-2523
    59. Hsler R. Net photosynthesis and transpiration of Pinus Montana on east and north facing slopes at alpine timberline. Oecologin. 1982, 54:14-22
    60. Havranek W M. Benecke U. The influence of soil moisture on water potential, transpiration and photosynthesis of conifer seedlings. Plant and Soil. 1978, 49, 91-103
    61. Hermes K. Die Lage der oberen Waldgrenze in den Gebirgen der Erde und ihr Abstand zur Schneegrenze. Klner Geogr. Arb. Heft. 1955, 5
    62. Hessl A E., Baker W L. Spruce and fir regeneration and climate in the forest-tundra ecotone of Rocky Mountain National Park, Colorado, USA. Arctic and Alpine Research. 1997, 29: 2, 173-183
    63. Hessl A E., Weisberg P J., Baker W L. Spatial variability of radial growth in the forest-tundra ecotone of Rocky Mountain National Park, Colorado. Bulletin of the Torrey Botanical Club. 1996, 123:3, 206-212
    64. Hobbie, S, E., Chapin, F. S. An experimental test of limits to tree establishment in Arctic tundra. J. Ecol. 1998. 86 (3): 449-461
    65. Hofgaard A. Inter-relationships between treeline position, species diversity, land use and climate change in the central Scandes Mountains of Norway. Global Ecology and Biogeography Letters. 1997, 6: 6, 419-429
    66. Hofgaard A., Huntley B., Cramer W., et al. Structural changes in the forest-tundra ecotone: a dynamic process. Past and future rapid environmental changes: the spatial and evolutionary responses of terrestrial biota. 1997, 255-263
    67. Holm H T. Vegetation of the alpine region of the Rocky Mountains of Colorado. National Acade my Science Memoirs, 1927 (3): 1-45
    68. Holtmeier F K. Der Einfluβ der orographischen Situation auf die Windverhltnisse im Spiegel der Vegetation. Erdkunde 1971, 25, 178-195
    
    
    69. Holtmeier F K. Ecological aspects of climatically - caused timberline fluctuations. In Martin Beniston (Editor) Mountain Environment in Changing Climates. Rautledge. London. New York. 1994, 220-233
    70. Holtmeier F K., Broil G. The influence of tree islands and microtopography on pedoecological conditions in the forest-alpine tundra ecotone on Niwot Ridge, Colorado Front Range, U. S. A. Arctic and Alpine Research. 1992, 24:3, 216-228
    71. Holzer K. Cold resistance in spruce. See. World Consultation on Forest Tree Breeding, Washington, Documents. 1970, 1, 597-613
    72. Holzner W., Huebl E., Miyawaki A. Comparison between the flora and vegetation of the subalpine-alpine zone in the Japanese Alps and the European Alps. Contributions to the knowledge of the flora and vegetation of Japan. Proceedings of the 18th International Phytogeographic Excursion (IPE), 1984, through central Japan. Veroffentlichungen des Geobotanischen Institutes der ETH, Stiftung Rubel, Zurich. 1988, 98, 299-329
    73. Hustich I. On the forest-tundra and the northern tree lines. Ann. Univ. Turku., 1966, (Ⅱ): 36
    74. Hustich, L. Treeline and tree growth studies during 50 years: Some subjective observations. Nordicana. 1983, 47:181-188
    75. Inder Gand H. Aufforstungsversuche an einem Gleitschneehang. Ergebnisse der Winteruntersuchungen 1955/56 bis 1961/62. Mitt. Schweiz. Anst. Forstl. Versuchswes. 1968, 44, 229-326
    76. Jackson R. B. and M. M. Candwell. Geostatistical pattern of soil heterogeneity around individual perennial plants. Journal of Ecology. 1993, 81:683-692
    77. Jacoby G C., D'Arrigo R D. Tree rings, carbon dioxide, and climatic change. Proceedings of the National Academy of Sciences of the United States of America. 1997, 94: 16, 8350-8353
    78. Jacoby G C., D'Arrigo R D., Davaajamts T. Mongolian tree rings and 20th-century warming. Science Washington. 1996, 273: 5276, 771-773
    79. Joy Nystrom Mast, Thomas, Michael. Tree invasion within a pine/grassland ecotone: an approach with historic aerial photography and GIS modeling Forest Ecology and Management. 93 (1997): 181-194
    80. Karelin D V., Gil'-manov T G., Zamolodchikov D G. Evaluation of carbon stores in world ecosystems of tundra and forest-tundra in North Russia: phytomass and primary productivity. Doklady, Biological Sciences. 1994, 335: 1-6, 171-173
    81. Karelin D V., Zamolodchikov D G., Gil'-manov T G. Carbon reserves and production in the phytomass of the tundra and forest-tundra ecosystems of Russia. Lesovedenie. 1995, 5, 29-36
    82. Kienast, F., Schweingruber, F H., Braker, O U., et al. Tree-ring studies on conifers along ecological gradients and the potential of single-year analyses. Can. J. For. Res. 1987, 17: 7, 683-696
    83. Kimball, K D., Keifer, M. Climatic comparisons with tree-ring data from montane forests: are the climatic data appropriate? Can. J. For. Res. 1988, 18: 4, 385-390
    84. Klikoff L G. Microevironmental influence on vegetational pattern near timberline in central
    
    Sierra Nevada. Ecological Monogragh, 1965, 35(2): 187-212
    85. Klimek K. Historic slope degradation above timberline in the Balkan Mts., Bulgaria. Geographia Polonica. 1992, 60:43-50
    86. Krner C. A re-assessment of high elevation treeline positions and their explanation. Oecologia. 1998, 115 (4): 445-459
    87. Kstler J N., Mayer H. Waldgrenzen im Berchtesgadener Land. Jahrb. Vet. Schutze Alpenfl. Tiere (München). 1970, 35, 1-35
    88. Kullman L. A high late Holocene tree-limit and the establishment of the spruce forest-limit-a case study in northern Sweden. Boreas. 1990, 19: 4, 323-331
    89. Kullman L. Pattern and process of present tree-limits in the Tarna region, southern Swedish Lapland. Fennia. 1991, 169: 1, 25-38
    90. Kullman L. Pine (Pinus sylvestris L.) tree-limit surveillance during recent decades, Central Sweden. Arctic and Alpine Research. 1993, 25: 1, 24-31
    91. Kullman L., Engelmark O. A high late Holocene tree-limit and the establishment of the spruce forest-limit - a case study in northern Sweden. Boreas. 1990, 19: 4, 323-331
    92. Kullman, L. 20th century climate warming and tree-limit rise in the southern Scandes of Sweden. Ambio. 2001, 30(2): 72-80
    93. Kullman, L. Demography of Betula pubescens ssp. tortuosa lB. tortuosa] sown in contrasting habitats close to the birch tree-limit in central Sweden. Vegetatio. 1986, 65: 1, 13-20
    94. Kullman, L. Germinability of mountain birch (Betula pubescens ssp. tortuosa) along two altitudinal transects downslope from the tree-limit, in Sweden. Reports from the Kevo Subarctic Research Station, -Finland. 1984, 19, 11-18
    95. Kullman, L. Holocene tree-limit and climate history from the Scandes Mountains, Sweden. Ecology. 1995, 76: 8, 2490-2502
    96. Kullman, L. Long-term dynamics of high-altitude populations ofPinus sylvestris in the Swedish Scandes. Journal of Biogeography. 1987, 14: 1, 1-8
    97. Kullman, L. Palaeoecology of pine (Pinus sylvestris) in the Swedish Scandes and a review of the analysis of subfossil wood. Geografiska Annaler. Series A, Physical Geography. 1994, 76: 4, 247-259
    98. Kullman, L. Short-term dynamic approach to tree-limit and thermal climate: evidence from Pinus sylvestris in the Swedish Scandes. Annales Botanici Fennici. 1988, 25: 3, 219-227
    99. Kullman, L. Tree-limit history during the Holocene in the Scandes Mountains, Sweden, inferred from subfossil wood. Review of Palaeobotany and Palynology. 1989, 58: 2-4, 163-171
    100. Kullman, L. Tree-limits and montane forests in the Swedish Scandes, Sensitive biomonitors of climate change and variability. Ambio. 1998, 27:312-321
    101. Landhausser S M., Wein R W. Postfire vegetation recovery and tree establishment at the Arctic treeline: climate change vegetation response hypotheses. Journal of Ecology Oxford. 1993, 81: 4, 665-672
    102. Larcher W. Jahresgang des Assimilations-und Respirationsvermgens von Oleaeuropaea L. ssp.
    
    Sativa HOFF. et LINK., Quercus ilex L. und Quercus pubescens WILLD. Aus dem nrdlichen Gardaseegebiet. Planta. 1961, 56, 575-606
    103. Larson J A. Ecology of the north continental forest border in Ives J D & Barry R G And Alpine Environment. Methuon. 1974. 341-370
    104. Lavoie C., Payette S. Black spruce growth forms as a record of a changing winter environment at treeline, Quebec, Canada. Arctic and Alpine Research. 1992, 24: 1, 40-49
    105. Legendre, P. and Fortin, M. J. Spatial pattern and ecological analysis. Vegentation. 1989, 80: 107-138
    106. Leuschner C. Timberline and alpine vegetation on the tropical and warm-temperate oceanic islands of the world: elevation, structure and floristics. Vegetatio. 1996, 123: 2, 193-206
    107. Leuschner C., Schulte M. Microclimatological investigations in the tropical alpine scrub of Maui, Hawaii: evidence for a drought-induced alpine timberline. Pacific Science. 1991, 45: 2, 152-168
    108. Lloyd A H, Graumlich L J. Holocene dynamics of tree line forest in the Sierra Nevada. Ecology, 1997, 78(4): 1199-1210
    109. Lloyd A H. Growth of foxtail pine seedlings at treeline in the southeastern Sierra Nevada, California, U. S. A. Ecoscience. 1998, 5 (2): 250-257
    110. Lloyd A H. Response of tree-line populations of foxtail pine (Pinus balfouriana) to climate variation over the last 1000 years. Can. J. For. Res. 1997, 27: 6, 936-942
    111. MacDonald G M., Case R A., Szeicz J M. A 538-year record of climate and treeline dynamics from the lower Lena River of northern Siberia, Russia. Arct. Alp. Res. 1998, 30(4): 334-339
    112. MacDonald, G M., Szeicz, J M., Claricoates, J. et al. Response of the central Canadian treeline to recent climatic changes. Ann. Assoc. Am. Geogr. 1998, 88 (2): 183-208
    113. Magee, T. K. and Antos, J. A. tree invasion into mountain-top meadow. In the Oregon Coast Range, USA. J. Veg. Sci. 1992, 3:485-494
    114. Malyshev L. Levels of the upper forest boundary in northern Asia. Vegetatio. 1993, 109: 2, 175-186
    115. Malyshev L., Nimis P L. Climatic dependence of the ecotone between alpine and forest orobiomes in southern Siberia. Flora Jena. 1997, 192: 2, 109-120
    116. Manchamp A, Montana. C., Rambal S. Ecotone dependent recruitment of a desert shrub, Flourensia cernua, in vegetation stripes. OIKOS. Copenhagen, 1993, (68): 107-116
    117. Marchand P J., Chabot B F. Winter water relations of tree-line plant species on Mt. Washington. New Hampshire. Arctic and Alpine Res. 1978, 10, 105-116
    118. Marr J W. The development and movement of tree islands near the upper limit of tree growth in southern Rocky Mountains. Ecology. 1977, (58): 1159-1164
    119. Maruta E. Winter water relations of timberline larch (Larix leptolepis Gord.) on Mt. Fuji. Trees: Structure and Function. 1996, 11: 2, 119-126
    120. Miller, K J., Davis, A M. Past and present dynamics of the forest-tundra transition in northern Newfoundland. Landscape ecology and management. 1988, 121-128
    
    
    121. Monserud R A., Tchebakova N M., Kolchugina T P., et al. Change in Siberian phytomass predicted for global warming. Silva Fennica. 1996, 30: 2-3, 185-200
    122. Nicholas, N. S. and Zedeker, S. M. Ice damage in spruce-birch forests of the Black Mountains, North Carolina. Can. J. For. Res. 1989, 19:1487-1491
    123. Nicolussi K., Bortenschlager S., Krner C. Increase in tree-ring width in subalpine Pinus cembra from the central Alps that may be CO2-related. Trees: Structure and Function. 1995, 9: 4, 181-189
    124. Noble R. A model of the responses of ecotones to climate change. Ecological Applications. 1993, 3(3): 396-403
    125. Ogden J., Horrocks M., Palmer J G., et al. Structure and composition of the subalpine forest on Mount Hauhungatahi, North Island, New Zealand, during the Holocene. Holocene. 1997, 7: 1, 13-23
    126. Ogden, J., Ahmed, M. Climate response function analyses of kauri (Agathis australis) tree-ring chronologies in northern New Zealand. Journal of the Royal Society of New Zealand. 1989, 19: 2, 205-221
    127. Ohsawa M. An interpretation of forest limit in south and east Asian mountains. Journal of Ecology. 1990, 78:326-339
    128. Okitsu S. Consideration on vegetational zonation based on the establishment process of a Pinus pumila zone in Hokkaido, northern Japan. Japanese Journal of Ecology. 1985, 35: 1, 113-121
    129. Oksanen L., Moen J., Helle T. Timberline patterns in northernmost Fennoscandia. Relative importance of climate and grazing. Acta Botanica Fennica. 1995, No. 153, 93-105
    130. Payette S., Filion L., Delwaide A., et al. Reconstruction of tree-line vegetation in response to long-term climate change. Nature London. 1989, 341: 6241, 429-432
    131. Payette, S. The forest tundra and present tree-lines of the northern Quebec-Labrador peninsula. Nordicana. 1983, 47: 3-23.
    132. Peer, R. K. Forests of the Rocky Mountains in: North American Terrestrial Vegetation. Barbour, M. G. and Billings, W. D. (eds). Cambridge University Press. New York. 1988, 61-101
    133. Pereg D., Payette S. Development of black spruce growth forms at treeline. Plant Ecol. 1998, 138, 2:137-147
    134. Peticolas V., Rolland C., Michalet R. Tree-growth of spruce, larch, arolla pine and mountain pine near the timberline in four French alpine areas. Annales des Sciences oForestieres. 1997, 54: 8, 731-745
    135. Pott R, Hüppe J. Palokologische Untersuchunge zu holoznen Waldgrenzschwankungen im oberen Fimbertal(Val Fenga, Silvretta, Ostschweiz). Phytocoenologia. 1992, 25(1): 363-398
    136. Pümpel B., Gbl F., Tranquillini W. Wachstum, Mykorrhiza und Frostresistenz yon Fichtenjungpflanzen bei Düngung mit verschiedenen Stichstoffgaben. Eur. J. For. Pathol. 1975, 5, 83-97
    137. Rawal R S., Pangtey Y P S. High altitude forests with special reference to the timber line in Kumaun, Central Himalaya. High altitudes of the Himalaya biogeography, ecology and
    
    conservation. 1994, 353-399
    138. Rawal R S., Uppeandra Dhar, Dhar U. Sensitivity of timberline flora in Kumaun Himalaya, India: conservation implications. Arctic and Alpine Research. 1997, 29: 1, 112-121
    139. Rawal R. S and Pangtey Y. P. S. Alitudinal zonation of high altitude forests in kumaun, central himalaya, India. Indian Journal of Forestry, 1994, 17(4): 332-344
    140. Richards, J H., Bliss, L C. Winter water relations of a deciduous timberline conifer, Larix lyallii Parl. Oecologia. 1986, 69: 1, 16-24
    141. Robertson, E O., Jozsa, L A. Climatic reconstruction from tree rings at Banff. Can. J. For. Res. 1988, 18: 7, 888-900
    142. Robertson, G. P. Geostatistics in ecology: interpolating with known variance. Ecology. 1987, 68:744-748
    143. Rossi, R. E. Mulla, D. T. Journel, A. G. and Franz, E. H. . Geostatistics tools for modeling and interpreting ecological spatial dependence. Ecol. Monogr. 1992, 62:277-314
    144. Schmidt J. Protection against erosion above the timberline by means of a green cover at high altitudes. Rasen Turf Gazon. 1992, 23: 2, 55-59
    145. Schonenberger W., Senn J., Wasem-U., et al. Factors affecting establishment of planted trees, including European larch, near the Alpine timberline. Ecology and management of Larix forests: a look ahead. Proceedings of an international symposium, Whitefish, Montana, USA, October 5-9, 1992. General Technical Report Intermountain Research Station, USDA Forest Service. 1995, 170-175
    146. Schr6ter C. Das Pflanzenleben der Alpen. Zürich: Albert Raustein, 1926
    147. Scott, P A., Hansell, R I C., Fayle, D C F. Establishment of white spruce populations and responses to climatic change at the treeline, Churchill, Manitoba, Canada. Arctic and Alpine Research. 1987, 19: 1, 45-51
    148. Shankman D. Tree regeneration following fire as evidence of timberline stability in the Colorado Front Range. U. S. A. Arctic and Alpine Research, 1984, (16): 413-417
    149. Shankman D., Daly C. Forest regeneration above tree limit depressed by fire in the Colorado Front Range. Bulletin of the Torrey Botanical Club, 1988, 115(4): 272-279
    150. Shaw C H. The cause of timberline on mountains. Plant World, 1909, (12): 169-181
    151. Sirois L., Bonan G B., Shugart H H. Development of a simulation model of the forest-tundra transition zone of northeastern Canada. Can. J. For. Res. 1994, 24: 4, 697-706
    152. Sjrs, H. Nordisk vaxtgeografi, Svenska Bokf6rlaget, B6nniers, Stockholm(In Swedish)
    153. Slatyer R O., Nobel J. Dynamics of mountains treelines. In hanson A J & Casri F D (Editors). Landscape Boundaries - Consequences for Biotic Diversity and Ecological Flow. Springer-Verlag. New York. 1992, 346-359
    154. Sowell J B., McNulty S P., Schilling B K. The role of stem recharge in reducing the winter desiccation of Picea engelmannii (Pinaceae) needles at alpine timberline. American Journal of Botany. 1996, 83: 10, 1351-1355
    155. Sveinbjornsson B., Nordell O., Kauhanen H. Nutrient relations of mountain birch growth at and
    
    below the elevational tree-line in Swedish Lapland. Functional Ecology. 1992, 6: 2, 213-220
    156. Sveinbjrnsson, B. Bioclimate and its effect on the carbon dioxide and their explanation. Oecologia. 1983, 115:445-459
    157. Szeicz J M., MacDonald G M. Recent white spruce dynamics at the subarctic alpine treeline of north-western Canada. Journal of Ecology Oxford. 1995, 83: 5, 873-885
    158. Szeicz, J. M. Growth trends and climatic sensitivity of trees in the North Patagonian rain forest of Chile. Can. J. For. Res. 1997, 27(7): 1003-1014
    159. Taylor A H. Forest expansion and climate change in the mountain hemlock (Tsuga mertensiana) zone, Lassen Volcanic National Park, California, USA. Arctic and Alpine Research. 1995, 27: 3, 207-216
    160. Terborgh J. The role of ecotones in the distribution of andean birds. Ecology, 1985, 66(4): 1237-1246
    161. Tessier L., Guibal F., Schweingruber F H., et al. Research strategies in dendroecology and dendroclimatology in mountain environments. Climatic Change. 1997, 36: 3-4, 499-517
    162. Tessier L., Nola P., Serre B F. Deciduous Quercus in the Mediterranean region: tree-ring/climate relationships. New Phytologist. 1994, 126: 2, 355-367
    163. Timoney K P., Roi G H., Dale M R T., La Roi G H. Subarctic forest-tundra vegetation gradients: The sigmoid wave hypothesis. J. Veg. Sci. 1993, 4:3, 387-394
    164. Tinner W., Ammann B., Germann P. Treeline fluctuations recorded for 12 500 years by soil profiles, pollen, and plant macrofossils in the Central Swiss Alps. Arctic and Alpine Research. 1996, 28: 2, 131-147
    165. Tranquillini W. Photosynthese und Transpiration einiger Holzarten bei verschieden starkem Wind. Zentralbl. Gesamte Forstwes. 1969, 86, 35-48
    166. Tranquillini. W. Physiological Ecology of Alpine Timberline. Springer -Verlag. Berlin. New York, et al. 1979. 1-12, 118-148
    167. Travis D J., Meentemeyer V., Belanger R P. Stressed trees produce a better climatic signal than healthy trees. Tree Ring Bulletin. 1990, 50:29-32
    168. Troll C. The upper timberline in different climatic zones. Arctic and Alpine Research. 1973, 5(3): part2. A3-A 18.
    169. Turner H. Grundzüge der Hochgebirgsklimatologie. In: Die Welt der Alpen. Innsbruck: Pinguin-Frankfurt: Umschau. 1970, 170-182
    170. Turner H. Jahresgang und biologische Wirkungen der Sonnen-und Himmelsstrahlung an der Waldgrenze der tztaler Alpen. Wetter und Leben. 1961a, 13, 93-113
    171. Turner H. Ober das Licht-und Strahlungsklima einer Hanglage der tztaler Alpen bei Obergurgl und seine Auswirkung auf das Mikroklima und auf die Vegetation. Arch. Meteorol. Geophs. Bioklimatol. 1958, 8B, 273-325
    172. Urbanska K M. Biodiversity assessment in ecological restoration above the timberline. Biodiversity and Conservation. 1995, 4: 7, 679-695
    173. Urbanska K M. Ecological restoration above the timberline: demographic monitoring of whole
    
    trial plots in the Swiss Alps. Botanica Helvetica. 1994, 104: 2, 141-156
    174. Urbanska K M. Restoration ecology research above the timberline: colonization of safety islands on a machine-graded alpine ski run. Biodiversity and Conservation. 1997, 6: 12, 1655-1670
    175. Urbinati C., Carrer M., Anfodillo T., et al. Dendroecology at the timberline: growth dynamics and climatic factors. Dendronatura. 1996, 17: 1, 41-50
    176. Vaganov E A., Sviderskaya I V., Kondrat'-eva E N. Weather conditions and the structure of the annual ring of trees: a simulation model of the tracheidogram. Lesovedenie. 1990, No. 2, 37-45
    177. Velez V., Cavelier J., Devia B. Ecological traits of the tropical treeline species Polylepis quadrijuga (Rosaceae) in the Andes of Colombia. J. Trop. Ecol. 1998. 14:771-787
    178. Wardle P. Alpine timberline. In Jack DIves and Roger G Barry (Editors) Arctic and Alpine Environment. Methuon, 1974, 371-402
    179. Wardle P. Engelmanne Spruce at its upper limits on the Front Range. Colorado. Ecology, 1968, (49): 121-137
    180. Wardle P., Coleman M C. Evidence for rising upper limits of four native New Zealand forest trees. New Zealand Journal of Botany. 1992, 30 (3), 303-314
    181. Weinstein D A. Use of simulation models to evaluate the alteration of ecotones by global carbon dioxide increases. in Hanson A J Casri F D. (Editors). Landscape Boundaries-Consequences for Biotic Diversity and Ecological Flows. New York: Springer -Verlag. 1992. 379-393
    182. Weisberg P J., Baker W L. Spatial variation in tree regeneration in the forest-tundra ecotone, Rocky Mountain National Park, Colorado. Can. J. For. Res. 1995, 25: 8, 1326-1339
    183. Wieser G. Carbon dioxide gas exchange of cembran pine (Pinus cembra) at the alpine timberline during winter. Tree Physiology. 1997, 17: 7, 473-477
    184. Winkle, W. V. JR, Martin Dc. Home-range model for animals inhabiting an ecotone. Ecology, 1937, 54(1): 205-209.
    185. Yasue K., Funada R., Noda M., et al. Dendroclimatological study of Picea glehnii growing in the Teshio Experimental Forest of Hokkaido University. Research Bulletin of the Hokkaido University Forests. 1994, 51: 2, 243-266
    186. Yi S A., Okitsu S A. A comparison of the tree form of Betula ermanii and Alnus maximowiczii as influenced by topography near the timberline on Mt. Fuji. Journal of the Japanese Forestry Society. 1997, 79: 3, 157-159
    187. Yin X W., Foster N W., Morrison I K., et al. Tree-ring-based growth analysis for a sugar maple stand: relations to local climate and transient soil properties. Can. J. For. Res. 1994, 24: 8, 1567-1574
    188. Young K R. Tropical timberlines: changes in forest structure and regeneration between two Peruvian timberline margins. Arctic and Alpine Research. 1993, 25: 3, 167-174
    189. Young K R. Woody and scandent plants on the edges of an Andean timberline. Bulletin of the Torrey Botanical Club. 1993, 120: 1, 1-18
    190. Zall K. Plant species association in alpine -subnival vegetation patches in the central Caucasus. Journal of Vegetation Science, 1993, (4): 297-302
    
    
    191.陈旭东等.额尔多斯高原生态过渡带的判定及生物群落特征.植物生态学报.1998,22(4):312-318
    192.戴君虎,崔海亭。国内外高山林线研究综述.地理科学.1999,19(3):243-249
    193.方精云.Vertical vegetation zones along 30°N latitude in humid east Asia.Vegetation.1996,126:135-149
    194.郭水良.苔藓植物对森林生态界面指示作用的研究.应用生态学报.1999,10(1):1-6
    195.郝占庆,代力民,贺红士等.气候变暖对长白山主要树种的潜在影响.应用生态学报.2001,12(5):653-658
    196.侯学煜.论中国各植被区山地植被垂直带谱的特征.见:中国植物学会三十周年会论文摘要汇编.1963.254
    197.黄锡畴.欧亚大陆温带山地垂直带结构类型.见:1960年全国地理学术会议论文集(自然地理).北京:科学出版社,1962.67-74
    198.黄永梅,刘鸿雁,崔海亭.内蒙古高原东南缘森林草原过渡带景观的若干特征.植物生态学报.2001,25(3):257-264
    199.李文华.云南横断山区森林植被分布与水热因子相关的定量研究,中科院青藏高原综合科学考察队编.青藏高原横断山考察专用集.云南:人民出版社.1983,185-204
    200.李文华主编.西藏森林.北京:科学出版社.1985.
    201.刘洪滨,吴祥定,邵雪梅.采用树轮图象分析方法研究历史时期气候变化的可行性.地理研究.1996,15(2):44-51
    202.刘鸿雁等.中国东部暖温带高山林线乔木的光合作用及其与环境因子的关系.山地学报.2002,20(1):32-36
    203.刘淑明,马龙第,孙丙寅等.油松年轮生长与秦岭北坡气候的初步研究.西北林学院学报.1997,12(2):37-41
    204.钱宏.长白山高山苔原植被.见:森林生态系统研究.1992,6:72-96
    205.任国玉.全新世纪东北平原森林.草原生态过渡带的迁移.生态学报.1998,18(1):33-58
    206.尚富德,王磐基,冯广平等.伏牛山南北自然过渡地带植物多样性的特征及其成因分析.河南大学学报(自然科学版).1998,28(1):54-60
    207.邵雪梅.树轮年代学若干进展.第四纪研究,1997,(3):256-270
    208.沈泽吴,方精云,刘增力等.贡嘎山海螺沟林线附近峨眉冷杉种群的结构与动态.植物学报.2001,43(12):1288-1293
    209.石根生,李典谟.不同松林马尾松毛虫蛹及其寄生天敌群子的空间格局分析.生态学报.1997,17(4):386-392
    210.石培礼,李文华,王金锡等.四川卧龙亚高山林线生态过渡带群落的种.多度关系.生态学报.2000,20(3):384-389
    211.石培礼,李文华.长白山林线过渡带形状与木本植物向苔原侵展和林线动态的关系.生态学报.2000,20(4):573-580
    212.唐季林,刘宇林,李新彬等.关帝山植物群落与环境梯度分析.北京林业大学学报.1995,17(4):36-43
    213.唐志尧等.太白山高山林线植被的数量分析.山地学报.1999,17(4):294-299
    
    
    214.田连恕.贺兰山东坡植被.呼和浩特:内蒙古大学出版社.1996,27-37
    215.童国榜,张俊牌,范淑贤.秦岭太白山顶近千年来的环境变化.海洋地质与第四纪地质,1996,16(4):95-103
    216.王淼,白淑菊,陶大立等.大气增温对长白山林木直径生长的影响.应用生态学报.1995,6(2):128-132
    217.王晓春,韩士杰等.长白山岳桦种群格局的地统计学分析.应用生态学报.2002,13(7):781-784
    218.吴祥定,邵雪梅.中国秦岭地区树木年轮密度对气候响应的初步分析.应用气象学报.1994,5(2):253-256
    219.吴祥定.树木年轮与气候变化.北京:气象出版社,1990
    220.吴征镒等.中国植被.北京:科学出版社.1980,159-210,613-653
    221.谢海生,陈仲新,赵雨兴.鄂尔多斯高原生态过渡带气候特殊性和气候植物生长指数与畜牧业生产动态分析.生态学报.1994,14(4):355-365
    222.徐文铎.中国东北主要植被类型的分布与气候关系.植物生态学与地植物学报.1986,10(4):254-263
    223.应俊生,李云峰,郭勒峰等.秦岭太白山地区的植物区系和植被.植物分类学报.1990,28(4):261-293
    224.于澎涛,刘鸿雁,崔海亭.小五台山北台林线附近的植被及其与气候条件的关系分析.应用生态学报.2002,13(5):523-528
    225.张新时.中国山地植被垂直带的基本生态地理类型.见:植被生态学研究.纪念著名生态学家侯学煜教授.北京:科学出版社,1994,77-92
    226. 张扬建等. The trend of tree line on the northern slope of Changbai Mountain. Journal of Forest Research. 2001, 12(2): 97-100
    227.植被生态学研究.纪念著名生态学家侯学煜教授.北京:科学出版社.1994,93-99,100-111,154-159
    228.周晓峰,王晓春等.长白山岳桦.苔原过渡带动态与气候变化.地学前缘.2002,9(1):227-231
    229.朱志诚.太白山顶植被的起源和发展.西北大学学报(自然科学版).1979,1:156-169

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700