4-RSS+PS+2-RRS并联机构的动力学性能指标分析与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直升机具有独特的飞行能力,它的应用已日益广泛地遍及军事和民用的各个领域。因此对其飞行性能和飞行品质的要求越来越高。直升机以动力驱动的旋翼作为主要升力来源。近年来,各国专家对直升机的研究越来越热,其中对直升机旋翼系统的研究尤为突出。同时,随着直升机的发展,各国科研工作者对直升机提出了很多分析其结构和动力学性能的方法。
     当今少自由度并联机器人的性能指标分析和仿真,是机器人研究领域的热门课题,每一个新机构在投入到工业应用领域之前,都需要做很多方面的研究。本课题对直升机旋翼系统的上操纵机构进行相应的分析。
     首先,本文结合直升机旋翼系统上操纵机构,提出了4-RSS+PS+2-RRS并联机构。
     其次,利用螺旋理论,计算了4-RSS+PS+2-RRS的自由度,得到一个7个运动链的3自由度的两转一移并联机构,并且合理的选出3个驱动。4-RSS+PS+2-RRS机构是一种新型多支链少自由度并联机构,分别采用影响系数法和微分法求出机构的输入速度和输入加速度的仿真曲线,同时验证了影响系数矩阵的正确性。利用速度全域性能指标,加速度全域性能指标和惯性力性能指标,在考虑机构尺寸和杆件质量的前提下,分析了4-RSS+PS+2-RRS机构的动力学性能,绘出上述指标的性能图谱,得到该机构尺寸和动力学性能的关系变化趋势。同时也得到了所讨论的机构范围内性能较好的机构尺寸。
     再次,为了进一步分析并验证以上性能指标的正确性,运用MATLAB,Visual C++,OpenGL对机构建模、仿真。
     最后,结合直升机旋翼系统的运动状况和动力学性能指标分析的结果,设计了一个旋翼系统测试样机。
Due to characteristic flying, helicopter is applied to military and civilian broadly. Its flight performance and flying qualities is required to improve continuously. In recent years, researchers have researched more and more on the helicopter, especially helicopter rotor system. With the development of helicopter technique, some analytical methods of mechanism and dynamic performance of helicopter rotor system are proposed.
     Today the performance indicator analysis and simulation of less-DOF parallel robot is really a hot topic. We need to do a lot of research before the new parallel mechanism input to the actual field of industrial applications. In this subject we analyze the 4-RSS + PS +2- RRS parallel mechanism.
     Firstly, an equivalent mechanism named 4-RSS+PS+2-RRS parallel mechanism is put forward by analyzing the structure of rotating ring in helicopter swash plate mechanism, which has 7 kinematical sub chains.
     Secondly, the mobility of the parallel mechanism is calculated using the screw theory and the result is three freedoms of degree (DOF), two of rotational DOF, one of translational DOF. Three drivers are reasonable selected. By the method of influence coefficient and differentiation, curses of the input speed and input acceleration are got, which demonstrate that the influence coefficient is correct. On considering of the size of the mechanism and mass of legs, global dynamical performance indices of speed, acceleration, inertial force are analyzed, and atlas of them are got. Using the atlas, the size of better performance is discussed, which is useful for dimensional optimization design of parallel mechanism.
     Thirdly, we analyze and verify the correctness of the above performance indicators by modeling and simulation with MATLAB, Visual Studio, and OpenGL.
     Finally, we design a rotor system testing prototype, combined with the movement of a helicopter rotor system and dynamics of performance results of the analysis.
引文
1张呈林.直升机部件设计.航空专业教材编审组出版社,1988:1-15
    2 S. K. Kim and D. M. Tilbury. Mathematical Modeling and Experimental Identification of an Unmanned Helicopter Robot with Flybar Dynamics. Journal of Robotic Systems,2004,21(3):95-116
    3 C. Lange. The Dynamics of the Swashplate Mechanism of a VTOL Unmanned Aerial Vehicle. Multibody System Dynamics,2001,5(2):105-131
    4 A. Bauchau. Modeling Rotorcraft Dynamics with Finite Element Multibody Procedures. Mathematical and Computer Modelling,2001,33(10):1113-1137
    5 C. Lidstone. The Gimballed Helicopter Testbed: Design, Build and Validation. [Degree of Master of Applied Science, Department of Electrical and Computer Engineering, University of Toronto],2003:1-147
    6 C. L. Bottasso. Aeroelastic Simulation of Tilt-rotors Using Non-linear Finite Element Multibody Procedures. Second M. I. T. Conference on Computational Fluid and Solid Mechanics, Massachusetts Institute of Technology, Cambridge, MA, USA, June 17-20, 2003:1267-1270
    7 T. V. Holten. Forced Flapping Mechanism Designs for the Ornicopter: A Single Rotor Helicopter without Reaction Torque. Delft University of Technology, Kluyverweg 1,2629 HS Delft, The Netherlands,2005:1-11
    8 M. M. Heiligers. Test Results of a Radio-controlled Ornicopter: a Single Rotor Helicopter without Reaction Torque. 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada,2006:14-23
    9 M. M. Heiligers. Ornicopter Yaw Control :Testing A Single Rotor Helicopter Without Reaction Torque, American Institute of Aeronautics and Astronautics,2006:1-18
    10 M. R. Sabaapour and H. Zohoor. The Kinematic Analysis of a Swashplate Mechanism with the Flybar. MDP-9 Conference, Cairo University,2008:1403-1416
    11 J. Watkinson. The Art of the Helicopter. Oxford Paris San Diego San Francisco Singapore Sydney Tokyo.2008:117-165
    12 J. P. MERLET. Parallel Robots. Solid Mechanics and Its Application, Springer, 2006:1-300
    13 W. Khalil and S. Besnard. Self Calibration of Stewart-Gough Parallel Robots without Extra Sensors. IEEE Trans on Robotics and Automation, 1999, 15(6): 1118-1121
    14 J. A. Carretero, M. Nahon. Workspace Analysis of a 3-DOF Parallel Mechanism. Proceedings of the 1998 IROS Conference, Bictoria, British Columbia, Canada, 1998: 1021-1026
    15 D. Zlatanov and A.Bonev. Constraint Singularities of Parallel Mechanisms. Proceedings of the 2002 IEEE International Conference on Robotics & Automation Washington, DC,2002,1:496-502
    16黄真,李秦川.少自由度并联机器人机构的型综合原理.中国科学E辑:技术科学, 2003,33(9):813-819
    17 Y. M. Li, Q. S. Xu. Kinematics and Stiffness Analysis for a General 3-PRS Spatial Parallel Mechanism. ROMANSY-2004, Montreal, Canada-June 2004:14-18
    18 C. GOSSELIN, J. ANGELES. A Global Performance Index for the Kinematics Optimization of Robotic Manipulator. Transactions of the ASME,1991,113(1):220-226
    19刘新军.并联机器人机构尺寸与性能关系分析及其设计理论.[燕山大学工学博士论文],1999:1-30
    20 X. J. Guo, F. Q. Chang. Acceleration and Dexterity Performance Indices for 6-DOF and Lower-mobility Parallel Mechanism. ASME 2004 International Design Engineering Technical Conferences,2004:251-255
    21黄真,郭希娟.虚设机构法正确性的论证.机械工程学报,2001,37(5):40-43
    22 X. J. Guo, S. J. Zhu. Velocity and Acceleration Performance Indices Analysis of Spatial 2-loop Mechanism RSSR-SC. The 11th World Congress in Mechanism and Machine Science, Lc39. Apr.1-4, 2004:1108-1112
    23 X. J. Guo, S. J Zhu. Kinematic Performance Analysis for Planar Parallel Mechanism 3RRR. The 11th World Congress in Mechanism and Machine Science, Lc38.Apr. 1-4,2004:1223-1228
    24 X. J. Guo, Z. C. Wang. The Simulation of a Novel Parallel Robot. Proceedings of the Tenth IASTED International Conference on Robotics and Applications, August 23-25,2004:251-255
    25 X. J. Guo, S. Liu. The dynamics Simulation of Spatial RSSR_SC Mechanism. The Sixth Iasted International Conference On Modeling, Simulation, And Optimization September 11-13, 2006:69-74
    26杨育林,黄世军,刘喜平,郭希娟.2-RUUS机构动力学性能分析.机械工程学报, 2009:2-9
    27陈杰平,姚智华.基于MATLAB的曲柄滑块机构仿真研究.安徽技术师范学院学报,2005,19(4):31-34
    28刘振宇,徐方,陈英林.一种通用的机器人三维图形仿真的实现.机器人,2001, 23(5):404-406
    29徐益,颜文俊,诸静.机器人三维图形仿真的实现.计算机仿真,2002,20(7):72-75
    30 Y. H. Dong, L. X. Zhang. Dynamics Simulation of Cobot Based on MATLA. Journal of Harbin Engineering University,2005,26(1):92-97
    31 F. Sternheim. Tridimensionnal Computer Simulation of a Parallel Robot. Results for the Delta 4 Machine. In 18th Int. Symp. on Industrial Robot,1988:333-340
    32 K. M. Azad, M. O. Tokhi. A Matlab/simulink Based Environment for Intelligent Modeling and Simulation of Flexible Manipulator Systems. 2004 ASEE Annual Conference and Exposition,2004:1-14
    33李秦川.对称少自由度并联机器人型综合理论及新机型综合.[燕山大学工学博士论文],2003:1-50
    34黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社, 1997:20-22
    35 M. G. Mohamed, J. Duffy. A Direct Determination of the Instantaneous Kinematics of Fully Parallel Robot Manipulators. Trans. ASME J. Mech. Transm. Automation Design, 1985,107:226-229
    36郭希娟.并联机器人机构动力学基础理论研究.[燕山大学工学博士论文],2002:61-77.
    37 L. K. Byers. Helicopter Rotor Lag Damping Augmentation Based on a Radial Absorber and Coriolis Coupling. Annual Forum Proceedings-American Helicopter Society,2005,61(1):1019-1034
    38 S. Agarwal. Aeromechanical Stability Augmentation Using Semi-Active Friction Based Lead-Lag Damper. Vibration and Control,2005,9(1):1421-1452
    39杨东超.并联机构驱动副的选择.机械工程师.2007,8(1):1-6
    40车林仙.3-PSS/S三转动并联机器人机构的位置分析,机械设计,2008.32(3):15-17
    41韩先国.陈五一.基于螺旋理论3-PSS并联机构运动特性分析.机床与液压, 2005:12-24
    42梅江平.三自由度正交球面并联机构姿态正解,机械设计,2002.4(4):8-10
    43沈惠平.一种新型三维平移并联机构及其位置分析.中国机械工程,2004,15 (20):1853-1856
    44师名林,赵新华.四自由度串联机器人手的逆运动学建模及仿真.天津理工大学学报,2006,22(5):37-40
    45尚游,陈岩涛.OpenGL图形程序设计指南.北京:中国水利水电出版社.2001:10-20
    46 L. Pengyuan, Y. Jun, L. Lianjun. Real-time Graphic Generation Based on OpenGL Graphic Standard. Proceedings of the International Symposium on Test and Measurement, 2001,1:513-516
    47 M. Airlie. Open Source Graphic Drivers-They don't Kill Kittens. Linux Symposium, 2006,1:19-26
    48孙亮,马江,阮晓钢.基于OpenGL的六自由度机械臂三维仿真工具的设计.计算机测量与控制,2009,17(5):982-985
    49 R. Niese. A Novel Method for 3D Face Detection and Normalization. Journal of Multimedia,2007,2(5):1-12
    50 M. Woo, J. Neider. Third Edition of the OpenGL Programming Guide, ISBN 0-201-60458-2, 1999:10-35
    51 Nolan Goodnight. CUDA/OpenGL Fluid Simulation, April 2007:5-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700