并联机器人汉字雕刻技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为串联机器人的对偶机构,并联机器人具有刚度大、精度高、位置误差不累积等特点,已成为机器人领域的研究热点。目前,并联机器人在航空、航天、海底作业、制造领域、辅助医疗和微机电系统等方面有着广泛而重要的应用。
    虽然在并联机器人的实际应用和理论研究中均已取得了大量的成果,但在并联机器人的机构学、运动学、动力学、运动控制、路径规划及实际应用方面仍存在一些挑战性的问题。为了充分发挥并联机器人的优点并扩大其应用范围,本文在河北省自然科学基金的资助下将并联机器人应用于汉字雕刻领域。为了使并联机器人实现汉字雕刻功能,作者对该过程中涉及到的汉字图像处理、雕刻刀路的规划与生成、运动学分析、动力学分析、雕刻力的计算及控制等理论和技术问题进行了深入的研究。
    研究了将汉字图像信息转化为并联机器人雕刻刀路信息的通用方法,主要包括:归一化、边缘轮廓提取等汉字图像的预处理算法;基于改进的模板匹配的汉字图像细化算法;基于距离的汉字笔画抽取算法;平面凸、凹雕刻刀路的生成算法;平面刀路到球面等其它复杂曲面刀路的映射算法;刀具姿态实时规划方法等。在此基础上组建开发了包括软硬件在内的并联机器人汉字雕刻系统。
    对并联雕刻机器人的运动学和动力学进行了分析和研究。求解了雕刻机器人的一、二阶影响系数矩阵,并基于影响系数矩阵对其角速度、线速度、角加速度、线加速度、力与力矩、惯性力等运动学和动力学性能指标进行了分析,根据所得的性能图谱可选择出各项性能指标都相对较好的机构尺寸。给出了基于自构型快速 BP网络的并联机器人位置正解通用方法并以雕刻机器人为例进行了分析。基于牛顿-欧拉方法建立了雕刻机器人的动力学模型,并利用该模型进行了动力学实验分析。
    对雕刻力及其控制技术进行了研究。对影响雕刻力的因素进行了分析,给出了雕刻力的计算方法,特别研究了常用的宋体、黑体、隶书和楷体四种不同字体对雕刻力的影响。提出了基于模糊神经网络的雕刻力控制方法,并与传统的阻抗控制技术进行了比较,实验结果验证了该方法的有效性和可行性。
    设计了基于 B/S 模式的并联机器人远程汉字雕刻系统的总体结构方案。对其中的视频信息实时传输、远程雕刻信息的提交和解析、任务控制等技术进行了研究和实现。
As the counterpart mechanism of serial robot, parallel robot has merits such as high mechanical stiffness, high precision and no accumulation of position errors etc, and has become a hot research topic in domain of robot. At present, parallel robot has found its wide and important applications in such areas as aviation, astronautics, submarine engineering, manufacturing, computer aided medical equipment and mirco eletro-mechanical system(MEMS) etc.
    Nevertheless, there still exist some challenging problems in mechanics, kinematics, dynamics, motion control, path planning and practical applications of parallel robot in spite that a large amount of achievements have been obtained in theory investigation and practical application. Supported by natural science fund of Hebei province, parallel robot will be applied into area of engraving Chinese characters in this dissertation to fully exert its merits and extend its application area. To make parallel robot engrave Chinese characters successfully, the author implements deep research on related theory and technology such as image processing of Chinese characters, planning and generating of tool path for engraving, analysis of kinematics and dynamics, calculation and control of engraving force etc.
    A general method for transforming image information of Chinese characters into engraving tool path information of parallel robot is studied. It mainly includes the following contents:algorithms for image preprocessing of Chinese characters such as normalization and contour extraction etc; an improved thinning algorithm of Chinese characters’ image based on template matching and a novel stroke extraction algorithm based on distance; protruding and concave tool path generating algorithm for engraving on plane; tool path mapping algorithm from plane to sphere and other complicated curved surface; real-time planning method of cutting tool’s guise etc. Chinese characters engraving system based on parallel robot, including both hardware and software, is organized and developed also.
     Kinematics and dynamics of parallel engraving robot are studied. The first and the second order influence coefficient matrices are computed, and mechanical performances for kinematics and dynamics such as angular velocity, linear velocity, angular acceleration, linear acceleration, force and moment, inert force are analysed based on its influence coefficient matrices. So the mechanism size with better performance for every index can
    be selected according to the performance atlas. A general forward displacement solution for parallel robot based on self-configuration quick BP neural network is presented, and analysis result for the engraving robot is given. The rigid body dynamics model of engraving robot is established based on Newton-Euler method, and dynamics experiment is also analysed with this model. Engraving force and its control technology is studied, the factors influence on engraving force are analysed, and calculating method of engraving force is given. Especially, the influence of different fonts such as Song, Hei, Lishu and Kai on engraving force is studied. The control method of engraving force based on fuzzy neural network is proposed, and its difference between traditional impedance is also discussed, experiment results verify the validity and feasibility of proposed method. The overall system scheme of remote Chinese characters’ engraving for parallel robot based on B/S mode is designed. The several technologies such as video information real-time transmission, submission and analysis of remote engraving information and task control etc are deeply studied and realized.
引文
1 黄真,孔令富,方跃法. 并联机器人机构学理论及控制. 北京:机械工业出版社,1997:1-394
    2 黄真.并联机器人机构学基础理论的研究.机器人技术与应用,2001,14(6):11-14
    3 K.H. Hunt. Structural Kinematics of In-parallel-actuated Robot-arms. Transaction of the ASME Journal of Mechanusms, Transmissions and Automation in Design. 1983,105(12):705-712
    4 于晖.6-HTRT 并联机器人机构及运动学分析.[哈尔滨工业大学博士学位论文].2002:1-2
    5 J. E. Gwinnett. Amusement Devices. US Patent No. 1,789,680, January 20, 1931
    6 W. L. G. Pollard. Spray Painting Machine. US Patent No. 2,213,108, August 26, 1940
    7 V. E. Gough, S. G. Whitehall. Universal Tyre Test Machine. Proceedings of the FISITA Ninth International Technical Congress, 1962:117-137
    8 D. Stewart. A Platform with Six Degrees of Freedom. The Institution of Mechanical Engineers, 1965, 180(15):371-386
    9 K. H. Hunt. Kinematic Geometry of Mechanisms. New York: Oxford University Press,1978:304-374
    10 E. F. Fither. A Stewart platform-based manipulator: General theory and practical construction. The International Journal of Robotics Research. 1986,5(2):157-182
    11 E. D. Lazard, J.P. Merlet. The (true) Stewart Platform has 12 Configurations. IEEE Conference on Robotic and Automation. San Diego, May 8-13,1994,3:2160-2165
    12 C.Innocenti, V.P.Castelli.Direct Position Analysis of the Stewart Platform.Mechanism Machine Theory.1990,25(6):611-621
    13 C. D. Zhang, S.M. Song. Forward Kinematics of a Class of Parallel (Stewart) Platform with Closed-Form Solutions. Proceedings of the 1991 IEEE International Conference on Robotics and Automation,Sacramento,California,1991:2676-2681
    14 P. Nanua, K. J. Waldron, V. Murthy. Direct Kinematic Solution of Stewart Platform. IEEE Transaction on Robotics and Automation,1990,6(4):438-444
    15 S. V. Screennivasan, K.J. Waldron, P. Nanua. Closed Form Direct Displacement Analysis of a 6-6 Stewart Platform. Mechanism Machine Theory,1994,29(6):855-864
    16 M. Griffis, J.Duffy. A Forward Displacement Analysis of a Class of Stewart Platforms. Journal of Robotic System. 1989,6(6):703-720
    17 P. Nanua, K. J. Waldron, V. Murthy. Direct Kinematic Solution of Stewart Platform. Proceedings of 1989 IEEE International Conference on Robotics and Automation, Scottsdale, Arizona, May 14-19, 1989:431-437
    18 C.W.Wampler. Forward Displacement Analysis of General Six-In-Parallel SPS(Stewart) Platform Manipulators Using Soma Coordinates. Mechanism Machine Theory,1996,33(3):331-337
    19 M. Raghavan. The Stewart Platform of General Geometry Has 40 Configurations. ASME Journal of Mechanical Design, 1993,115(2):277-282
    20 K.H. Hunt, E.F.J. Primrose. Assembly Configurations of Some In-parallel-actuated Manipulators. Mechanism Machine Theory,1993,28(1):31-42
    21 文福安,梁崇高,廖启征. 并联机器人机构位置正解. 中国机械工程,1999,10(9):1011-1013
    22 Z. Geng, L.S. Haynes.Neural Network Solution for the Forward Kinematics Problem of a Stewart Platform. Robotics and Comp. Int. Manuf. 1992,9(6):485-495
    23 C.S. Yee, K.B. Lim. Forward Kinematics Solution of Stewart Platform Using Neural Networks. Neurocomputing,1997,16(4):333-349
    24 R.Boudreau, N.Turkkan. Solving the Forward Kinematics of Parallel Manipulators with a Genetic Algorithm. J. Robotic Systems, 1996,13(2):111-125
    25 P.K. Nagarjuna, A.H. Soni.Solution to the Forward and Inverse Kinematics Equations Using Multiplayer Back-propagation Neural Network. Proceedings of the 4th ASME Flexible Assembly Conference,1994:29-33
    26 E. F. Fichter. A Stewart Platform-Based Manipulator: General Theory and Practical Construction. Int. J. of Rob. Res.,1986,5(2):157-182
    27 V.D. Nguyen. Constructing Force-Closure Grasps. Int. J. Rob. Res. 1988,7(3):3-16
    28 K. Sugimoto. Computational Scheme for Dynamic Analysis of Parallel Manipulators. Journal of Mechanisms, Transmissions and Automation in Design,1989, 111(1):29-33
    29 W. Q. D. Do, D. C. H. Yang. Inverse Dynamic Analysis and Simulation of a Platform Type of Robot. Journal of Robotic Systems,1988,5(3):209-227
    30 Z. Geng, L. S. Haynes, J. D. Lee, et al. On the Dynamic Model and Kinematic Analysis of a Class of Stewart Platforms. Robotics and Autonomous Systems, 1992,12(9): 237-254
    31 K. Liu, F. Lewis, G. Lebret, et al. The Singularities and Dynamics of a Stewart Platform manipulator. Journal of Intelligent and Robotic Systems,1993,26(8):287-308
    32 Z. Ji. Dynamics Decomposition for Stewart Platforms. ASME Journal of Mechanical Design,1994,116(1):67-69
    33 Z. Huang, H. B. Wang. Dynamic Force Analysis of 6-DOF Parallel Multiloop Robot Manipulators,ASME Paper 86-DEF-168 ,1986
    34 孔令富.六自由度并联机器人运动控制系统的研究.[哈尔滨工业大学博士学位论文].1995:1-5
    35 韩佩富,王常武,孔令富等. 改进的 6-DOF 并联机器人 Newton-Euler 动力学模型. 机器人,2000,22(4):315-318
    36 B. Dasgupta, T. S. Mruthyunjaya.Closed-form dynamic equations of the general Stewart platform through the Newton-Euler approach. Mechanism and Machine Theory,1998,33(7):993-1012
    37 B. Dasgupta, T. S. Mruthyunjaya. A Newton-Euler Formulation for the Inverse Dynamics of the Stewart Platform Manipulator. Mechanism and Machine Theory, 1998,33(8):1135-1152
    38 B. Dasgupta,T. S. Mruthyunjaya. A general strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators. Mechanism and Machine Theory, 1999,34(6):801-824
    39 郭祖华,陈五一,陈鼎昌. 6-UPS 型并联机构的刚体动力学模型. 机械工程学报,2002,38(11):53-57
    40 C. M. Gosselin. Parallel Computational Algorithms for the Kinematics and Dynamics of Planar and Spatial Parallel Manipulators. ASME Journal of Dynamic Systems Measurement and Control,1996,118(1):22-28
    41 G. Lebret, K. Liu, F. Lewis. Dynamic Analysis and Control of a Stewart Platform Manipulator Journal of Robotic Systems,1993,10(5): 629-655
    42 V. Kunmar. Characterization for Workspaces of Parallel Manipulators. ASME J. of Mechanical Design,1992,114(4):368-375
    43 D. Y. Jo, E. J. Haug.Workspace of Analysis Closed Loop Mechanism with Unilateral Constraints. In ASME Design Automation Conf. ,Montréal, September 17-20,1989,3:53-60
    44 C. Gosselin. Determination of the Workspace of 6-DOF Parallel Manipulators. ASME J. Of Mechanical Design,1990,112(3):331-336
    45 J. P. Merlet. Geometrical Determination of Workspace of a Constrained Parallel Manipulators. In ARK, Ferrare,1992:326-329
    46 Z.Ji. Workspace Analysis of Stewart Platforms via Vertex Space. J. Robotic Systems, 1994,11(7):631-638
    47 J. P. Merlet. Determination of the Orientation Workspace of Parallel Manipulators. Journal of Intelligent and Robotic System,1995,28(13):143-160
    48 C. M. Gosselin, J. Angeles. Singularity Analysis of Closed-Loop Kinematic Chains. IEEE Trans. On Rob. And Aut.,1990,6(3):281-290
    49 O. Masofy, J. Wang. Workspace Evaluation of Stewart Platforms.Journal of Advanced Robotics,1995, 9(4):443-461
    50 黄田, 汪劲松. Stewart 并联机器人位置空间解析.中国科学(E 辑),1998,28(2):136-145
    51 曲义远, 黄真. 空间六自由度并联机构位置的三维搜索方法.机器人,1989, 11(5):25-39
    52 K. H. Hunt. Structural Kinematics of in Parallel Actuated Robot Arms. J. Of Mechanisms, Transmissions and Automation in Design,1983,105(4):705-712
    53 J. P. Merlet. Singular Configurations of Parallel Manipulators and Grassman Geometry. Int. J. Robot. Res.,1989,8(5):45-56
    54 B. Dasgupta, T. S. Mruthyunjaya. Singularity-free Path Planning for the Stewart Platform Manipulator. Mechanism and Machine Theory,1998,33(6):711-725
    55 C. Gosswlin. Stiffness Mapping for Parallel Manipulators. IEEE Transaction on Robotics and Automation. 1990,6(3):377-382
    56 E.M. Dafaoui, Y. Amirat, J. Pontnau, et al. Analysis and Design of a Six-DOF Parallel Manipulator, Modeling, Sigular Configurations and Workspace. IEEE Transaction on Robotics and Automation. 1998,14(1):78-92
    57 J. Kim, F.C. Park,M. Kim. Geometric Design Tools for Stiffness and Vibration Analysis of Robotic Mechanisms. Proceedings of the 2000 IEEE International Conference on Robotics and Automation. San Francisco,Calofornia,April 24-27,2000:1942-1947
    58 K.M. Lee, R. Johnson. Static Characteristics of an In-Parallel Actuated Manipulator for Clamping and Bracing Application. Proceedings of the 1989 IEEE International Conference on Robotics and Automation, Scottsdale, Arizona ,May 14-19,1989:1408-1413
    59 M.M. Svinin, K.Ueda, M.Uchiyama. On the Stability Condition for a Class of Parallel Manipulators. Proceedings of the 2000 International conference on Robotics & Automation. San Francisco,California,April 24-27,2000:2386-2391
    60 R.G. Roberts. Minimal Realization of an Arbitrary Spatial Stiffness Matrix with a Parallel Connection of Simple and Complex Springs. Proceedings of the 2000 IEEE International Conference on Robotics and Automation. San Francisco,Colifornia,April 24-27, 2000:3302-3307
    61 S. Bhattacharya, H. Hatwal, A. Ghosh. On the Optimum Design of Stewart Platform Type Parallel Manipulators. Robotica,1995,13(2):133-140
    62 T. Hung, J.P. Mei, X.Y. Zhao, et al. Stiffness Estimation of a Tripod-based Parallel Kinematic Machine. Proceedings of the 2001 IEEE International Conference on Robotics and Automation, Seoul,Korea,May 21-26,2001:3280-3285
    63 郭希娟.并联机器人动力学基础理论的研究.[燕山大学工学博士学位论文].2002:25-38
    64 C.C. Nguyen,S.S. Antrazi,Z. L. Zhou. Adaptive Control of a Stewart Platform-based Manipulator Journal of Robotic Systems, 1993,10(5):657-687
    65 N. Kim, C. W. Lee. High Speed Tracking Control of Stewart Platform Manipulator via Enhanced Sliding Mode Control. Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium, May 16-20,1998:2716-2721
    66 K. Liu, M. Fitzgerald, D. W. Dawson, et al. Control of Systems with Inexact Dynamic Models,ASME,1991:83-89
    67 K. Liu, G. Lebret, J.A. Lowe, et al. Advanced Control Issues for Robot Manipulators. ASME,1992:23-30
    68 H.R. Wang, C. Xue, W. A. Gruver. Neural Network Control of a Parallel Manipulator. Proc. of IEEE International Conference on Systems, Man. and Cybernetics, 1995:2934-2938
    69 J. D. Lee, Z. Geng. Dynamic Model of Flexible Stewart Platform. Computers and Structures, 1993,48(3):367-374
    70 孔令富,韩佩富,黄真等. 6-DOF 并联机器人修正位置/力控制系统的研究.机器人, 1998,20(4):303-308
    71 B. Dasgupta, T. S. Mruthyunjaya. Force redundancy in parallel manipulators: theoretical and practical issues. Mechanism and Machine Theory,1998,33(6): 727-742
    72 孙立宁,徐文军,蔡鹤皋. 基于模糊 CMAC 神经网络的并联机器人自适应力控制研究.机器人, 1999,21(3):198-203
    73 L. Cai, A. A. Goldenberg. Robust Control of Position and Forces for A Robot Manipulator in Non-contact and Contact Tasks. Proceedings of American Control Conference, 1989:1905-1911
    74 F. Toshio, K. Takashi, T. Masatoshi. Position/Force Hybrid Control of Robotic Manipulator by Neural Network(1st Report, Application of Neural Servo Controller to Stabbing Control). Transactions on Japan Society of Mechanical Engineering(JSME): Part C, 1990, 56(527):1854-1860
    75 M. Tokita, T. Mituoka, T. Fukuda, et al. Force Control of A Robotic Manipulator by Application of A Neural Network. Advanced Robotics, 1991, 5(1):15-24
    76 Y. Xu, R.P. Paul, H. Shum. Fuzzy Control of Robot and Compliant Wrist System. Proceedings of IEEE Industry Applications Annual Conference, 1991, 2(10):1431-1437
    77 T. H. Connolly, F. Pfeiffer. Neural Network Hybrid Position/force Control. IEEE International Conference on Intelligent Robots and Systems, 1993, 1:240-244
    78 P. H. Chang, D. S. Kim, K. C. Park. Robust Force/Position Control of Robot Manipulator Using Time Delay Control. Control Engineering Practice, 1995, 3(9):1255-1264
    79 S. Jung, T. C. Hsia. Robust Neural Force Control Scheme under Uncertainties in Robot Dynamics and Unknown Environment. IEEE Transactions on Industrial Electronics, 2000, 47(2):403-412
    80 R. J. Wai, Hsieh, K. Yun. Robust Fuzzy Neural Network Control for n-link Robot Manipulator. Journal of The Chinese Institute of Electrical Engineering, Transactions of The Chinese Institute of Engineers, Series E/Chung Kuo Tien Chi Kung Chieng Hsueh K’an, 2003, 10(2):21-32
    81 http://www-sop.inria.fr/coprin/equipe/merlet/Photo/mosaic.html
    82 G. W. Ellis.Piezoelectric Micromanipulators.Science Instruments and Techniques,1962,138:84-91
    83 J. C. Hudgens, D. Tesar. A Fully-parallel Six Degree of Freedom Micro-manipulator: Kinematic Analysis and Dynamic Model. The 20th Biennial ASME Mechanisms Conference on Trends and Development in Mechanisms Machines and Robotics, 1988, 15(3):29-37
    84 K.M. Lee, S. Arjunan. A 3-DOF Micro-Motion In-parallel Actuated Manipulator. IEEE Conference on Robotics and Automation, 1989:1698-1703
    85 R.Stoughton. Kinematic Optimization of a Chopsticks-Type Micromanipulator. ASME Japan/USA Symposium on Flexible Automation, 1991:151-157
    86 J. M. Hervé. The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design. Mechanism and Machine Theory, 1999, 34(5):719-730
    87 J. P. Merlet. Optimal Design for the Micro Parallel Robot MIPS. IEEE International Conference on Robotics and Automation, Washington, 2002:1149-1154
    88 杨宜民. 仿生型步进式直线驱动器的研究. 机器人,1994,16(1):37-39
    89 孙立宁,安辉,蔡鹤皋.压电陶瓷驱动并联微动机器人的研究.高技术通讯,1997,7(3):29-31
    90 徐卫平, 张玉茹. 六自由度微动机构的运动分析. 机器人, 1995,17(5):298-302
    91 毕树生, 王守杰, 宗光华. 串并联微动机构的运动学分析. 机器人, 1997,19(4):259-264
    92 杜铁军. 机器人误差补偿器研究.[燕山大学工学硕士学位论文].1994:1-40
    93 陈恳, 李嘉, 董怡等. 并联微操作手的运动学分析. 中国机械工程, 1998, 9(7):57-59
    94 汪劲松,黄田. 并联机床-机床行业面临的机遇与挑战. 中国机械工程,1999,10(42):1103-1107
    95 L. Lam, S.W. Lee, C.Y. Suen. Thinning Methodologies—A Comprehensive Survey. IEEE Trans. On PAMI, 1992,14(9):869-885
    96 H. Chiu, D. Tseng. A Novel Stroke-based Feature Extraction for Handwritten Chinese Character Recognition, Pattern Recognition,1999,32(12):1947-1959
    97 J. Zou, H.Yan. Extraction Strokes from Static Line Images Based on Selective Searching. Pattern Recognition,1999,32(6):935-946
    98 孙星明,杨茂江,刘国华等. 完全基于结构知识的汉字笔画抽取方法,计算机研究与发展,2000,37(5):543-550
    99 Y. Nakajima, S. Mori, S.Takegami, et al.. Global Methods for Stroke Segmentation, International Journal on Document Analysis and Recognition,1999,2(1):19-23
    100 L.Y.Tseng, C.T.Chuang. An Efficient Knowledge-based Stroke Extraction Method for Multi-font Chinese Characters, Pattern Recognition,1992,25(12):1445-1458
    101 http://www.strong-hand.com.cn/d200.html
    102 http://beijingxinfa.cn.alibaba.com/athena/sampledetail/5500421.html
    103 赵玉刚,江士成,邢建国. 文字、图案数控凹凸雕刻加工计算机辅助编程系统. 机械科学与技术,1999,18(5):855-857
    104 R. He,H. Yan. Stroke Extraction as Pre-processing Step to Improve Thinning Results of Chinese Chracters. Pattern Recognition Letters,2000, 21(9):817-825
    105 J.H.Cai,Z.Q.Liu. Interface of Structural and Statistical Information for Unconstrained Handwritten Numeral Recognition. IEEE Transaction on PAMI, 1992,21(3):263-270
    106 T.N. Yang,S.D. Wang. A Rotation Invariant Printed Chinese Character Recognition System. Pattern Recognition Letters,2001,22(2):85-95
    107 许光辉,左耀辉. 加工中心雕刻实体复杂曲面上的文字. 机械工艺师,2001(4):19-20
    108 陈松,李富生,姜虹等. 曲面上复杂图形雕刻加工的刀位规划. 机床与液压,2003(3):324-326
    109 S.W. Lee, J.S. Park. Nonlinear Shape Normalization Methods for the Recognition of Large Set Handwritten Characters. Pattern Recognition, 1994,27(7):895-902
    110 R. Stefanelli, A. Rosenfeld. Some Parallel Thinning Algorithms for Digital Pictures. Journal of the ACM ,1971,18(2):255-264
    111 孙星明. 结构化汉字信息处理方法及其应用研究.[复旦大学博士学位论文].2001:38,51
    112 郭希娟,黄真.并联机器人机构加速度的性能指标分析.中国机械工程,2002,13(24):2087-2091
    113 袁曾任. 人工神经元网络及其应用. 北京:清华大学出版社,1999:66-350
    114 孙增圻.智能控制理论与技术.北京:清华大学出版社,1997:125-237
    115 R.P. Lippmann.An Introduction to Computing with Neural Nets. IEEE ASSP Magazine,1987, 5(2):4-22
    116 G. V. Cybenko.Approximation by Superpositions of a Sigmoidal Function. Mathematics of Control, Signals and Systems, 1989,2(1):303-314
    117 雷鸣,朱心飚,尹申明等. 自构形神经网络及其应用. 计算机科学,1994,21(1):52-54
    118 尹申明,陆建东,雷鸣等. 自适应神经网络学习算法研究. 计算机研究与发展,1994,31(6):24-29
    119 丁洪生,李金泉,付铁.BKX-1 型并联机床的准静力分析.机械设计与研究,2002,18(3):39-41
    120 张世辉. 汉字图像预处理算法的研究及实现. 微机发展,2003,13(4):53-55
    121 C. C. Lo. A New Approach to CNC Tool Path Generation. Computer-Aided Design, 1998, 30(8): 649-655
    122 王洋,倪雁冰,黄田等.并联机床插补算法与原理性插补预估.机械工程学报,2001,37(6):15-18
    123 X. Yang. Efficient Circular Arc Interpolation Based on Active Tolerance Control. Computer-Aided Design, 2002, 34(13):1037-1046
    124 王忠华,汪劲松,杨向东等.VAMT1Y 虚拟轴机床数控系统直线和圆弧插补仿真研究. 中国机械工程,1999,10(10):1121-1123
    125 Y. S. Lee. Admissible Tool Orientation Control of Gouging Avoidance for 5-axis Complex Surface Machining. Computer-Aided Design, 1997, 29(7):507-521
    126 苏步青,华宣积,忻元龙.实用微分几何引论.北京:科学出版社,1988:3-157
    127 陈日曜. 金属切削原理. 北京:机械工业出版社,1993:4-88
    128 周泽华. 金属切削原理. 上海:上海科学技术出版社,1993:5-86
    129 [东德]邓格纳著. 切削加工. 张信译. 北京:机械工业出版社,1983:2-215
    130 艾兴,肖诗钢. 切削用量手册. 北京:机械工业出版社,1984:7-45
    131 N. Hogan. Impedance Control: An Approach to Manipulation: Part I-theory. Part II-Implementation. Part III-Applications. Journal of Dynamics, Systems, Measurement and Control, 1985,107(1):1-24
    132 袁军,黄心汉,陈锦江. 基于神经网络的机器人阻抗控制研究.系统仿真学报,1993,5(3):14-19
    133 江帆,冯祖仁,施仁. 一种机器人自适应阻抗控制算法.控制理论与应用,1993.10(6):638-643
    134 李杰,韦庆,常文森等. 基于阻抗控制的自适应力跟踪方法.机器人,1999,21(1):23-29
    135 H. Kazerooni, P.K. Houpt, T.B. Sheridan. Robust Compliant Motion for Manipulators, Part I:The Fundamental Concepts of Compliant Motion,PartII: Design Methods. IEEE Journal of Robotics and Automation,1986, 2(2):83-105
    136 H.Seraji, R.Colbaugh. Force Tracking in Impedance Control. International Journal of Robotics Research,1997,16(1):97-117
    137 T.A. Lasky, T.C. Hsia. On Force Tracking Impedance Control of Robot Manipulators. Proceedings of IEEE Conference on Robotics and Automation, Sacramento California, April,1991:274-280
    138 G.Q. Huang, K.L. Mak. Web-integrated Manufacturing: Recent Developments and Emerging Issues. Integrated Journal of Computer Integrated Manufacture,2001,14(1):3-13
    139 姚英学,路勇.基于计算机网络的远程加工工况信息集成技术研究. 航空工艺技术, 1999,42(1):13-17
    140 梁宇澜,唐敦兵,郑力等.基于 Web 的机械加工仿真委托服务平台.计算机集成制造系统—CMIS, 2002,8(12):997-1001
    141 K. Taylor, B. Dalton. Internet robots: a New Robotics Niche. IEEE Robotics & Automation Magazine,2000,7(1):27-34
    142 白剑,吴镇炜,刘振诗. 用 JAVA 开发的机器人遥操作系统.机器人,2003,25(2):113-116

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700