带电粒子辐照带盖片GaAs/Ge太阳电池性能退化规律及机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过地面模拟空间环境实验,研究了质子、电子、质子加电子综合辐照对航天器上带盖片的GaAs/Ge太阳电池的辐照损伤效应,并通过暗特性分析,光照下伏安特性分析,揭示了辐照后太阳电池电性能参数的变化规律;利用光谱响应、光学反射率等测试手段研究了带盖片的GaAs/Ge太阳电池辐照前后微观结构和性能的变化,分析了不同辐照类型与不同粒子注量对GaAs/Ge太阳电池的损伤规律与导致性能退化的原因。
     SRIM和CASINO对GaAs/Ge太阳电池模拟结果表明:170keV的电子在电池中的入射深度达到了基区;1MeV电子穿透了整个电池,高能量剩余区在结区和衬底。电子入射深度远大于同能量质子,随着能量增加,入射深度增加,对电池的损伤增大。
     研究结果表明:170keV电子入射到PN结区,对电池的影响主要是电离效应。随着注量增加,低能电子辐照对盖片反射率影响不大,使光谱响应的短波段较明显衰降,电性能参数的总体衰减趋势为Pmax>Isc>Voc>FF。低能电子电离效应损伤主要是在窗口层和发射区(P区)。1MeV电子穿透整个电池,其对电池的损伤是电离加位移作用,它对电池电性能衰降,按严重程度排列依次是Pmax>Isc>FF>Voc。电子辐照后电池室温放置一段时间后发生退火效应,性能回复。
     暗特性研究结果表明:不同类型不同注量的辐照均使GaAs/Ge太阳电池串联电阻Rs增加和并联电阻Rsh减小;能量越高,注量越大,则作用程度越大。
     低能综合辐照的协同效应对电池电性能,玻璃盖片反射率,量子效率的影响整体表现为相互减弱。
On the basis of ground-based simulation for space irradiation environment, investigate the damage effect of the proton and electron single irradiation and co-irradiation on the GaAs/Ge solar cells with cover-glass. Dark I-V characteristic curve and I-V characteristic curve under solar simulator were studied to find how the cell parameters to change after irradiatinon. Spectral response, optical reflectance ratio et al was also investigated to get the change of inner-structure and property of solar cells, and the reason of property degradation induced by different irradiation types and different fluence of particles.
     By the results of SRIM and CASINO, we found that the incident depth of 170keV electron in cell is far more than that of proton and arrived at base region of solar cell. The depth of 1MeV incident electron is very deep which reach Ge substrate. The greater the energy of particles, the deeper the incident depth, and the greater the damage on the cells.
     The results show that, 170keV electron arrived at PN region, and they produce damage mainly through ionization effect. With the increase of radiation fluence, low energy electron have little effect on reflection ratio, but make the quantum efficiency decrease in the short wave band distinctly. Attenuation trend of cell electronic parameters after 170keV electron irradiation is Pmax>Isc>Voc>FF, and that after 1MeV electron irradiation is Pmax>Isc>FF>Voc.
     The damage effect of 1MeV electron on solar cell are ionization effect and displacement effect. The property of GaAs/Ge solar cells after irradiation were restored after some days because of anneal effect.
     The results of dark I-V characteristics show that, all kinds of irradiation and different fluences make the resistance in series Rs larger, and the parallel resistance smaller, and with the increase of energy and fluence, there effects are more greater.
     The integrated irradiation results show that, the effect of integrated irradiation on GaAs/Ge solar cells is not equal to the value of proton irradiation adding electronic irradiation, and synergistic effect is obvious. And there are some discusses in this thesis.
引文
1张新辉. GaAs/Ge太阳电池抗电子辐射研究.电源技术. 2004, 8(1): 17
    2施小忠,李世清,鄢和平等. GaAs太阳电池辐照效应的研究现状.半导体光电. 1995, 16(4): 313~321
    3胡震宇.空间辐照及热循环作用下背场硅太阳电池损伤效应与机理.哈尔滨工业大学博士论文. 2003: 1~6
    4王永东,崔容强,徐秀琴等.空间太阳电池发展现状及展望.电源技术. 2001, 25: 182~185
    5张忠卫,陆剑峰,池卫英等.砷化镓太阳电池技术的进展与前景.上海航天. 2003, (3): 33~38
    6何炜瑜. GaAs系列太阳电池技术与发展.中国民航学院学报. 2004, (4): 59~64
    7闵桂荣,郭舜.航天器热控制.第二版.科学出版社, 1998: 68~95
    8黄本诚.空间环境工程学.宇航出版社. 1993: 54~158
    9李承受.空间环境下材料的失效.宇航学报. 1992, (1): 1~7
    10 H. B. Garrett. Space Radiation Models. 1994, (0590): 1~12
    11赵晶.空间环境对航天器影响的统计分析.环境技术. 1988, (4): 41~52
    12都亨,叶宗海.低轨道航天器空间环境手册.国防工业出版社, 1996: 12~13, 99~177, 516~518, 402~404
    13金恂叔.论航天器的综合环境实验.环境技术. 1999, (2): 14~22
    14 D. J. Gorney. Solar cycle effects on near-earth plasma and space systems. Journal of Spacecraft and Rockets. 1989, (26): 428~437
    15 Gary Pippin. Space environments and induced damage mechanisma in materials. Progress in Organic Coatings. 2003, (47): 424~431
    16刘海.质子和电子对光学石英玻璃的辐照效应及机理.哈尔滨工业大学博士学位论文. 2003: 12, 32~34, 69~75
    17魏强.质子辐照引起石英玻璃光学性能变化的研究.哈尔滨工业大学硕士学位论文. 2002: 2~3
    18刘海,何世禹,刘金城,王怀义.空间辐照环境对光学材料作用效应的模拟研究.光学技术. 2002, 28(1): 44~45
    19乐贵明,叶宗海.低高度内辐射带高能质子空间分布位形的研究.空间科学学报. 2003, (7): 278~285
    20沈超,刘振兴.外辐射带动态演化的粒子模拟研究.空间科学学报. 2001, 21(3): 230~237
    21林国成,陈国珍,朱文明.空间带电粒子和航天器的相互作用.濮祖荫.空间物理前沿进展.气象出版社, 1998: 16~39
    22曹建中.半导体材料的辐照效应,北京:科学出版社, 1993, 35
    23 S. Endo, E. Yoshida, H. Nikjoo, S. Uehara, M. Hoshi, M. Ishikawa, K. Shizuma. A Monte Carlo track structure code for low energy protons. Nuclear Instrument and Methods in Physics Research B. 2002, (194): 123~131
    24李阳平,刘正堂,耿东生.靶材溅射及溅射原子输运的计算机模拟.功能材料. 2003, (5): 603~606
    25张文勇.高能质子在硅材料中输运的蒙特卡罗模拟.国防科学技术大学优秀硕士学位论文. 2002: 19~21
    26陈勇忠.铝的氮离子注入研究.中国工程物理研究院北京研究生部. 2003: 14~15
    27 K. Khalal~Kouache, A. C. Chami, M. Boudjema. P. Benoit-Cattin. Transport theory and Monte Carlo simulation of the scattering of low energy Li ions from a polycrystalline nickel surface. Nuclear Instrument and Methods in Physics Research B. 2001, (183): 279~284
    28谢建,马勇刚,廖华等.太阳电池及其应用技术讲座(二)太阳电池的原理和性能.可再生能源. 2007, 2(25): 111~112
    29张春玲.半绝缘砷化镓中微缺陷的研究.河北工业大学硕士论文. 2002: 2
    30刘恩科,朱秉升,罗晋生等.半导体物理学.第四版.西安交通大学出版社. 1998: 24~26
    31徐洁磊,王亮兴,张忠卫,池卫英等. GaAs/Ge太阳电池异常I-V特性曲线分析.半导体学报. 2005, 26: 192
    32张英达译.意大利砷化镓太阳能电池研究概况.中国航天. 1992, (2): 35
    33 T.Sumita, M.Imaizumi, S.Matsuda et al. Proton Radiation Analysis of Multi-Junction Space Solar Cells. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.2003, 206: 448
    34 XIANG Xianbi, DU Wenhui, LIAO Xianbo, CHANG Xiu fan. Proton Irradiation and Thermal Annealing of GaAs Solar Cells. CHINESE JOURNAL OF SEM ICONDUCTORS. 2001, 22(6): 710
    35张新辉. GaAs/Ge太阳电池抗电子辐射研究.电源技术. 2004, 8(1): 20
    36王祖军,唐本奇,黄绍艳,张勇,肖志刚,黄芳. GaAs太阳电池1 MeV电子辐射效应数值模拟.核电子学与探测技. 2005, 25(1): 97
    37王荣,杨靖波等.量子阱GaAs太阳电池的质子辐射效应.半导体学报. 2005, 26(8): 1558
    38林理彬,黄万霞,孔梅影.粒子束辐照在AlGaAs/GaAs量子阱材料中引入的深能级缺陷.人工晶体学报. 2005, 29(5): 248
    39 Robert Y. Loo, G. Sanjiv Kamath, Sheng S. Li. Radiation Damage and Annealing in GaAs Solar Cells. IEEE Transactions on Electron Devices. 1990, 37(2): 485~497
    40 Ronald C. Knechtli, Robert Y. Loo, G. Sanjiv Kamath. Hith-Efficiency GaAs Solar Cells. IEEE Transactions on Electron Devices. 1984, 31(5): 577~588
    41 J. C. Bourgoin, N. de Angelis. Radiation-Induced Defects in Solar Cell Materials. Solar Energy Materials and Solar Cells. 2001, (66): 467~477
    42 S. Makham et al. Prediction of proton-induced degradation of GaAs space solar cells. Solar Energy Materials & Solar Cells. 2006, 90: 1513~1518
    43 T. Sumit et al. Proton radiation analysis of multi-junction space solar cells. Nuclear Instruments and Methods in Physics Research. 2003, 206: 448~451
    44 N. Dmitruk, et al. Morphology, Raman scattering and photoluminescence of porous GaAs layers. Sensors and Actuators. 2007: 1~7
    45 Jeffrey H. Warner, et al. Correlation of Electron Radiation Induced~Damage in GaAs Solar Cells. IEEE TRANSACTIONS ON NUCLEAR SCIENCE. 2006, 53(4): 1988~1994
    46 M. Hadrami, et al.Relation between solar cell parameters and space degradation. Solar Energy Materials & Solar Cells. 2006, 90: 1486~1497
    47 Wenjun Chen, Zaixiang Qiao, Qiang Sun et al. Bragg Reflector for GaAsSolar Cells on Ge Substrate. Proceedings of SPIE, 2001, 4288: 414~421
    48 Hongwei Xu, Tingsheng Wang. Enhancement of Photoelectron Emission Efficiency of Negative Electron Affinity GaAs Cathode by Embedded GaAs/AlAs Multilayer Reflector. Chinese Journal of Semiconductors. 1992, 13(11): 675
    49 T. Miyamoto, T. Uchida, N. Yokouchi et al. Surface Emitting Lasers Grown by Chemical Beam Epitaxy. Journal of Crystal Growth. 1994, 136: 210
    50 Guohong Wang, Raoyu Ma, Qing Cao et al. High Intensity AlGaInP Yellow LEDs Grown by LP-MOCVD. Chinese Journal of Semi-conductors. 1998,19(9): 712
    51 A. Ibaraki, K. Kawashima, K. Furusawa et al. GaAs/GaAlAs DBR Surface Emitting Lasers Grown by MOVPE. Journal of Crystal Growth. 1988, 93: 809
    52 S. P. Tobin, S. M. Vernon, M. M. Vernon et al. Enhanced Light Absorption in GaAs Solar Cells with Internal Bragg reflectors. 22th IEEE Photovoltaic Specialists Conference, 1991, 147
    53 D. B. Bushnell, N. J. Ekins-Daukes, K. W. J. Barnham et al. Short-Circuit Current Enhancement in Bragg Stack Multi-Quantum-Well Solar Cells for Multi-Junction Space Cell Applications. Solar Energy Materials and Cells. 2003, 75: 299~305
    54 P. A. Iles, Yea~Chuan M. Yeh, F. H. Ho et al. High-Efficiency GaAs Solar Cells Grown on Inactive-Ge Substrates. IEEE Electron Device Letters. 1990, 11(4): 140~142
    55 S. P. Tobin, S. M. Vernon, C. Bajgar et al. MOCVD Growth of AlGaAs and GaAs on Ge Substrates for High Efficiency Tandem Cell Applications. 18th IEEE Photovoltaic Specialists Conference, 1985, 134~139
    56 S. P. Tobin. High Efficiency GaAs/Ge Monolithic Tandem Solar Cells. 20th IEEE Photovoltaic Specialists Conference, 1988, 405~410
    57陆剑峰,张忠卫,池卫英等.空间用GaAs/Ge太阳电池器件工艺研究.稀有金属. 2004, 28(3): 508~510
    58张志和.用MOCVD法制作GaAs太阳能电池.液晶与显示. 1990, 4:46~48
    59 J. C. Chen, M. Ladle Ristow, J. L. Cubbage et al. Effects of Metalorganic Chemical Vapor Deposition Growth Conditions on the GaAs/Ge Solar Cell Properties. Applied Physics Letters. 1991, 58(20): 2282~2284
    60 M. Gonzalez, C. L. Andre. Deep Level Defects in Proton Radiated GaAs Grown on Metamorphic SiGe/Si Substrates. Journal of Applied Physics. 2006, 100(034503)
    61 A. Blondeel, P. Clauws, B. Depuydt. Life Time Measurements on Ge Wafers for Ge/GaAs Solar Cells-Chemical Surface Passivation. Materials Science in Semiconductor Processing. 2001, 4: 301~303
    62 Ken Takahashi, Shigeki Yamada, Tsunehiro Unno et al. Characteristics of GaAs Solar Cells on Ge Substrate with a Preliminary Grown Thin Layer of AlGaAs. Solar Energy Materials and Solar Cells. 1998, 50: 169~176
    63 Chen Minbo, Zhang Zhongwei. Development of the GaAs Solar Cell for Space Application. 25th IEEE Photovoltaic Specialists Conference, Washington. D. C, 1996, 122
    64王荣,司戈丽,郭增良等. 5~20MeV高能质子辐照对空间实用GaAs/Ge太阳电池性能的影响.北京师范大学学报(自然科学版). 2002, 38(2): 214~217
    65 W. R. Hardgrove. Space Simulation Test for Thermal Control Materials. 16th Space Simulation Conference, New York, 1990: 267~279
    66金恂叔.航天器环境试验的有效性.环境技术. 1998, (2): 1~11
    67航天工业部标准.太阳电池电性能测试方法. QT1. 1986: 1~5
    68杜梅芳,刘忠厚.光电池中的新参数.电站系统工程. 1994, 2(10): 61~62
    69李澄举.太阳能电池的辐射损伤机理.微波与卫星通信. 1997, 3: 19~21,
    70黄嘉豫,秦蕙兰.太阳电池特性的研究和参数的测量.西安交通大学学报. 1981, 1(15): 114~120
    71孙承月.太阳能电池板玻璃盖片的空间带电粒子环境损伤效应研究. 2007: 29~32
    72 FALCONER. Fractal geometry mathematic foundation and application. New York Wiley , 1990
    73任明凡,王培珍.太阳电池I-U特性曲线的拟合.安徽工业大学学报. 2007, 2(24): 195~201s
    74郑建邦,任驹等.太阳电池内部电阻对其输出特性影响的仿真.太阳能学报. 2006, 2(27): 121~124
    75 A. Kaminski, J.J. Marchand, A. Fave and A. Laugier. NEW METHOD OF PARAMETERS EXTRACTION FROM DARK I-V CURVE. 26th PVSC, 1997: 203~206
    76 A. Ortiz-Conde, F. J. Garcia Sanchez, J. J. Liou, J. Andrian, R. J. Laurence, P. E. Schmidt, A generalised model for a twoterminal device and its applications to parameter extraction. Solid-Stute Electronics. 1995, 38(1): 265~266.
    77 C. D. Lien, F. C. T. So, M. A. Nicolet. An improved forward I-V method for iionideal Schottky diodes wth high senes resistance. Electron Devices. 1984, (31): 52
    78 T. C. Lee, S. Fung, C. D. Beling, H. L. Au. A systematic approach to the measurement of ideality factor, series resistance, and barrier high for Schottky diodes. J. Appl. Phys. 1992, (72): 4739~4742
    79 J. H. Werner. Schottk barrier and pn-junction I/V plots Small signal evaluation. Appl Phys. 1988, (47): 291~300.
    80洛阳市740厂六连.硅太阳能电池的串联电阻. China Academic Journal Electronic Publishing House. 1998, (5): 14~20
    81陈庭金,袁海荣.工业化生产硅太阳电池的特性分析.半导体光电. 1998, 6(19): 376~379
    82刘运宏,王荣,孙旭芳等. GaAs太阳电池引入量子阱结构后抗辐射性能的变化.核技术. 2006, 29(4): 269~270
    83 R. Kachare, B. E. Anspaugh. Spatial Resolution and Nature of Defects Produced by Low-Energy Proton Irradiation of GaAs Solar Cells. Applied Physics Letters. 1986, 49(21): 1459~1461
    84刘运宏,王荣,孙旭芳.碳离子辐射对空间GaAs/Ge太阳电池性能影响的研究.核技术. 2007, 30(4): 260~261
    85赵慧杰,何世禹,肖志彬等. 50-170keV质子照射对GaAs/Ge太阳电池光谱响应的影响.核技术. 2008, 1(31): 31~35
    86都享,叶宗海.低轨道航天器空间环境手册.国防工业出版社, 1996:12~13 99~177 516~518 402~404
    87王同权,沈永平,王尚武等.空间辐射环境中的辐射效应.国防科技大学学报. 1999, 21(4): 36~39
    88黄昆,韩汝琦.半导体物理基础.北京科学出版社, 1979: 101
    89 W. Shockley, J.T. Last. Statistics of the charge distribution for a localized flaw in a semiconductor, Phys. Review. 1957, (107): 392
    90刘祖明.晶体硅太阳能电池及其电子辐照研究.四川大学博士论文. 2002: 115
    91 J. C. Bourgoin, M. Zazoui. Irradiation-Induced Degradation in Solar cell Characterization of Recombination Centres. Semiconductor Science and Technology. 2002, 17: 453~460
    92 M. Hadrami, L. Roubi, M. Zazoui et al. Relation Between Solar Cell Parameters and Space Degradation. Solar Energy Materials and Solar Cells. 2006, (90): 1486~1497
    93 N. de Angelis, J. C. Bourgoin, Y. Takamoto et al. Solar Cell Degradation by Electron Irradiation Comparison between Si, GaAs and GaInP Cells. Solar Energy Materials and Solar Cells. 2001, (66): 495~500

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700