6-DOF并联机器人动力学建模及其控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以燕山大学自行研制的液压驱动六自由度并联机器人实验室样机为研究对象。首先介绍了六自由度并联机器人的结构以及六自由度平台的发展概况、应用前景。目前有关并联机器人动力学方面的研究还不充分,所建立的动力学模型过于复杂,不便于控制理论和控制工程学者进行研究。为此,本文利用拉格朗日方法对并联机器人的动力学模型进行了详细推导,建立起了六自由度并联机器人的拉格朗日动力学模型。该模型不仅全面地
    表征了六自由度并联机器人的动力学特性,而且形式简单、通用,同串联机器人的动力学模型结构完全相同,使得已经发展成熟的串联机器人控制算法应用于并联机器人成为可能;在建立了动力学模型的基础上,从实时性要求的角度出发,提出利用多处理器进行并行运算,这样采用并行处理方法可以大大地降低运算时间,从而为投入实际应用打下坚实的基础;由于机器人系统参数的不确定性导致在系统坐标变换过程中出现误差进而影响系统的控制效果,本文利用估计的雅可比矩阵,提出一种PID控制器,仿真结果证明该控制方法有效;目前机器人控制器绝大部分要求全状态反馈,但是其中的速度反馈难以实现,针对这种情况,利用观测器观测的速度代替实际的速度信号,所得到的控制效果比较理想;另外随着系统日益复杂,不可能对系统实现精确地建模,而模糊控制集中了人类专家的知识,无需系统模型,自适应控制能够对系统参数的不确定性产生较好的控制效果,将自适应控制和模糊控制结合形成自适应模糊控制达到了很好的控制效果,并证明了系统的渐进稳定性,同时将其引入到6-DOF并联机器人的运动控制中,仿真结果验证了方法的有效性。
This paper mainly studies the experimental prototype of hydraulically actuated 6-DOF parallel robot that developed by Yanshan university. Firstly, the structure, present situation of 6-DOF parallel robot and its application prospect are introduced. Now the research on dynamics of parallel robot is not sufficient and its dynamics model is too complex to study for control theory and control engineering scholars. To this end, using Lagrange method, this paper deduced the dynamics model of parallel robot in detail and set up a Lagrange dynamics model of 6-DOF parallel robot with simple and universal form, which shows the dynamics characteristics fully. Moreover, the same structure as serial robot's makes the maturely serial robot control methods can be adopted to parallel robot. From the view of real time request, a multi-processor method to do parallel operation that can reduce operation time greatly is presented, thus it lays a good foundation for practice. It also will impact on the control effect for error during the system coordinate conversion resulted in the uncertainty of robot system parameter. Using estimated Jacobian matrix, a kind of PID controller is proposed in this paper and simulation result shows the expected control effect. The most robot controller require all-state feedback while the velocity feedback is hard to realize, point to this, we replaced the actual velocity signal with observed velocity to achieve the expect control effect. In addition, it's impossible to attain an accurate modeling in view of increasingly complex system. Fuzzy control do not require system model and adaptive control do well with system uncertainty, so it will bring better control effect and testify the asymptotic stability as a result of adaptive control combined with fuzzy control, at the same time, it can introduce to the motion control of 6-DOF parallel robot. Simulation result validates its effectiveness.
引文
1 熊有伦. 机器人学.北京:机械工业出版社,1993
    2 孙迪生, 王炎. 机器人控制技术.北京:机械工业出版社,1998
    3 蔡自兴. 机器人学.北京:清华大学出版社,2000
    4 谈大龙. 世纪之交机器人的研究动向与前景.科技成果纵横, 1997,(1):23-25
    5 A. Cauchy. Deuxième Mémoire Sur les Polygones et les Polyèdres. Journal de l'Ecole Polytechnique,1813,87-98
    6 李桥梁, 吴洪涛, 朱剑英. Stewart机床发展大事记. 机械设计与制造工程,1999, 28(4):6
    7 D. A. Stewart. A Platform with 6-DOF. Proc. On Institution of Mechanical Engineering,1965,18(1):371-386
    8 K. H. Hunt. Kinematic Geometry of Mechanisms Oxford:Claredon Press,1978
    9 H. McCallion, D. T. Pham. The Analysis of a Six Degrees of Freedom Work Station for Mechanized Assembly. In Proc. 5th World Congress on Theory of Machines and Mechanisms,1979,611-616
    10 黄真, 孔令富, 方跃法. 并联机器人机构学理论及控制.北京:机械工业出版社, 1997
    11 http://www.ca.sandia.gov/hexapod.html
    12 汪劲松, 段广洪, 杨向东, 朱铁军, 等. VAMITIY虚拟轴机床. 制造技术与机床, 1998,(2):42-43
    13 黄田, 王洋. 3-HSS并联机床总体布局及运动学设计理论浅析. 第一届并联机器人机机床设计理论与关键技术研讨会论文,清华大学,1999:5
    14 赵明扬, 余晓流, 王启义, 房立金. 一种并联机床运动平台位姿测量方法. 中国机械工程,1999,10(10):1112-1113
    15 李兵. 并联机床原型样机设计及性能分析. [哈尔滨工业大学工学博士学位论文].1999
    16 王知行, 李建生. BJ-1型并联机床. 制造技术与机床,1999,8:55
    17 Marconi. The Gadfly Manipulator. Research Report 732, Marconi Research Centre, Juin 1985
    18 F. Sternheim. Tridimensionnal Computer Simulation of a Parallel Robot. Results for
    
    the Delta 4 Machine. In 18th Int. Symp. on Industrial Robot, 1988,333-340
    19 T. Arai, K. Cleary, K. Homma. Development of Parallel Link Manipulator for Underground Excavation Task. 1SART,1991,541-548
    20 王启明, 胡明, 郭成, 蔡光起. 并联式钢坯修磨机器人动力学机轨迹规划研究.机器人,1999,21(1):69-74
    21 http://www-sop.inria.fr/coprin/equipe/merlet/Photo/mosaic.html
    22 C. H. An, et.al. Experimental Evaluation of Feedforward and Computed Torque Control. Proc. IEEE Intl. Conf. Robotics and Automation,1987, 165-168
    23 G. W. Ellis. Piezoelectric Micromanipulators. Science Instruments and Techniques, 1962,138:84-91
    24 M. Washizu. Manipulation of Biological Objects Mechanical Structures. in Proc. IEEE Micro Mechanical System,1992,196-201
    25 R. Stoughton. Kinematic Optimization of a Chopsticks-Type Micromani- pulator. ASME Japan/USA Symp on Flexible Automation, 1992, 1:151-157
    26 J. C. Hudgens, D. A. Tesar. Fully-Parallel Six Degree of Freedom Micro- manipulator: Kinematic Analysis and Dynamic Model. Proc. 20th Biennal ASME Mechanisms Conf Trends and Development Machines and Robotics, 1988, 15(3):29-37
    27 K. M. Lee, S. A. Arjunan. Three DOF Micro Motion Parallel Actuated Manipu- lator. IEEE Int. Conf. On Robotics and Automation,1989, 1698-1703
    28 R. Ranikawa, T. Arai. Two Finger Micro Hand. IEEE Int Conf. On Robotics and Automation,1995,1674-1679
    29 T. Dohi. Computer Aided Surgery and Micro Machine. Sixth International Symposium on Micro Machine and Human Science. IEEE Int. Conf. On Robotics and Automation,1993,21-24
    30 K. W. Grace, J. E. Colgate. A 6-DOF Micro-manipulator for Ophthalmic Surgery. IEEE Conf. On Robotics and Automation,1993,630-635
    31 杨宜民. 仿生型步进式直线驱动器的研究. 机器人,1994,16(1):37-39
    32 孙立宁. 组合积木式微机器人的研究与应用. 仪器仪表学报, 1998,19(5): 465-470
    33 毕树生, 王守杰, 宗光华. 串并联微动机构的运动学分析. 机器人, 1997,19(4):
    
    259-264
    34 徐卫平, 张玉茹. 六自由度微动机构的运动分析. 机器人, 1995,17(5):298-302
    35 杜铁军. 机器人误差补偿器研究.[燕山大学工学硕士学位论文].1994
    36 陈恳, 李嘉, 董怡, 张伯鹏. 并联微操作手的运动学分析. 中国机械工程, 1998, 9(7):57-59
    37 C. C. Nguyen, etal. Analysis and Experimentation of a Stewart Platform- Based Force/Torque Sensor. International Journal of Robotics and Automation, 1995,7(3):133-140
    38 Wang Hongrui, Gao Feng, Huang Zhen. Design of 6-axis Force/Torque Sensor Based on Stewart Platform Related to Isotropy. Chinese Journal of Mechanical Engineering,1998,11(2):150-162
    39 M. Uchiyama, Evaluation of Robot Sensor Structure Using Singular Value Decomposition Journal of the Robotics Society of Japan 1987,5(1):4-10
    40 熊有伦. 多维力传感器的各向同性.自动化学报,1996,22(1):16-22
    41 E. Bayo. Six-axis Force Sensor Evaluation and a New Type of Optimal Frame Truss Design Robotic Application. Journal of the Robotic Systems,1989, 6(2):191-208
    42 D. Dirk, R. Dominiek, V. B. Hendrik. Design of a Ring-shaped 3-Axis Micro Force/Torque Sensor. Sensors and Actuators,1995 A(46-47):225-232
    43 徐科军, 李成. 多维腕力传感器静态解耦的研究. 合肥工业大学学报,1999, 22(4):1-7
    44 E. F. Fichter. Kinematics of a Parallel Connection Manipulator. In ASME Design Engineering Technology Conf.,1984,Cambridge:1-8
    45 D. C. H. Yang, T. W. Lee. A Feasibility Study of the Platform Type of Robotic Manipulator-From the Kinematic Viewpoint. ASME J.Mech Transmits Autuo. Des., 1984,106(2):191-198
    46 曲义远, 黄真. 空间六自由度并联机构位置的三维搜索方法.机器人,1989, 11(5):25-39
    47 C. Innocenti, V. Praenti-Castelli. Forward Kinematics of the General 6-6 Fully Parallel Mechanism: An Exhaustive Numerical Approach Via a Mono- Dimensional Search Algorithm. Trans. ASME. J. Mech. Des.,1993,115: 932-937
    48 B. Dasgupta, T. S. Mruthyunjaya. A Constructive Predictor-Corrector Algorithm for
    
    the Direct Position Kinematic Problem for a General 6-6 Stewart Platform. Mechanism and Machine Theory,1996,31(6):31(6):799-811
    49 M. Raghavan. The Stewart Platform of General Geometry has 40 Configur- ations. ASME Journal of Mechanical Design,1993,115:277-282
    50 梁崇高, 荣辉. 一种Stewart平台机械手位移正解.机械工程学报,1991,27(2): 26-30
    51 W. Lin, M. Griffs. Closed-Form Forward Displacement Analysis of the 4-5 In-Parallel Platforms. Proc. ASME Des. Tech. Cont.,1992,45:521-527
    52 N. Turkkan. Solving the Forward Kinematics of Parallel Manipulators with a Genetic Algorithm. Journal of Robotic Systems,1996, 13(20): 111-125
    53 Choon seng Yee, Kah-bin Lim, Forward Kinematics Solution of Stewart Platform Using Neural Networks Neurocomputing,1997,16:333-349
    54 Ilian A. Bonev, Jeha Ryu. A New Method for Solving the Direct Kinematics of General 6-6 Stewart Platform Using Three Linear Extra Sensors. Mechanism and Theory,2000,35:423-436
    55 E. F. Fichter. A Stewart Platform-Based Manipulator: General Theory and Practical Construction. Int. J. of Rob. Res.,1986,5(2):157-182
    56 C. M. Gosselin, J. Angeles. Singularity Analysis of Closed-Loop Kinematic Chains. IEEE Trans. On Rob. and Aut.,1990,6(3):281-290
    57 K. H. Hunt. Structural Kinematics of in Parallel Actuated Robot Arms. J. of Mechanisms, Transmissions and Automation in Design,1983,105: 705-712
    58 J. P. Merlet. Singular Configurations of Parallel Manipulators and Grassman Geometry. Int. J. Robot. Res.,1989,8(5):45-56
    59 B. Dasgupta, T. S. Mruthyunjaya. Singularity-free Path Planning for the Stewart Platform Manipulator. Mechanism and Machine Theory,1998,33(6): 711-725
    60 V. Kunmar. Characterization for Workspaces of Parallel Manipulators. ASME J. Mech. Des.,1992,114:368-375
    61 D. Y. Jo. Workspace of Analysis Closed Loop Mechanism with Unilateral Constraints. Adv. in Des. Automat,1989,3:53-60
    62 C. Gosselin. Determination of the Workspace of 6-dof Parallel Manipulators. ASME J. of Mechanical Design,1990,112(3):331-336
    
    
    63 J. P. Merlet. Geometrical Determination of Workspace of A Constrained Parallel Manipulators. In:ARK.France,1992,326-329
    64 Z. Ji. Workspace Analysis of Stewart Platforms via Vertex Space. J. Robotic Systems,1994,11(7):631-638
    65 J. P. Merlet. Determination of The Orientation Workspace of Parallel Manipulators. J of Intelligent and Robotic System,1995,13:143-160
    66 O. Masofy, J. Wang. Workspace Evaluation of Stewart Platforms. ASME,1992, 45:337-346
    67 黄田, 汪劲松. Stewart并联机器人位置空间解析.中国科学(E辑),1998,28(2): 136-145
    67 K. Sugimoto. Computational Scheme for Dynamic Analysis of Parallel Manipulators. Journal of Mechanisms, Transmissions and Automation in Design,1989, 111:29-33
    68 W. Q. D. Do, D. C. H. Yang. Inverse Dynamic Analysis and Simulation of a Platform Type of Robot. Journal of Robotic Systems,1988,5(3):209-227
    69 Z. Geng, L. S. Haynes, J. D. Lee, R. L. Carroll. On the Dynamic Model and Kinem- atic Analysis of a Class of Stewart Platforms. Robotics and Autonomous Systems, 1992,9: 237-254
    70 K. Liu, F. Lewis, G. Lebret, D. Taylor. The Singularities and Dynamics of a Stewart Platform manipulator. Journal of Intelligent and Robotic Systems,1993,8:287-308
    71 Z. Ji. Dynamics Decomposition for Stewart Platforms. ASME Journal of Mechanical Design,1994,116(1):67-69
    71 Z. Huang, H. B. Wang. Dynamic Force Analysis of 6-DOF Parallel Multiloop Robot Manipulators ASME Paper 86-DEF-168 1986
    73 孔令富. 六自由度并联机器人运动控制系统的研究 [哈尔滨工业大学工学博士学位论文].1995
    74 王常武, 孔令富, 韩佩富, 赵立强. 改进的6-DOF并联机器人Lagrange动力学模型及其并行处理.计算机工程与应用,2000 (3):78-79
    75 B. Dasgupta, T. S. Mruthyunjaya. A Newton-Euler Formulation for The Inverse Dynamics of The Stewart Platform Manipulator. Mechanism and Machine Theory, 1998,33(8):1135-1152
    76 C. M. Gosselin. Parallel Computational Algorithms for the Kinematics and
    
    Dynamics of Planar and Spatial Parallel Manipulators. ASME Journal of Dynamic Systems Measurement and Control,1996,118:22-28
    77 G. Lebret, K. Liu, F. Lewis. Dynamic Analysis and Control of a Stewart Platform Manipulator Journal of Robotic Systems,1993,10(5): 629-655
    78 C. C. Nguyen, S. S. Antrazi, Z. L. Zhou. Adaptive Control of a Stewart Platform-based Manipulator Journal of Robotic Systems,1993,10(5): 657-687
    79 N. Kim, C. W. Lee. High Speed Tracking Control of Stewart Platform Manipulator via Enhanced Sliding Mode Control. Pro. of the IEEE International Conference on Robotics and Automation,1998,2716-2721
    80 K. Liu, M. Fitzgerald, D. W. Dawson, F. L. Lewis. Control of Systems with Inexact Dynamic Models,ASME,1991,33:83-89
    81 K. Liu, G. Lebret, J.A. Lowe, F.L. Lewis. Advanced Control Issues for Robot Manipulators. ASME,1992,39:23-30
    82 H. Wang, C. Xue, W. A. Gruver. Neural Network Control of a Parallel Manipu- lator. Proc. of 1995 IEEE International Conference on Systems, Man, and Cybernetics, 1995,2934-2938
    83 J. D. Lee, Z. Geng. Dynamic Model of Flexible Stewart Platform. Computers and Structures, 1993,48(3):367-374
    84 王洪瑞. 液压6-DOF并联机器人操作手运动和力控制研究. 保定:河北大学出版社,2001
    85 B. Dasgupta, T. S. Mruthyunjaya. The Stewart Platform Manipulator: a Review. Mechanism and Machine Theory, 2000,35:15-40
    86 K. Miller, R. Clavel. The Lagrangian-Based Model of Delta-4 Robot Dynamics. Int. Journal of Robotics System, 1992,8:49-54
    87 P. Gugliemetti, R. Longchamp. A Closed Form Inverse Dynamics Model of the Delta Parallel Robot. In Proc. 1994 International Federation of Automatic Control Conference on Robotic Control, 1994:39-44
    88 Y. Nakamura, M. Ghodoussi. Dynamics Computation of Closed-Link Robot Mechanisms with Non-Redundant and Redundant Actuators. IEEE Trans. on Robotics and Automation, 1989,5(3):294-302
    89 C. D. Zhang, S. M. Song. An Efficient Method for Inverse Dynamics of
    
    Manipulators Based on the Virtual Work Principle. Int. Journal of Robo- tics Systems, 1993,10(5):605-627
    90 W. Seyerth, AJ. Maghzal, J. Angeles. Nonlinear Modeling and Parameter Identification of Harmonic Drive Robotic Transmissions. Proceedings of the IEEE International Conference on Robotics and Automation, Agoya, Japan, 1995, 3027-3032
    91 Alain Codourey. Dynamic Modeling of Parallel Robots for Computed- Torque Control Implementation. The International Journal of Robotics Research, 1998, 17(12):1325-1336
    92 刘敏杰. 并联机器人动力学与自适应控制技术研究. [上海交通大学工学博士学位论文]. 2001
    93 杨香兰. 6-DOF并联机器人动力学建模、模糊变结构控制. [燕山大学工学硕士学位论文]. 2001
    94 张雄伟. DSP芯片的原理与开发应用. 北京:电子工业出版社, 1997
    95 吴健珍. 6-DOF并联机器人非线性鲁棒自适应控制研究. [燕山大学工学硕士学位论文].2001
    96 C. C. Cheah, S. Kawamura, S. Arimoto. Feedback Control for Robotic Manipulator with Uncertain Kinematics Dynamics. Proceeding of the 1998 IEEE International Conference on Robotics and Automation, Leuven,Belgium,1998,3607-3612
    97 C. C. Cheah, S. Kawamura, S. Arimoto, K. Lee. PID Control of Robotic Mani- pulator with Uncertain Jacobian Matrix. Proceeding of the 1999 IEEE International Conference on Robotics and Automation, Detroit, Michigan, 1999,494-499
    98 S. Arimoto. Control Theory of Nonlinear Mechanical Systems-A Passivity- Based and Circuit Theoretic Approach. Clarendon Press, Oxford, 1996
    99 S. Nicosia, P. Tomei. Robot Control by Using Only Joint Position Measur- ements. IEEE Transactions on Automation Control, 1990,35(9):1058-1061
    100 T. Burg. An Adaptive Partial State Feedback Controller for RLED Robot Manipulators. IEEE Trans. Auto. Contr., 1996,41(7):1024-1030
    101 S. Y. Lim, J. Hu, D. M. Dawson, M. Queiroz. A Partial State Feedback Controller for Trajectory Tracking of Rigid-Link Flexible-Joint Robots Using an Observed Backstepping Approach. Journal of Robotic Systems, 1995,12(11):727-746
    
    
    102 代颖. 不确定性机器人鲁棒自适应控制方法研究. [西安交通大学工学博士学位论文].1998
    103 K. Tanake, M. Sugeno. Stability Analysis and Design of Fuzzy Control Systems. Fuzzy Sets and Systems, 1992,45(2):135-156
    104 K. Tanake, M. Sano. A Robust Stabilization Problem of Fuzzy Control Systems and Its Application to Backing up Control of a Truck-Trailer. IEEE Trans. Fuzzy Systems, 1994,2(2):119-134
    105 王立新. 自适应模糊系统与控制—设计与稳定性分析. 北京:国防工业出版社, 1995
    106 S. Tong, T. Wang, J. Tang. Fuzzy Adaptive Output Tracking Control of Nonlinear Systems. Fuzzy Sets and Systems, 2000,111,169-182
    107 Y. Tang, N. Zhang, Y. Li. Stable Fuzzy Adaptive Control for a Class of Nonlinear Systems. Fuzzy Sets and Systems, 1999,104,279-288
    108 李少远, 耿昕, 田永青. 一类非线性系统的自适应模糊控制. 控制与决策, 1999, 14(2):173-176
    109 郑怀林, 叶桦, 陈维南. 一种自适应模糊控制器. 控制理论与应用, 2000,17(4): 533-536
    110 张乃尧, 金辉. 对稳定的模糊自适应控制方案的研究与改进. 自动化学报,1997,23(2):160-166
    111 H. Zhang, Z. Bien. Adaptive Fuzzy Control of MIMO Nonlinear Systems. 2000, 115,191-204
    112 S. Tong, J. Tang, T. Wang. Fuzzy Adaptive Control of Multivariable Nonlinear Systems. Fuzzy Sets and Systems, 2000,111,153-167
    113 A. Isodori. Nonlinear Control Systems. Springer, New York, 1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700