胰高血糖素样肽-1介导cAMP/PKA/Rho信号通路在糖尿病心肌微血管损伤中的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验背景:
     糖尿病是危害人类健康的重大疾病,具有高发病率,高致残率和高致死率的特点。糖尿病心血管并发症是引发糖尿病患者死亡的首要原因。2007年ESC/EASD(欧洲心脏病学会/欧洲糖尿病研究学会)指南中指出与非糖尿病人群相比,男性糖尿病患者心血管疾病的发生风险增加了2-3倍,而女性糖尿病患者心血管疾病的发生风险增加了3-5倍。另有研究发现,糖尿病患者急性心肌梗死后给予血管再通治疗时无复流现象的发生率是非糖尿病患者的4倍,而急性心肌梗死后充血性心力衰竭的发生率是非糖尿病患者的3倍。因此,寻找有效的干预靶点早期防治糖尿病心血管并发症对于糖尿病患者的预后具有十分重要的意义。
     糖尿病心肌微血管损伤在糖尿病心血管并发症的发生发展中起着非常重要的作用。心肌微血管位于循环的末梢部分,决定心肌灌注水平,在一定程度上影响冠脉储备。在糖尿病状态下,心肌微血管损伤早于大血管及心肌细胞。目前研究已发现糖尿病患者心肌微血管内皮细胞连接不完整,屏障功能降低,同时心肌微血管密度降低,微血管数/心肌纤维数比率降低,这些变化导致了心肌微循环障碍。心肌微循环是心肌细胞与血液进行物质交换的场所,微循环障碍会影响微循环灌注,造成心肌局部或整体氧供与血流量失衡,从而引起心脏的结构变化和功能障碍。即使无明显冠脉大血管狭窄,糖尿病心肌微循环障碍仍可导致临床不良事件的发生。因此,减轻糖尿病心肌微血管损伤对于糖尿病心血管并发症的防治非常重要,但是,目前仍无有效的措施干预并延缓糖尿病心肌微血管损伤的发生发展。
     胰高血糖素样肽-1(glucogan like peptide-1,GLP-1)是由空、回肠上皮L细胞分泌的一种小分子多肽。近年研究发现,GLP-1除了降血糖作用外,对心血管系统也有直接的保护作用,如减轻心肌缺血/再灌注损伤、舒张血管、促进病理状态下心室功能的恢复等,而抗氧化应激损伤是其发挥心血管保护作用的重要机制之一。已有研究指出,氧化应激是引起糖尿病和心血管疾病的“共同土壤”,内皮细胞氧化应激可导致内皮功能失调,从而引发心血管疾病的发生。但是,GLP-1对于糖尿病心肌微血管是否具有保护作用尚未见报道,其发挥保护作用的机制是否是通过抗氧化应激损伤仍需进一步的研究。
     因此,本课题拟分别从整体动物、组织和细胞水平观察GLP-1对糖尿病心肌微血管损伤的保护作用,并进一步研究其发挥保护作用的下游分子机制。
     研究目的:
     1.建立糖尿病大鼠模型,明确vidgliptin和exenatide对糖尿病大鼠心肌微血管损伤的保护作用,并进一步明确心肌微血管功能的改善对心脏葡萄糖摄取能力及心脏功能的影响。
     2.分离培养心肌微血管内皮细胞,明确心肌微血管内皮细胞是否表达GLP-1受体,并进一步观察GLP-1对高糖作用下心肌微血管内皮细胞的保护作用。
     3.明确GLP-1发挥心肌微血管内皮细胞保护作用的机制,致力于阐明cAMP/PKA/Rho信号通路在其中的作用。
     研究方法:
     1.选取体重为200-220g雄性SD大鼠,腹腔注射35mg/kg链脲佐菌素(streptozocin,STZ),连续3天,以2次随机血糖≥16.7mmol/L视为糖尿病造模成功。
     2.将糖尿病大鼠随机分为6组,分别为:糖尿病+vildagliptin(1mg/kg),糖尿病+exenatide(1nmol/kg),糖尿病+insulin(0.5U),糖尿病+insulin(1U),糖尿病+insulin(1.5U),糖尿病+insulin(2U),测各组血糖,连续监测14天,选择与vildagliptin和exenatide降糖能力相当的insulin剂量。
     3.将糖尿病大鼠随机分为4组,分别给予vehicle,vildagliptin(1mg/kg),exenatide(1nmol/kg)或insulin(1.5U)治疗12周,以正常大鼠作为对照组,检测各组大鼠体重、血糖及胰岛素水平的变化。
     4.以树脂(Mercox,SPI)灌注各组大鼠心脏,扫描电镜下观察心肌微血管内皮细胞连接完整性。
     5.取各组大鼠心脏悬挂于Langendorff装置,硝酸镧灌流液以生理压力灌流20分钟,透射电镜下检测各组大鼠心肌微血管的屏障功能变化。
     6.采用小动物超声检测各组大鼠心脏功能。
     7.采用小动物PET/CT检测各组大鼠心脏葡萄糖摄取能力。
     8.分离培养心肌微血管内皮细胞,分为以下4组:对照组(5.5mmol/L),高糖组(25mmol/L)+vehicle,GLP-1预处理组(10nmol/L),高糖+GLP-1预处理组。
     9.采用免疫荧光及Western blot法检测大鼠心肌微血管内皮细胞GLP-1受体的表达。
     10.采用超氧化物试剂盒及超氧化物阴离子探针检测各组心肌微血管内皮细胞ROS的生成。
     11.通过TUNEL法及caspase3表达测定心肌微血管内皮细胞凋亡。
     12.采用Western blot法检测心肌微血管内皮细胞p47~(phox),gp91~(phox),p22~(phox),p40~(phox),Rho及ROCK的表达。
     研究结果:
     1.每日给予长效insulin1.5U时,其降糖作用与vildagliptin(1mg/kg/d)及exenatide(1nmol/kg/d)的降糖作用相当。
     2.糖尿病大鼠心肌微血管内皮细胞连接不完整,屏障功能降低,给予小剂量insulin治疗其改善不明显,给予vildagliptin或exenatide治疗12周后,其心肌微血管内皮细胞连接完整性及心肌微血管屏障功能明显改善。
     3.糖尿病大鼠心脏葡萄糖摄取能力明显降低,给予小剂量insulin治疗其葡萄糖摄取能力无明显改善,而给予vildagliptin或exenatide治疗12周以后,其心脏葡萄糖明显改善。
     4.糖尿病大鼠心脏舒张功能明显降低,给予小剂量insulin治疗其心脏舒张功能改善不明显,而给予vildagliptin或exenatide治疗12周后,其心脏舒张功能明显改善,但是其收缩功能无显著变化。
     5.心肌微血管内皮细胞呈“铺路石样”生长,乙酰低密度脂蛋白吞噬实验阳性。
     6.免疫荧光及Western blot法检测均发现心肌微血管内皮细胞表达GLP-1受体。
     7.高糖可诱导心肌微血管内皮细胞ROS生成增加,给予GLP-1预处理后,ROS生成减少。
     8.高糖作用下心肌微血管内皮细胞NADPH氧化酶活性升高,p47~(phox),gp91~(phox),p22~(phox)及p40~(phox)表达增加,给予GLP-1预处理后,NADPH氧化酶活性下降,p47~(phox),gp91~(phox),p22~(phox)及p40~(phox)表达降低。
     9.高糖可诱导心肌微血管内皮细胞凋亡增加,给予GLP-1预处理后,心肌微血管内皮细胞凋亡减少。
     10.高糖作用下,心肌微血管内皮细胞Rho及ROCK的表达升高,给予GLP-1预处理后Rho及ROCK表达下降,同时给予PKA抑制剂H89后,Rho及ROCK表达再次升高。
     11.分别给予GLP-1或Rho抑制剂fasudil后均可抑制高糖诱导的心肌微血管内皮细胞ROS的生成,但同时给予GLP-1和fasudil并不能进一步抑制ROS的生成,H89可逆转GLP-1抑制ROS生成的作用。
     12.分别给予GLP-1或Rho抑制剂fasudil后均可降低高糖诱导的心肌微血管内皮细胞p47~(phox)及gp91~(phox)的表达,但同时给予GLP-1和fasudil并不能进一步降低p47~(phox)及gp91~(phox)的表达,H89作用下p47~(phox)及gp91~(phox)的表达再次升高。
     研究结论:
     1. Vidgliptin和exenatide可保护糖尿病心肌微血管的屏障功能及内皮细胞连接完整性,从而进一步改善了糖尿病心脏葡萄糖摄取能力及心脏舒张功能。
     2. GLP-1可抑制高糖诱导下心肌微血管内皮细胞的氧化应激并减少细胞凋亡。
     3. GLP-1的心肌微血管保护作用可能是通过cAMP/PKA/Rho通路实现的。
Background
     Diabetes mellitus (DM) is recognized as a major risk factor for cardiovascular disease,the leading etiology of morbidity and mortality in the diabetic population. Diabeticcardiovascular disease results from many causes such as microangiopathy, myocardialmetabolic abnormalities and fibrosis. Under microangiopathy, the vessel wall ofmicrovessels become thicker and vulnerable for bleeding, protein leakage, and slow bloodflow. Accumulating evidence has demonstrated that microvascular injury plays a veryimportant role in the diabetic cardiovascular dysfunction. However, there are still feweffective strategies to prevent the progress of the microvascular dysfunction in diabetesmellitus.
     Glucagon-like peptide-1(GLP-1) is a hormone predominately synthesized andsecreted by intestinal L-cells. Pharmacological modulation of the GLP-1system hasemerged as a treatment option for diabetes mellitus. In addition to its glucose loweringproperties, GLP-1was found to have multiple cardioprotective effects. Impaired cardiacmicrovascular function is thought to contribute greatly to the diabetes cardiovasculardisease. Yet the effects of GLP-1on cardiac microvessels remained unclear, this studywas to assess if GLP-1could protect the cardiac microvessels and subsequently improvecardiac function and glucose metabolism and to investigate the underlying regulatorymechanism in diabetes.
     Methods
     1. Male Sprague-Dawley (SD) rats (weight,200-220g) were made diabetic usingstreptozotocin (STZ) injection. Blood glucose levels were tested1week after STZinjection. Animals with glucose levels≥16.7mmol/L were considered diabetic rats.
     2. To determine the dosage of insulin to control blood glucose in DM group at the similarlevel as vildagliptin-and exenatide-treated groups, diabetic rats were randomized intothe following groups:(1) Vildagliptin group that received daily treatment ofvildagliptin at1mg/kg of body weight;(2) Exenatide group that received dailytreatment of exenatide at1nmol/kg of body weight;(3) Insulin group that receiveddaily treatment of insulin at0.5U,1U,1.5U, and2U. Blood glucose was measuredonce a day for2weeks.
     3. STZ-induced diabetic rats were randomized to12weeks of treatment with vehicle,vildagliptin (DPP-4inhibitor,1mg/kg/d), exenatide (GLP-1analogue,1nmol/kg/d),or insulin (1.5U). Before and after treatment, blood glucose levels, weight, and plasmainsulin levels were assessed.
     4. Cardiac microvascular barrier function was detected by scanning electron microscopyand transmission electron microscopy.
     5. Cardiac function was examined by echocardiographic measurements.
     6. Cardiac glucose metabolism was examined by18F-FDG PET/CT.
     7. Adult rat cardiac microvascular endothelial cells (CMECs) were isolated and replacedto different conditions after confluence: normal glucose medium (5.5mmol/L), normalglucose plus GLP-1(10nmol/L), high glucose medium (25mmol/L) plus vehicle(DMSO), high glucose plus GLP-1(10nmol/L).
     8. Glucagon-like peptide-1receptor (GLP-1R) expression was detected byimmunofluorescence stainning and Western blot.
     9. Superoxide assay kit and dihydroethidine (DHE) staining were used to assessoxidative stress.
     10. TUNEL staining and caspase3expression were used to assess the apoptosis ofCMECs.
     11. H89was used to inhibit cAMP/PKA pathway; fasudil was used to inhibit Rho/ROCKpathway. The protein expression of Rho, ROCK, p47~(phox), gp91~(phox), p22~(phox), and p40~(phox)were examined by Western blot analysis.
     Results
     1. Insulin treatment at1.5U dosage per day had the similar effect in blood glucose tothose elicited by vildagliptin and exenatide in diabetic rats.
     2. Significant deficit in barrier function of cardiac microvessels was found in diabeticrats. After12weeks of treatment with vildagliptin or exetinade, the cardiacmicrovascular barrier function was improved, in a manner more pronounced than theinsulin.
     3. Diabetes led to a defective18F-FDG uptake in the heart, the effect of which wassignificantly improved by vildagliptin or exenatide treatment. Insulin treatmentexhibited less18F-FDG uptake in the heart compared with administration ofvildagliptin or exenatide.
     4. Diabetic rats exhibited significantly dampened diastolic function, as manifested byincreased E/A ratio and LVEDD, the effects of which were mitigated by vildagliptin orexenatide treatment. Compared with insulin treated group, vildagliptin or exenatide further improved cardiac diastolic function in diabetic rats. However, there was littledifference in FS among the four groups studied.
     5. GLP-1R was expressed on CMECs.
     6. High glucose increased ROS production and NADPH activity after24hoursincubation in CMECs, while GLP-1decreased high glucose-induced ROS production.The protein expression of p47~(phox), gp91~(phox), p22~(phox), and p40~(phox)subunits of NADPHoxidase were significantly increased in high glucose-induced CMECs compared withcontrol group. After treated with GLP-1, the expression of p47~(phox), gp91~(phox), p22~(phox),and p40~(phox)were significantly decreased compared with high glucose-inducedCMECs.
     7. GLP-1exerted an anti-apoptotic effect on high glucose-induced CMECs.
     8. Incubation of CMECs with high glucose significantly upregulated Rho expression andelicited a significant increase in ROCK expression. Treatment of CMECs with GLP-1significantly alleviated high glucose-induced increase in Rho and ROCK expressionwithout affecting these parameters under normal glucose condition. Incubation of cellswith the PKA selective inhibitor H89abrogated GLP-1-induced effect on Rhosuppression.
     9. Chronic exposure of CMECs to high glucose promoted intracellular ROS levels, theeffect of which was obliterated by GLP-1. Incubation of CMECs with fasudil inhibitedROS production. However, combination of GLP-1and fasudil failed to furtherattenuate ROS production.
     10. The inhibitory effect of GLP-1on high glucose-induced ROS accumulation wassignificantly attenuated by treatment with H89.
     11. In line with the changes in intracellular ROS accumulation, the inhibitory effect ofGLP-1on high glucose-induced activation of p47~(phox)and gp91~(phox)was reduced byH89. The combined treatment with GLP-1and fasudil failed to produce any additiveeffects on high glucose-induced p47~(phox)and gp91~(phox)expression and oxidative stress.
     Conclusions
     GLP-1could protect the cardiac microvessels against oxidative stress, apoptosis andthe resultant microvascular barrier dysfunction in diabetes rats, en route to improvedcardiac diastolic function and cardiac glucose metabolism. The protective effects ofGLP-1are dependent on downstream inhibition of Rho through a cAMP/PKA-dependentmanner, resulting in a subsequent decrease in the expression of NADPH oxidase. Thesefindings should provide important implications for diabetes patients with cardiovasculardisease, where GLP-1may hold promise for prevention and treatment.
引文
1. Arredondo A. Diabetes: a global challenge with high economic burden forpublic health systems and society. Am J Public Health2013;103: e1-2.
    2. van Dieren S, Beulens JW, van der Schouw YT, Grobbee DE, Neal B. The globalburden of diabetes and its complications: an emerging pandemic. Eur JCardiovasc Prev Rehabil2010;17Suppl1: S3-8.
    3. King H, Aubert RE, Herman WH. Global burden of diabetes,1995-2025:prevalence, numerical estimates, and projections. Diabetes Care1998;21:1414-1431.
    4. Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and womenin China. N Engl J Med2010;362:1090-1101.
    5. Lteif AA, Mather KJ, Clark CM. Diabetes and heart disease anevidence-driven guide to risk factors management in diabetes. Cardiol Rev2003;11:262-274.
    6. Cubbon RM, Adams B, Rajwani A, et al. Diabetes mellitus is associated withadverse prognosis in chronic heart failure of ischaemic and non-ischaemicaetiology. Diab Vasc Dis Res2013.
    7. Baliga V, Sapsford R. Review article: Diabetes mellitus and heartfailure--an overview of epidemiology and management. Diab Vasc Dis Res2009;6:164-171.
    8. Hamby RI, Zoneraich S, Sherman L. Diabetic cardiomyopathy. JAMA1974;229:1749-1754.
    9. Dejana E. Endothelial cell-cell junctions: happy together. Nat Rev MolCell Biol2004;5:261-270.
    10. Patel AR, Epstein FH, Kramer CM. Evaluation of the microcirculation:advances in cardiac magnetic resonance perfusion imaging. J Nucl Cardiol2008;15:698-708.
    11. Uchida Y, Ichimiya S, Ishii H, et al. Impact of metabolic syndrome onvarious aspects of microcirculation and major adverse cardiac events inpatients with ST-segment elevation myocardial infarction. Circ J2012;76:1972-1979.
    12. Yuan SY, Ustinova EE, Wu MH, et al. Protein kinase C activation contributesto microvascular barrier dysfunction in the heart at early stages of diabetes.Circ Res2000;87:412-417.
    13. Liu Y, Ma Y, Wang R, et al. Advanced glycation end products accelerateischemia/reperfusion injury through receptor of advanced endproduct/nitrative thioredoxin inactivation in cardiac microvascularendothelial cells. Antioxid Redox Signal2011;15:1769-1778.
    14. Yin Z, Fan L, Wei L, et al. FTY720protects cardiac microvessels ofdiabetes: a critical role of S1P1/3in diabetic heart disease. PLoS One2012;7:e42900.
    15. Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: pathophysiologyand clinical features. Heart Fail Rev2013;18:149-166.
    16. Sasongko MB, Wang JJ, Donaghue KC, et al. Alterations in retinalmicrovascular geometry in young type1diabetes. Diabetes Care2010;33:1331-1336.
    17. Grauslund J, Green A, Kawasaki R, Hodgson L, Sjolie AK, Wong TY. Retinalvascular fractals and microvascular and macrovascular complications in type1diabetes. Ophthalmology2010;117:1400-1405.
    18.Adameova A, Dhalla NS. Role of microangiopathy in diabetic cardiomyopathy.Heart Fail Rev2013.
    19. La Fontaine J, Harkless LB, Davis CE, Allen MA, Shireman PK. Currentconcepts in diabetic microvascular dysfunction. J Am Podiatr Med Assoc2006;96:245-252.
    20. Laakso M. Heart in diabetes: a microvascular disease. Diabetes Care2011;34Suppl2: S145-149.
    21. Wei L, Yin Z, Yuan Y, et al. A PKC-beta inhibitor treatment reversescardiac microvascular barrier dysfunction in diabetic rats. Microvasc Res2010;80:158-165.
    22. Wei L, Sun D, Yin Z, et al. A PKC-beta inhibitor protects against cardiacmicrovascular ischemia reperfusion injury in diabetic rats. Apoptosis2010;15:488-498.
    23. Warley A, Powell JM, Skepper JN. Capillary surface area is reduced andtissue thickness from capillaries to myocytes is increased in the leftventricle of streptozotocin-diabetic rats. Diabetologia1995;38:413-421.
    24. Narmoneva DA, Vukmirovic R, Davis ME, Kamm RD, Lee RT. Endothelial cellspromote cardiac myocyte survival and spatial reorganization: implicationsfor cardiac regeneration. Circulation2004;110:962-968.
    25. Scarabelli T, Stephanou A, Rayment N, et al. Apoptosis of endothelialcells precedes myocyte cell apoptosis in ischemia/reperfusion injury.Circulation2001;104:253-256.
    26. Rosenson RS, Fioretto P, Dodson PM. Does microvascular disease predictmacrovascular events in type2diabetes? Atherosclerosis2011;218:13-18.
    27. Muris DM, Houben AJ, Schram MT, Stehouwer CD. Microvascular dysfunctionis associated with a higher incidence of type2diabetes mellitus: asystematic review and meta-analysis. Arterioscler Thromb Vasc Biol2012;32:3082-3094.
    28. Li D.[Observation of morphology of microvessels in periodontal tissuebefore and after orthodontic treatment were compared using vessel castingtechnique with scanning electron microscopy]. Zhonghua Kou Qiang Yi Xue ZaZhi1993;28:174-176.
    29. Han HX, Geng JG. Over-expression of Slit2induces vessel formation andchanges blood vessel permeability in mouse brain. Acta Pharmacol Sin2011;32:1327-1336.
    30. Nanka O, Krizova P, Fikrle M, et al. Abnormal myocardial and coronaryvasculature development in experimental hypoxia. Anat Rec (Hoboken)2008;291:1187-1199.
    31. Bales CP, Placzek JD, Malone KJ, Vaupel Z, Arnoczky SP. Microvascularsupply of the lateral epicondyle and common extensor origin. J Shoulder ElbowSurg2007;16:497-501.
    32. Fu BM, Curry FE, Weinbaum S. A diffusion wake model for tracerultrastructure-permeability studies in microvessels. Am J Physiol1995;269:H2124-2140.
    33. Le Sueur LP, Collares-Buzato CB, da Cruz-Hofling MA. Mechanisms involvedin the blood-brain barrier increased permeability induced by Phoneutrianigriventer spider venom in rats. Brain Res2004;1027:38-47.
    34. Manconi F, Markham R, Fraser IS. Culturing endothelial cells ofmicrovascular origin. Methods Cell Sci2000;22:89-99.
    35. Nishida M, Carley WW, Gerritsen ME, Ellingsen O, Kelly RA, Smith TW.Isolation and characterization of human and rat cardiac microvascularendothelial cells. Am J Physiol1993;264: H639-652.
    36. Demaine AG. Polymorphisms of the aldose reductase gene and susceptibilityto diabetic microvascular complications. Curr Med Chem2003;10:1389-1398.
    37. Chung SS, Chung SK. Aldose reductase in diabetic microvascularcomplications. Curr Drug Targets2005;6:475-486.
    38. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation endproducts: sparking the development of diabetic vascular injury. Circulation2006;114:597-605.
    39. Gao X, Zhang H, Schmidt AM, Zhang C. AGE/RAGE produces endothelialdysfunction in coronary arterioles in type2diabetic mice. Am J Physiol HeartCirc Physiol2008;295: H491-498.
    40. Schiekofer S, Andrassy M, Chen J, et al. Acute hyperglycemia causesintracellular formation of CML and activation of ras, p42/44MAPK, and nuclearfactor kappaB in PBMCs. Diabetes2003;52:621-633.
    41. Goh SY, Cooper ME. Clinical review: The role of advanced glycation endproducts in progression and complications of diabetes. J Clin EndocrinolMetab2008;93:1143-1152.
    42. Liu Y, Lei S, Gao X, et al. PKCbeta inhibition with ruboxistaurin reducesoxidative stress and attenuates left ventricular hypertrophy and dysfunctionin rats with streptozotocin-induced diabetes. Clin Sci (Lond)2012;122:161-173.
    43. Xia L, Wang H, Munk S, et al. Reactive oxygen species, PKC-beta1, andPKC-zeta mediate high-glucose-induced vascular endothelial growth factorexpression in mesangial cells. Am J Physiol Endocrinol Metab2007;293:E1280-1288.
    44. Malhotra A, Begley R, Kang BP, et al. PKC-{epsilon}-dependent survivalsignals in diabetic hearts. Am J Physiol Heart Circ Physiol2005;289:H1343-1350.
    45. Malhotra A, Kang BP, Cheung S, Opawumi D, Meggs LG. Angiotensin II promotesglucose-induced activation of cardiac protein kinase C isozymes andphosphorylation of troponin I. Diabetes2001;50:1918-1926.
    46. Rask-Madsen C, King GL. Differential regulation of VEGF signaling byPKC-alpha and PKC-epsilon in endothelial cells. Arterioscler Thromb Vasc Biol2008;28:919-924.
    47. Beckman JA, Goldfine AB, Gordon MB, Garrett LA, Creager MA. Inhibitionof protein kinase Cbeta prevents impaired endothelium-dependent vasodilationcaused by hyperglycemia in humans. Circ Res2002;90:107-111.
    48. Gutterman DD. Vascular dysfunction in hyperglycemia: is protein kinaseC the culprit? Circ Res2002;90:5-7.
    49. D'Autreaux B, Toledano MB. ROS as signalling molecules: mechanisms thatgenerate specificity in ROS homeostasis. Nat Rev Mol Cell Biol2007;8:813-824.
    50. Hultqvist M, Olsson LM, Gelderman KA, Holmdahl R. The protective role ofROS in autoimmune disease. Trends Immunol2009;30:201-208.
    51. Bellomo G. Cell damage by oxygen free radicals. Cytotechnology1991;5:71-73.
    52. Comporti M. Three models of free radical-induced cell injury. Chem BiolInteract1989;72:1-56.
    53. Spitaler MM, Graier WF. Vascular targets of redox signalling in diabetesmellitus. Diabetologia2002;45:476-494.
    54. Giacco F, Brownlee M. Oxidative stress and diabetic complications. CircRes2010;107:1058-1070.
    55. Brownlee M. Biochemistry and molecular cell biology of diabeticcomplications. Nature2001;414:813-820.
    56. Duncan JG. Mitochondrial dysfunction in diabetic cardiomyopathy. BiochimBiophys Acta2011;1813:1351-1359.
    57. Russell JW, Golovoy D, Vincent AM, et al. High glucose-induced oxidativestress and mitochondrial dysfunction in neurons. FASEB J2002;16:1738-1748.
    58. Touyz RM. Reactive oxygen species, vascular oxidative stress, and redoxsignaling in hypertension: what is the clinical significance? Hypertension2004;44:248-252.
    59. Inoguchi T, Li P, Umeda F, et al. High glucose level and free fatty acidstimulate reactive oxygen species production through protein kinaseC--dependent activation of NAD(P)H oxidase in cultured vascular cells.Diabetes2000;49:1939-1945.
    60. Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role ofoxidative stress in atherosclerosis. Am J Cardiol2003;91:7A-11A.
    61. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases:physiology and pathophysiology. Physiol Rev2007;87:245-313.
    62. Brandes RP, Kreuzer J. Vascular NADPH oxidases: molecular mechanisms ofactivation. Cardiovasc Res2005;65:16-27.
    63. Schalkwijk CG, Stehouwer CD. Vascular complications in diabetes mellitus:the role of endothelial dysfunction. Clin Sci (Lond)2005;109:143-159.
    64. Calcutt NA, Cooper ME, Kern TS, Schmidt AM. Therapies forhyperglycaemia-induced diabetic complications: from animal models toclinical trials. Nat Rev Drug Discov2009;8:417-429.
    65. Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, Creager MA. Vitamin Cimproves endothelium-dependent vasodilation in patients withnon-insulin-dependent diabetes mellitus. J Clin Invest1996;97:22-28.
    66. Upritchard JE, Sutherland WH, Mann JI. Effect of supplementation withtomato juice, vitamin E, and vitamin C on LDL oxidation and products ofinflammatory activity in type2diabetes. Diabetes Care2000;23:733-738.
    67. Bursell SE, Clermont AC, Aiello LP, et al. High-dose vitamin Esupplementation normalizes retinal blood flow and creatinine clearance inpatients with type1diabetes. Diabetes Care1999;22:1245-1251.
    68. Lonn E, Yusuf S, Hoogwerf B, et al. Effects of vitamin E on cardiovascularand microvascular outcomes in high-risk patients with diabetes: results ofthe HOPE study and MICRO-HOPE substudy. Diabetes Care2002;25:1919-1927.
    69. Lee IM, Cook NR, Gaziano JM, et al. Vitamin E in the primary preventionof cardiovascular disease and cancer: the Women's Health Study: a randomizedcontrolled trial. JAMA2005;294:56-65.
    70. Moini H, Packer L, Saris NE. Antioxidant and prooxidant activities ofalpha-lipoic acid and dihydrolipoic acid. Toxicol Appl Pharmacol2002;182:84-90.
    71. Padmalayam I. Targeting mitochondrial oxidative stress through lipoicacid synthase: a novel strategy to manage diabetic cardiovascular disease.Cardiovasc Hematol Agents Med Chem2012;10:223-233.
    72. Porasuphatana S, Suddee S, Nartnampong A, Konsil J, Harnwong B,Santaweesuk A. Glycemic and oxidative status of patients with type2diabetesmellitus following oral administration of alpha-lipoic acid: a randomizeddouble-blinded placebo-controlled study. Asia Pac J Clin Nutr2012;21:12-21.
    73. Ziegler D, Hanefeld M, Ruhnau KJ, et al. Treatment of symptomatic diabeticperipheral neuropathy with the anti-oxidant alpha-lipoic acid. A3-weekmulticentre randomized controlled trial (ALADIN Study). Diabetologia1995;38:1425-1433.
    74. Kruger AL, Peterson S, Turkseven S, et al. D-4F induces heme oxygenase-1and extracellular superoxide dismutase, decreases endothelial cell sloughing,and improves vascular reactivity in rat model of diabetes. Circulation2005;111:3126-3134.
    75. Enghofer M, Usadel KH, Beck O, Kusterer K. Superoxide dismutase reducesislet microvascular injury induced by streptozotocin in the rat. Am J Physiol1997;273: E376-382.
    76. Kowluru RA, Kowluru V, Xiong Y, Ho YS. Overexpression of mitochondrialsuperoxide dismutase in mice protects the retina from diabetes-inducedoxidative stress. Free Radic Biol Med2006;41:1191-1196.
    77. Yavuz O, Cam M, Bukan N, Guven A, Silan F. Protective effect of melatoninon beta-cell damage in streptozotocin-induced diabetes in rats. ActaHistochem2003;105:261-266.
    78. Espino J, Pariente JA, Rodriguez AB. Role of melatonin on diabetes-relatedmetabolic disorders. World J Diabetes2011;2:82-91.
    79. Aksoy N, Vural H, Sabuncu T, Aksoy S. Effects of melatonin onoxidative-antioxidative status of tissues in streptozotocin-induceddiabetic rats. Cell Biochem Funct2003;21:121-125.
    80. Ceriello A, Piconi L, Esposito K, Giugliano D. Telmisartan shows anequivalent effect of vitamin C in further improving endothelial dysfunctionafter glycemia normalization in type1diabetes. Diabetes Care2007;30:1694-1698.
    81. Hamilton SJ, Chew GT, Watts GF. Coenzyme Q10improves endothelialdysfunction in statin-treated type2diabetic patients. Diabetes Care2009;32:810-812.
    82. Ceriello A, Quagliaro L, Piconi L, et al. Effect of postprandialhypertriglyceridemia and hyperglycemia on circulating adhesion molecules andoxidative stress generation and the possible role of simvastatin treatment.Diabetes2004;53:701-710.
    83. Wojtczak L, Slyshenkov VS. Protection by pantothenic acid againstapoptosis and cell damage by oxygen free radicals--the role of glutathione.Biofactors2003;17:61-73.
    84. Fiordaliso F, Cuccovillo I, Bianchi R, et al. Cardiovascular oxidativestress is reduced by an ACE inhibitor in a rat model of streptozotocin-induceddiabetes. Life Sci2006;79:121-129.
    85. Gumieniczek A. Effect of the new thiazolidinedione-pioglitazone on thedevelopment of oxidative stress in liver and kidney of diabetic rabbits. LifeSci2003;74:553-562.
    86. Chaudhry J, Ghosh NN, Roy K, Chandra R. Antihyperglycemic effect of a newthiazolidinedione analogue and its role in ameliorating oxidative stress inalloxan-induced diabetic rats. Life Sci2007;80:1135-1142.
    87. Berry C, Anderson N, Kirk AJ, Dominiczak AF, McMurray JJ. Reninangiotensin system inhibition is associated with reduced free radicalconcentrations in arteries of patients with coronary heart disease. Heart2001;86:217-220.
    88. Baggio LL, Drucker DJ. Biology of incretins: GLP-1and GIP.Gastroenterology2007;132:2131-2157.
    89. MacDonald PE, El-Kholy W, Riedel MJ, Salapatek AM, Light PE, Wheeler MB.The multiple actions of GLP-1on the process of glucose-stimulated insulinsecretion. Diabetes2002;51Suppl3: S434-442.
    90. Lee CH, Yan B, Yoo KY, et al. Ischemia-induced changes in glucagon-likepeptide-1receptor and neuroprotective effect of its agonist, exendin-4, inexperimental transient cerebral ischemia. J Neurosci Res2011;89:1103-1113.
    91. Arakawa M, Mita T, Azuma K, et al. Inhibition of monocyte adhesion toendothelial cells and attenuation of atherosclerotic lesion by aglucagon-like peptide-1receptor agonist, exendin-4. Diabetes2010;59:1030-1037.
    92. Frezza EE, Wachtel MS, Chiriva-Internati M. The multiple faces ofglucagon-like peptide-1--obesity, appetite, and stress: what is next? Areview. Dig Dis Sci2007;52:643-649.
    93. Holst JJ. Glucagonlike peptide1: a newly discovered gastrointestinalhormone. Gastroenterology1994;107:1848-1855.
    94. Chen W, Zhou Y, Zhang H, et al. Stability and bioactivity studies ondipeptidyl peptidase IV resistant glucogan-like peptide-1analogues. ProteinPept Lett2012;19:203-211.
    95. Meier JJ, Nauck MA. Glucagon-like peptide1(GLP-1) in biology andpathology. Diabetes Metab Res Rev2005;21:91-117.
    96. Eng J. Exendin peptides. Mt Sinai J Med1992;59:147-149.
    97. Thorens B, Porret A, Buhler L, Deng SP, Morel P, Widmann C. Cloning andfunctional expression of the human islet GLP-1receptor. Demonstration thatexendin-4is an agonist and exendin-(9-39) an antagonist of the receptor.Diabetes1993;42:1678-1682.
    98. DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD. Effects ofexenatide (exendin-4) on glycemic control and weight over30weeks inmetformin-treated patients with type2diabetes. Diabetes Care2005;28:1092-1100.
    99. Ribel U, Larsen MO, Rolin B, et al. NN2211: a long-acting glucagon-likepeptide-1derivative with anti-diabetic effects in glucose-intolerant pigs.Eur J Pharmacol2002;451:217-225.
    100. Tiessen RG, Castaigne JP, Dreyfus JF, Nemansky M, Kruizinga HH, vanVliet AA. Pharmacokinetics and tolerability of a novel long-actingglucagon-like peptide-1analog, CJC-1131, in healthy and diabetic subjects.Int J Clin Pharmacol Ther2008;46:443-452.
    101. Dicker D. DPP-4inhibitors: impact on glycemic control andcardiovascular risk factors. Diabetes Care2011;34Suppl2: S276-278.
    102. DeFronzo RA, Hissa MN, Garber AJ, et al. The efficacy and safety ofsaxagliptin when added to metformin therapy in patients with inadequatelycontrolled type2diabetes with metformin alone. Diabetes Care2009;32:1649-1655.
    103. Inzucchi SE, McGuire DK. New drugs for the treatment of diabetes: partII: Incretin-based therapy and beyond. Circulation2008;117:574-584.
    104. Tibaduiza EC, Chen C, Beinborn M. A small molecule ligand of theglucagon-like peptide1receptor targets its amino-terminal hormone bindingdomain. J Biol Chem2001;276:37787-37793.
    105. Donnelly D. The structure and function of the glucagon-like peptide-1receptor and its ligands. Br J Pharmacol2012;166:27-41.
    106. Issa CM, Azar ST. Possible role of GLP-1and its agonists in thetreatment of type1diabetes mellitus. Curr Diab Rep2012;12:560-567.
    107. Rolin B, Larsen MO, Gotfredsen CF, et al. The long-acting GLP-1derivative NN2211ameliorates glycemia and increases beta-cell mass indiabetic mice. Am J Physiol Endocrinol Metab2002;283: E745-752.
    108. Degn KB, Juhl CB, Sturis J, et al. One week's treatment with thelong-acting glucagon-like peptide1derivative liraglutide (NN2211) markedlyimproves24-h glycemia and alpha-and beta-cell function and reducesendogenous glucose release in patients with type2diabetes. Diabetes2004;53:1187-1194.
    109. Szayna M, Doyle ME, Betkey JA, et al. Exendin-4decelerates food intake,weight gain, and fat deposition in Zucker rats. Endocrinology2000;141:1936-1941.
    110. Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide1can directly protect the heart against ischemia/reperfusion injury.Diabetes2005;54:146-151.
    111. Noyan-Ashraf MH, Momen MA, Ban K, et al. GLP-1R agonist liraglutideactivates cytoprotective pathways and improves outcomes after experimentalmyocardial infarction in mice. Diabetes2009;58:975-983.
    112. Nikolaidis LA, Mankad S, Sokos GG, et al. Effects of glucagon-likepeptide-1in patients with acute myocardial infarction and left ventriculardysfunction after successful reperfusion. Circulation2004;109:962-965.
    113. Gros R, You X, Baggio LL, et al. Cardiac function in mice lacking theglucagon-like peptide-1receptor. Endocrinology2003;144:2242-2252.
    114. Poornima I, Brown SB, Bhashyam S, Parikh P, Bolukoglu H, Shannon RP.Chronic glucagon-like peptide-1infusion sustains left ventricular systolicfunction and prolongs survival in the spontaneously hypertensive, heartfailure-prone rat. Circ Heart Fail2008;1:153-160.
    115. Thrainsdottir I, Malmberg K, Olsson A, Gutniak M, Ryden L. Initialexperience with GLP-1treatment on metabolic control and myocardial functionin patients with type2diabetes mellitus and heart failure. Diab Vasc DisRes2004;1:40-43.
    116. Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP. Glucagon-likepeptide-1infusion improves left ventricular ejection fraction andfunctional status in patients with chronic heart failure. J Card Fail2006;12:694-699.
    117. Nystrom T, Gutniak MK, Zhang Q, et al. Effects of glucagon-likepeptide-1on endothelial function in type2diabetes patients with stablecoronary artery disease. Am J Physiol Endocrinol Metab2004;287: E1209-1215.
    118. Shen M, Sun D, Li W, et al. The synergistic effect of valsartan andLAF237[(S)-1-[(3-hydroxy-1-adamantyl)ammo]acetyl-2-cyanopyrrolidine] onvascular oxidative stress and inflammation in type2diabetic mice. ExpDiabetes Res2012;2012:146194.
    119. Yu M, Moreno C, Hoagland KM, et al. Antihypertensive effect ofglucagon-like peptide1in Dahl salt-sensitive rats. J Hypertens2003;21:1125-1135.
    120. Klempfner R, Leor J, Tenenbaum A, Fisman EZ, Goldenberg I. Effectsof a vildagliptin/metformin combination on markers of atherosclerosis,thrombosis, and inflammation in diabetic patients with coronary arterydisease. Cardiovasc Diabetol2012;11:60.
    121. Liu H, Dear AE, Knudsen LB, Simpson RW. A long-acting glucagon-likepeptide-1analogue attenuates induction of plasminogen activator inhibitortype-1and vascular adhesion molecules. J Endocrinol2009;201:59-66.
    122. Xiao YF, Nikolskaya A, Jaye DA, Sigg DC. Glucagon-like peptide-1enhances cardiac L-type Ca2+currents via activation of the cAMP-dependentprotein kinase A pathway. Cardiovasc Diabetol2011;10:6.
    123. Briyal S, Gulati K, Gulati A. Repeated administration of exendin-4reduces focal cerebral ischemia-induced infarction in rats. Brain Res2012;1427:23-34.
    124. Raab EL, Vuguin PM, Stoffers DA, Simmons RA. Neonatal exendin-4treatment reduces oxidative stress and prevents hepatic insulin resistancein intrauterine growth-retarded rats. Am J Physiol Regul Integr Comp Physiol2009;297: R1785-1794.
    125. Liu WJ, Xie SH, Liu YN, et al. Dipeptidyl peptidase IV inhibitorattenuates kidney injury in streptozotocin-induced diabetic rats. JPharmacol Exp Ther2012;340:248-255.
    126. Yu Z, Jin T. New insights into the role of cAMP in the production andfunction of the incretin hormone glucagon-like peptide-1(GLP-1). Cell Signal2010;22:1-8.
    127. Kimura R, Okouchi M, Fujioka H, et al. Glucagon-like peptide-1(GLP-1)protects against methylglyoxal-induced PC12cell apoptosis through thePI3K/Akt/mTOR/GCLc/redox signaling pathway. Neuroscience2009;162:1212-1219.
    128. Parthsarathy V, Holscher C. The type2diabetes drug liraglutidereduces chronic inflammation induced by irradiation in the mouse brain. EurJ Pharmacol2013;700:42-50.
    129. Lee YS, Park MS, Choung JS, et al. Glucagon-like peptide-1inhibitsadipose tissue macrophage infiltration and inflammation in an obese mousemodel of diabetes. Diabetologia2012;55:2456-2468.
    130. Rikitake Y, Liao JK. Rho GTPases, statins, and nitric oxide. Circ Res2005;97:1232-1235.
    131. Nakagawa O, Fujisawa K, Ishizaki T, Saito Y, Nakao K, Narumiya S.ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil formingprotein serine/threonine kinase in mice. FEBS Lett1996;392:189-193.
    132. Ma Z, Zhang J, Ji E, Cao G, Li G, Chu L. Rho kinase inhibition by fasudilexerts antioxidant effects in hypercholesterolemic rats. Clin Exp PharmacolPhysiol2011;38:688-694.
    133. Takeshima H, Kobayashi N, Koguchi W, Ishikawa M, Sugiyama F, IshimitsuT. Cardioprotective effect of a combination of Rho-kinase inhibitor and p38MAPK inhibitor on cardiovascular remodeling and oxidative stress in Dahl rats.J Atheroscler Thromb2012;19:326-336.
    134. Stolc S, Jakubikova L, Kukurova I. Body distribution of C-methionineand FDG in rat measured by microPET. Interdiscip Toxicol2011;4:52-55.
    135. Verli FD, Marinho SA, Rossi-Schneider TR, Yurgel LS, de Souza MA.Angioarchitecture of the ventral surface of the tongue from Wistar rats.Scanning2008;30:414-418.
    136. Raposo C, Zago GM, da Silva GH, da Cruz Hofling MA. Acute blood-brainbarrier permeabilization in rats after systemic Phoneutria nigriventer venom.Brain Res2007;1149:18-29.
    137. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis:epidemiology, pathophysiology, and management. JAMA2002;287:2570-2581.
    138. Mazzone T. Intensive glucose lowering and cardiovascular diseaseprevention in diabetes: reconciling the recent clinical trial data.Circulation2010;122:2201-2211.
    139. Acar E, Ural D, Bildirici U, Sahin T, Yilmaz I. Diabetic cardiomyopathy.Anadolu Kardiyol Derg2011;11:732-737.
    140. Ismail-Beigi F, Craven T, Banerji MA, et al. Effect of intensivetreatment of hyperglycaemia on microvascular outcomes in type2diabetes:an analysis of the ACCORD randomised trial. Lancet2010;376:419-430.
    141. Hao M, Li SY, Sun CK, et al. Amelioration effects of berberine ondiabetic microendothelial injury model by the combination of high glucoseand advanced glycation end products in vitro. Eur J Pharmacol2011;654:320-325.
    142. Kuramochi Y, Cote GM, Guo X, et al. Cardiac endothelial cells regulatereactive oxygen species-induced cardiomyocyte apoptosis throughneuregulin-1beta/erbB4signaling. J Biol Chem2004;279:51141-51147.
    143. Voulgari C, Papadogiannis D, Tentolouris N. Diabetic cardiomyopathy:from the pathophysiology of the cardiac myocytes to current diagnosis andmanagement strategies. Vasc Health Risk Manag2010;6:883-903.
    144. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med2007;356:830-840.
    145. Shivu GN, Phan TT, Abozguia K, et al. Relationship between coronarymicrovascular dysfunction and cardiac energetics impairment in type1diabetes mellitus. Circulation2010;121:1209-1215.
    146. Kazafeos K. Incretin effect: GLP-1, GIP, DPP4. Diabetes Res Clin Pract2011;93Suppl1: S32-36.
    147. Peterson G. Current treatments and strategies for type2diabetes:can we do better with GLP-1receptor agonists? Ann Med2012;44:338-349.
    148. Fonseca VA, Alvarado-Ruiz R, Raccah D, Boka G, Miossec P, Gerich JE.Efficacy and safety of the once-daily GLP-1receptor agonist lixisenatidein monotherapy: a randomized, double-blind, placebo-controlled trial inpatients with type2diabetes (GetGoal-Mono). Diabetes Care2012;35:1225-1231.
    149. Zuo L, Youtz DJ, Wold LE. Particulate matter exposure exacerbates highglucose-induced cardiomyocyte dysfunction through ROS generation. PLoS One2011;6: e23116.
    150. Grafe M, Graf K, Auch-Schwelk W, Terbeek D, Hertel H, Fleck E.Cultivation and characterization of micro-and macrovascular endothelialcells from the human heart. Eur Heart J1993;14Suppl I:74-81.
    151. Mason JC, Lidington EA, Yarwood H. Isolation and analysis of largeand small vessel endothelial cells. Methods Mol Med2007;135:305-321.
    152. Folli F, Corradi D, Fanti P, et al. The role of oxidative stress inthe pathogenesis of type2diabetes mellitus micro-and macrovascularcomplications: avenues for a mechanistic-based therapeutic approach. CurrDiabetes Rev2011;7:313-324.
    153. Naudi A, Jove M, Ayala V, et al. Cellular dysfunction in diabetes asmaladaptive response to mitochondrial oxidative stress. Exp Diabetes Res2012;2012:696215.
    154. Drummond GR, Selemidis S, Griendling KK, Sobey CG. Combating oxidativestress in vascular disease: NADPH oxidases as therapeutic targets. Nat RevDrug Discov2011;10:453-471.
    155. Rolfe BE, Worth NF, World CJ, Campbell JH, Campbell GR. Rho andvascular disease. Atherosclerosis2005;183:1-16.
    156. El-Remessy AB, Tawfik HE, Matragoon S, Pillai B, Caldwell RB, CaldwellRW. Peroxynitrite mediates diabetes-induced endothelial dysfunction:possible role of Rho kinase activation. Exp Diabetes Res2010;2010:247861.
    157. Shah DI, Singh M. Involvement of Rho-kinase in experimental vascularendothelial dysfunction. Mol Cell Biochem2006;283:191-199.
    158. Soliman H, Gador A, Lu YH, Lin G, Bankar G, MacLeod KM.Diabetes-induced increased oxidative stress in cardiomyocytes is sustainedby a positive feedback loop involving Rho kinase and PKCbeta2. Am J PhysiolHeart Circ Physiol2012;303: H989-H1000.
    159. Ren J, Duan J, Thomas DP, et al. IGF-I alleviates diabetes-inducedRhoA activation, eNOS uncoupling, and myocardial dysfunction. Am J PhysiolRegul Integr Comp Physiol2008;294: R793-802.
    160. Flamez D, Gilon P, Moens K, et al. Altered cAMP and Ca2+signalingin mouse pancreatic islets with glucagon-like peptide-1receptor nullphenotype. Diabetes1999;48:1979-1986.
    161. Dozier KC, Cureton EL, Kwan RO, Curran B, Sadjadi J, Victorino GP.Glucagon-like peptide-1protects mesenteric endothelium from injury duringinflammation. Peptides2009;30:1735-1741.
    162. Liu L, Liu J, Wong WT, et al. Dipeptidyl peptidase4inhibitorsitagliptin protects endothelial function in hypertension through aglucagon-like peptide1-dependent mechanism. Hypertension2012;60:833-841.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700